
Finding Second-Order Stationary Points in
Nonconvex-Strongly-Concave Minimax Optimization

Luo Luo
School of Data Science

Fudan University
luoluo@fudan.edu.cn

Yujun Li
Noah’s Ark Lab

Huawei Technologies Co., Ltd.
liyujun9@huawei.com

Cheng Chen∗

School of Physical and Mathematical Sciences
Nanyang Technological University

cheng.chen@ntu.edu.sg

Abstract

We study the smooth minimax optimization problem minx maxy f(x,y), where
f is ℓ-smooth, strongly-concave in y but possibly nonconvex in x. Most of
existing works focus on finding the first-order stationary points of the function
f(x,y) or its primal function P (x) ≜ maxy f(x,y), but few of them focus
on achieving second-order stationary points. In this paper, we propose a novel
approach for minimax optimization, called Minimax Cubic Newton (MCN), which
could find an

(
ε, κ1.5√ρε

)
-second-order stationary point of P (x) with calling

O
(
κ1.5√ρε−1.5

)
times of second-order oracles and Õ

(
κ2√ρε−1.5

)
times of first-

order oracles, where κ is the condition number and ρ is the Lipschitz continuous
constant for the Hessian of f(x,y). In addition, we propose an inexact variant
of MCN for high-dimensional problems to avoid calling expensive second-order
oracles. Instead, our method solves the cubic sub-problem inexactly via gradient
descent and matrix Chebyshev expansion. This strategy still obtains the desired
approximate second-order stationary point with high probability but only requires
Õ
(
κ1.5ℓε−2

)
Hessian-vector oracle calls and Õ

(
κ2√ρε−1.5

)
first-order oracle

calls. To the best of our knowledge, this is the first work that considers the non-
asymptotic convergence behavior of finding second-order stationary points for
minimax problems without the convex-concave assumptions.

1 Introduction

We consider minimax optimization of the form

min
x∈Rdx

max
y∈Rdy

f(x,y), (1)

where f(x,y) is ℓ-smooth, µ-strongly-concave in y, but possibly nonconvex in x. Problem (1) can
also be written as

min
x∈Rdx

{
P (x) ≜ max

y∈Rdy
f(x,y)

}
. (2)

This framework covers a wide range of applications in machine learning such as regularized GAN [32],
reinforcement learning [31], domain adaptation [9] and adversarial training [35].

∗The corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Most recent works focus on finding an ε-first-order stationary point (FSP) of P (x). Lin et al.
[20] showed that the vanilla gradient descent ascent (GDA) method could obtain an ε-FSP with
O((κ2ℓ + κℓ2)ε−2) first-order oracle calls. This complexity can be reduced to Õ

(√
κℓε−2

)
by

proximal iteration algorithms [21], which matches the gradient oracle lower bound for finding ε-FSP
of P (x) [13, 44]. The theory of first-order optimization for problem (1) has also been studied in
stochastic settings [12, 15, 20, 24, 41, 42] and the block-wise setting [23]. However, the approximate
FSP obtained by these algorithms cannot guarantee the local optimality since the primal function
P (x) could be nonconvex.

In this paper, we focus on finding a second-order stationary point (SSP) of P (x) to capture the
local optimal properties [8, 26]. Inspired by the success of second-order optimization in nonconvex
minimization [1, 5, 6, 14, 18, 22, 28, 38, 45], we propose a novel method, called Minimax Cubic
Newton (MCN), which runs cubic Newton update on x and maximizes the objective on y alternatively.
This iteration scheme avoids getting stuck at an unexpected FSP. Specifically, we show MCN
will converge to an

(
ε, κ1.5√ρε

)
-SSP of P (x) with O

(
κ1.5√ρε−1.5

)
number of iterations, where

κ is the condition number and ρ is the Lipschitz continuous constant of ∇2f(x,y). For high-
dimensional problems, we also propose an efficient algorithm, called Inexact Minimax Cubic Newton
(IMCN), which avoids the expensive second-order oracle calls. IMCN approximates the second-order
information by matrix Chebyshev polynomial and solves the cubic regularized sub-problem inexactly.
It only requires Õ

(
κ1.5ℓε−2

)
Hessian-vector oracle calls and Õ

(
κ2√ρε−1.5

)
first-order oracle calls

to find an
(
ε, κ1.5√ρε

)
-SSP. Under mild strict saddle condition [3, 10, 11, 36, 37], the approximate

SSP of P (x) implies an approximate local minimax point of f(x,y) defined by Jin et al. [17], which
successfully characterizes the local optimality for problem (1). To the best of our knowledge, this
is the first work that considers non-asymptotic convergence behavior of finding SSP for minimax
problems without convex-concave assumptions. We also conduct experiments on both synthetic
function and the real application to validate our theoretical analysis. The empirical results show that
the proposed algorithms significantly outperform the GDA method.

In a concurrent work, Chen et al. [7] also studied Problem (1) and proposed Cubic-GDA which is
similar to our MCN algorithm. MCN has advantage on complexity of first-order oracles by a factor
of

√
κ since Cubic-GDA adopts GD to update y while MCN uses AGD instead. Chen et al. [7]

mentioned that the cubic sub-problem can be efficiently solved by gradient-based algorithms, but
they did not provide theoretical analysis for this inexact variant, which is more practical in high
dimensional case. As a comparison, we provide the complexity of both Hessian-vector oracles and
first-order oracles of our inexact algorithm IMCN.

2 Preliminaries

This section first presents the notations and assumptions for our settings. Then we introduce the
background of local optimality for minimax optimization and some basic algorithms.

2.1 Notations and Assumptions

For a twice differentiable function f(x,y), its partial gradients with respect to x and y are denoted
as ∇xf(x,y) and ∇yf(x,y) respectively. Its Hessian matrix at point (x,y) can be partitioned
as ∇2f(x,y) = [∇2

xxf(x,y), f(x,y);∇2
yxf(x,y),∇2

yyf(x,y)], where ∇2
xxf(x,y) ∈ Rdx×dx ,

∇2
xyf(x,y) ∈ Rdx×dy , ∇2

yxf(x,y) ∈ Rdy×dx and ∇2
yyf(x,y) ∈ Rdy×dy . We also denote

H(x,y) = ∇2
xxf(x,y)−∇2

xyf(x,y)(∇2
yyf(x,y))

−1∇2
yxf(x,y) if ∇2

yyf(x,y) is invertible.

Given a symmetric matrix A, we denote λmin(A) as the smallest eigenvalue of A. We use ∥·∥2
to denote the spectral norm of matrices and Euclidean norm of vectors. We also denote the closed
Euclidean ball with radius r and center x∗ as B(x∗, r) = {x : ∥x− x∗∥2 ≤ r}. Additionally, we
use notation Õ(·) to hide logarithmic terms in the complexity.

We suppose the objective function f(x,y) of Problem (1) satisfies the following assumptions.

Assumption 1. The function f(x,y) has ℓ-Lipschitz gradients, i.e., there exists a constant ℓ > 0

such that ∥∇f(x,y)−∇f(x′,y′)∥22 ≤ ℓ2
(
∥x− x′∥22 + ∥y − y′∥22

)
for any x,x′ ∈ Rdx and

y,y′ ∈ Rdy .

2

Assumption 2. The function f(x,y) has ρ-Lipschitz Hessian, i.e., there exists a constant ρ > 0

such that
∥∥∇2f(x,y)−∇2f(x′,y′)

∥∥2
2
≤ ρ2

(
∥x− x′∥22 + ∥y − y′∥22

)
for any x,x′ ∈ Rdx and

y,y′ ∈ Rdy .

Assumption 3. The function f(x,y) is µ-strongly-concave in y, i.e., there exists a constant µ > 0

such that f(x,y) ≤ f(x,y′)+∇yf(x,y)
⊤(y−y′)− µ

2 ∥y − y′∥22 for any x ∈ Rdx and y,y′ ∈ Rdy .

Assumption 4. The function P (x) ≜ maxy∈Rdy f(x,y) satisfies P ∗ ≜ infx∈Rdx P (x) > −∞.

Definition 1. Under Assumption 1 and 3, we define the condition number of f(x,y) as κ ≜ ℓ/µ.

The assumptions of Lipschitz continuous gradient and strongly-concavity on f indicate that the
primal function P (x) ≜ maxy∈Rdy f(x,y) is well-defined and has Lipschitz continuous gradients
as shown in Lemma 1.

Lemma 1 ([20, Lemma 4.3]). Suppose the objective function f satisfies Assumptions 1 and 3,
then the primal function P (x) ≜ maxy∈Rdy f(x,y) has (κ + 1)ℓ-Lipschitz continuous gradients.
Additionally, the function y∗(x) = argmaxy∈Rdy f(x,y) is well-defined and κ-Lipschitz. We also
have ∇P (x) = ∇xf(x,y

∗(x)).

Now we give the definitions of ε-FSP and (ε, δ)-SSP as follows.

Definition 2. Suppose the function f(x,y) satisfies Assumption 1 and 3, then we call x an ε-FSP of
P (x) if ∥∇P (x)∥2 ≤ ε.

Definition 3. Suppose the function f(x,y) satisfies Assumption 1, 2 and 3, then we call x is an
(ε, δ)-SSP of P (x) if ∥∇P (x)∥2 ≤ ε and ∇2P (x) ⪰ −δI.

The following two lemmas provide the closed form of ∇2P (x) and its Lipschitz continuity.

Lemma 2 ([34]). Suppose the function f(x,y) satisfies Assumption 1, 2 and 3. We use the definition
of y∗(x) in Lemma 1, then it holds that ∇2P (x) = H(x,y∗(x)).

Lemma 3. Under assumptions of Lemma 2, we have
∥∥∇2P (x)−∇2P (x′)

∥∥
2
≤ 4

√
2κ3ρ ∥x− x′∥2

for any x and x′ in Rdx .

2.2 Local Optimality of Minimax Optimization

The Nash equilibrium is widely used in the study of convex-concave minimax optimization [40, 43],
but it is intractable in general when the objective function f(x,y) is nonconvex in x or nonconcave in
y. For the general minimax problem, we introduce the local minimax point [17], which characterizes
the optimality in two-player sequential games where players can only change their strategies locally.

Definition 4 ([17]). Given a differentiable function f(x,y) : Rdx × Rdy → R that is strongly-
concave in y, a point (x∗,y∗) ∈ Rdx × Rdy is called a local minimax point of f , if there exists
δ0 > 0 and a function h satisfying h(δ) → 0 as δ → 0, such that for any δ ∈ (0, δ0], x ∈ B(x∗, h(δ))
and y ∈ Rdy , we have

f(x∗,y) ≤ f(x∗,y∗) ≤ max
y′∈Rdy

f(x,y′). (3)

Remark 1. The definition of local minimax point for general nonconvex-nonconcave [17] only
requires (3) holds for any y and y′ in a neighbour of y∗, while the constraint on y and y′ is
unnecessary in our setting since we assume that f(x,y) is strongly-concave in y.

The local minimax point enjoys the following property.

Lemma 4 ([17, Proposition 19]). Suppose f(x,y) is twice differentiable, then any point (x∗,y∗)
satisfying ∇f(x∗,y∗) = 0, ∇2

yyf(x
∗,y∗) ≺ 0 and H(x∗,y∗) ≻ 0 is a local minimax point

of f(x,y).

3

Based on Lemma 4, we introduce the strict-minimax condition on f which is an extension of
strict-saddle condition for nonconvex minimization [3, 10, 11, 16, 36, 37].
Definition 5. Under Assumption 1, 2 and 3, we say f(x,y) is (α, β, γ)-strict-minimax for some
α > 0, β > 0 and γ > 0 if every (x̂, ŷ) ∈ Rdx × Rdy satisfies at least one of the following three
conditions: (a) ∥∇f(x̂, ŷ)∥2 > α; (b) λmin(H(x̂, ŷ)) < −β; (c) There exists a local minimax point
(x∗,y∗) such that ∥x̂− x∗∥22 + ∥ŷ − y∗∥22 ≤ γ2.

Note that if f is (α, β, γ)-strict-minimax and there exists a point x̂ which is an (ε, δ)-SSP of P (x)
with sufficient small ε and δ, then we can find ŷ ≈ argmaxy f(x̂,y) via running a first-order
algorithm to minimize −f(x̂, ·) and obtain (x̂, ŷ) which is in a neighborhood of (x∗,y∗). In other
words, under the strict-minimax condition, we can reduce the task of finding approximate local
minimax point of f(x,y) to finding an approximate SSP of P (x). We will provide the formal
statement in Section 3.2.

2.3 Accelerated Gradient Descent

Algorithm 1 AGD(h,y0,K, η, θ)

1: ỹ0 = y0

2: for k = 0, . . . ,K − 1 do
3: yk+1 = ỹk − η∇h(ỹk)

4: ỹk+1 = yt+1 + θ(yk+1 − yk)

5: end for
6: Output: yK

Nesterov’s accelerated gradient descent (AGD)
is the optimal first-order algorithm for convex
optimization [27, 29], which is widely used
in minimax optimization algorithms [21, 39].
We describe the details of AGD for smooth
and strongly-convex functions in Algorithm 1,
which has the following convergence rate.
Lemma 5 ([39, Lemma 2]). Running Algo-
rithm 1 on a ℓh-smooth and µh-strongly-convex
objective function h(·) with parameters η = 1/ℓh and θ =

√
κh−1√
κh+1 produces the output yK satisfying

∥yK − y∗∥22 ≤ (κh + 1)
(
1− 1√

κh

)K ∥y0 − y∗∥22, where y∗ = argminy h(y) and κh = ℓh/µh.

2.4 Cubic Regularized Newton

Cubic regularized Newton (CRN) is a classic algorithm for nonconvex minimization [5, 6, 27, 28, 38].
It solves the nonconvex minimization problem minx g(x) via the following update rules

st = argmin
s∈Rd

∇g(xt)
⊤s+

1

2
s⊤∇2g(xt)s+

ρg
6

∥s∥32 , xt+1 = xt + st.

The CRN method could find an
(
ε,
√
ρgε

)
-SSP of g(x) with O

(√
ρgε

−1.5
)

number of iterations,
where ρg is the Lipschitz continuous constant of the Hessian of g(x).

3 Minimax Cubic Newton Algorithm

In this section, we propose our minimax cubic Newton algorithm and give its convergence results.

3.1 Minimax Cubic Newton Method

We present the details of Minimax Cubic Newton (MCN) method in Algorithm 2. In each round, the
MCN algorithm performs following steps:

• Run AGD as presented in Algorithm 1 to estimate yt ≈ y∗(xt) = argmaxy f(xt,y).
• Compute the inexact first-order and second-order information of P at xt as

∇P (xt) ≈ gt = ∇xf(xt,yt) and ∇2P (xt) ≈ Ht = H(xt,yt).

• Solve the following cubic regularized problem

s∗t=argmin
s∈Rdx

(
g⊤
t s+

1

2
s⊤Hts+

M

6
∥s∥32

)
. (4)

4

Algorithm 2 Minimax Cubic-Newton (MCN)
1: Input: x0 ∈ Rdx , y−1 = 0, T , {Kt}Tt=0, ε.
2: for t = 0, · · ·T − 1 do
3: yt = AGD

(
−f(xt, ·),yt−1,Kt,

1
ℓ ,

√
κ−1√
κ+1

)
4: gt = ∇xf(xt,yt), Ht = H(xt,yt)

5: s∗t = argmin
s∈Rdx

(
g⊤
t s+

1
2s

⊤Hts+
M
6 ∥s∥32

)
6: if ∥s∗t ∥2 ≤ 1

2

√
ε/M then break

7: xt+1 = xt + s∗t
8: end for
9: Output: x̂ = xt + s∗t

The expressions of gt and Ht in the algorithm
are inspired from Lemma 1 and 3. The smooth-
ness of ∇P (x) and ∇2P (x) allow the total
complexity of AGD iteration of the algorithm
has the desired upper bound. Our theoreti-
cal analysis show the termination condition in
Line 7 of Algorithm 2 can be attained in no
more than O(κ1.5√ρε−1.5) number of itera-
tions. We also show that a small ∥s∗t ∥2 will
lead to a desired approximate second-order sta-
tionary point of P (x). Hence, using AGD to
optimize f(xt + s∗t ,y) with respect to y gen-
erates an approximate local minimax point of
f(x,y).

3.2 Complexity Analysis for MCN

In this section, we let M = 4
√
2κ3ρ for MCN. Our analysis for MCN algorithm contains three parts:

1. We follow Tripuraneni et al. [38]’s idea to show that our algorithm with sufficient accurate gradient
and Hessian estimator of P (x) requires no more than T = O

(
κ1.5√ρε−1.5

)
rounds of iterations

to achieve an
(
ε, κ1.5√ρε

)
-SSP of P (x).

2. We prove the AGD step in line 3 requires at most Õ
(
κ2√ρε−1.5

)
gradient calls in total.

3. The last part shows we can achieve an approximate local minimax point of f(x,y) from an(
ε, κ1.5√ρε

)
-second-order stationary point of P (x) under strict-saddle condition.

Cubic Newton Iteration on P (x) The procedure of our Algorithm 2 can be regarded as applying
cubic Newton method to minimize nonconvex function P (x), but using inexact first-order and second-
order information. We consider the following conditions on the inexact gradient and Hessian, which
will hold if we run AGD with enough number of iterations.
Assumption 5. Suppose the estimators gt ∈ Rdx and Ht ∈ Rdx×dx satisfy conditions
∥∇P (xt)− gt∥2 ≤ Cgε and

∥∥∇2P (xt)−Ht

∥∥
2
≤ CH

√
Mε for some Cg > 0 and CH > 0.

The following lemma implies the analysis of MCN algorithm only needs to focus on the case of each
∥s∗t ∥2 is large, otherwise we have already find xt+1 which a desired approximate SSP of P (x).
Lemma 6. Under Assumption 5 with Cg = 1/192 and CH = 1/48, if xt+1 from Algorithm 2 is not
an
(
ε,
√
Mε

)
-SSP of P (x), we have ∥s∗t ∥2 ≥ 1

2

√
ε/M .

By Lemma 6, we can show that MCN with sufficient accurate gradient and Hessian estimators can
find an

(
ε,
√
Mε

)
-SSP of P (x) with T = O

(
κ1.5√ρε−1.5

)
number of iterations as follows.

Theorem 1. Under Assumption 1-4, we run Algorithm 2 with T =
⌈
192(P (x0)−P ∗)

√
Mε−1.5

⌉
+1;

and further suppose Kt is sufficient large so that results gt and Ht satisfy Assumption 5 with
Cg = 1/192 and CH = 1/48. Then the output x̂ is an

(
ε,
√
Mε

)
-SSP of P (x).

Total Complexity of AGD Note that MCN (Algorithm 2) applies AGD to maximize f(xt, ·) by
using yt−1 as initialization at the t-th round. With such initialization, the following theorem provides
the upper bound of total number of gradient calls required by AGD and guarantees that gt and Ht in
the MCN algorithm satisfy Assumption 5.

Theorem 2. Under Assumption 1-4, we run Algorithm 2 with K0 =
⌈
2
√
κ log

(√
κ+1
ε̃ ∥y∗(x0)∥2

)⌉
and Kt =

⌈
2
√
κ log

(√
κ+1
ε̃

(
ε̃ + κ

∥∥s∗t−1

∥∥
2

))⌉
for t ≥ 1, where ε̃ = min

{
Cgε/ℓ, CH

√
Mε/ρ

}
and s0 = 0. Then all gt and Ht satisfy the condition of Assumption 5. We also have

T∑
t=0

Kt ≤ T+1+
2
√
κT

3

[
3 log

(√κ+ 1

ε̃
∥y∗(x0)∥2

)
+ log

(
8(κ+1)1.5+

8κ3(κ+ 1)1.5

T ε̃3

T∑
t=1

∥s∗t−1∥
3

2

)]
.

5

Algorithm 3 Inexact Minimax Cubic-Newton
1: Input: x0 ∈ Rdx , y−1 = 0, T , {Kt}Tt=0, ε

2: ck = 2√
ℓµ

(√
µ/ℓ−1√
µ/ℓ+1

)k

3: for t = 0, · · · do
4: yt = AGD

(
− f(xt, ·),yt−1,Kt,

1
ℓ
,
√
κ−1√
κ+1

)
5: gt = ∇xf(xt,yt)

6: Zt = − 2
ℓ−µ

(
∇2

yyf(xt,yt) +
ℓ+µ
2

I
)

7: Compute Ht as equation (5)
8: (st,∆t)=Cubic-Solver(gt,Ht, σ,K (ε, δ′))
9: xt+1 = xt + st

10: if ∆t > − 1
128

√
ε3/M then

11: ŝ = Final-Cubic-Solver(gt,Ht, ε)
12: xt+1 = xt + ŝ
13: break
14: end if
15: end for
16: Output: x̂ = xt+1

Algorithm 4 Cubic-Solver
1: Input: g, H, σ, K(ε, δ′)

2: if ∥g∥2 ≥ L2/M then

3: RC=− g⊤Hg

M ∥g∥22
+

√√√√(g⊤Hg

M ∥g∥22

)2

+
2 ∥g∥2
M

4: ŝ = −RCg/ ∥g∥2
5: else
6: s0 = 0, η = 1/(20L)

7: g̃ = g + σζ for ζ ∼ Uniform(Sd−1)

8: for k = 0, · · · ,K(ε, δ′) do
9: sk+1 = sk − η

(
g̃ +Hsk + M

2
∥sk∥2 sk

)
10: end for
11: ŝ = sK(ε,δ′)

12: end if
13: Output: ŝ and ∆ = g⊤ŝ+ 1

2
ŝ⊤Hŝ+ M

6
∥ŝ∥32

Combining Theorem 1 and Theorem 2, we can obtain the total number of gradient oracle calls,
Hessian (inverse) oracle calls and exact cubic sub-problem solver calls as follows.

Corollary 1. Under Assumption 1-4, running Algorithm 2 with T=
⌈
192(P (x0)−P ∗)

√
Mε′−1.5

⌉
+1,

K0=
⌈
2
√
κ log

(√
κ+1
ε̃′ ∥y∗(x0)∥2

)⌉
and Kt=

⌈
2
√
κ log

(√
κ+1
ε̃′

(
ε̃′+κ ∥st−1∥2

))⌉
for t ≥ 1, where

ε̃′=min
{
Cgε

′/ℓ, CH

√
Mε′/ρ

}
, s0=0 and ε′=2−2.5ε, then the output x̂ is an

(
ε, κ1.5√ρε

)
-SSP

of P (x) and the number of gradient oracle calls is at most Õ
(
κ2√ρε−1.5

)
. The total number of

Hessian (inverse) oracle calls and exact cubic sub-problem solver calls is at most O
(√

ρκ1.5ε−1.5
)
.

Note that MCN method needs to construct the Hessian estimator Ht = H(xt,yt) and solves the
cubic regularized sub-problem (4) in each round. Constructing Ht requires calling the second-order
oracle at (xt,yt) and taking O

(
d3y + dxd

2
y + d2xdy

)
flops for matrix multiplication and inversion.

Solving sub-problem (4) requires O
(
d3x
)

flops for matrix factorization or inversion [5, 6]. Hence,
besides the gradient calls from AGD step, MCN requires O

(
d3x + d3y

)
time complexity in each round

and its space complexity is O
(
d2x + d2y

)
.

Approximate Local Minimax Point Under the strict-minimax condition, we can find an approxi-
mate local minimax point by performing an additional AGD procedure on the output of MCN.

Corollary 2. Suppose f(x,y) is (α, β, γ)-strict-minimax and satisfies Assumption 1-4. Let x̂ be
the output of running Algorithm 2 with the setting of Corollary 1 and ε = min

{
α/3, β2/(8κ3ρ)

}
.

Let ŷ = AGD
(
− f(x̂, ·),yt, K̂, 1

ℓ ,
√
κ−1√
κ+1

)
where t corresponds to the last iteration of Algorithm 2

such that x̂ = xt + s∗t and K̂ =
√
κ log

(
min

{
α
2ℓ ,

β
8κ2ρ

}/(√
κ+ 1

(
ε̃+ κ

22.25

√
ε
M

)))
. Then there

exists a local minimax point (x∗,y∗) of f(x,y) such that ∥x∗ − x̂∥22 + ∥y∗ − ŷ∥22 ≤ γ2.

4 Inexact Minimax Cubic Newton Algorithm

In this section, we proposed an efficient algorithm called inexact minimax cubic Newton (IMCN),
which avoids any operation related to the second-order oracle and only requires Õ

(
κ1.5ℓε−2

)
Hessian-vector product calls and Õ

(
κ2√ρε−1.5

)
gradient calls in total to find

(
ε, κ1.5√ρε

)
-SSP

of P (x). Since the Hessian-vector products can be computed as fast as gradients [30, 33], IMCN is
much more efficient than MCN in high-dimensional cases.

6

Algorithm 5 Final-Cubic-Solver
1: Input: g, H, ε
2: s0 = 0, g0 = g, η = 1/(20L)

3: for t = 0, . . . do
4: if ∥gt∥2 ≤ ε/2 then break
5: st+1 = st − ηgt

6: gt+1 = g +Hst+1 +
M
2 ∥st+1∥2 st+1

7: end for
8: Output: st

We present the details of IMCN in Algorithm 3. Un-
like MCN which solves problem (4) exactly, IMCN
uses gradient-based cubic sub-problem solver (Algo-
rithm 4) [4] to compute

st ≈ argmin
s∈Rdx

mt(s) ≜ g⊤
t s+

1

2
s⊤Hts+

M

6
∥s∥32 .

If the condition in line 10 of Algorithm 3 holds, the
point xt+s∗t should be a desired approximate second-
order stationary point. Due to s∗t is hard to obtain,
we introduce additional gradient descent steps (Algo-
rithm 5) to approximate it by ŝ and use xt + ŝ as the
final output.

The design and the convergence analysis of IMCN is more challenging than existing inexact cubic
Newton algorithms for minimization problems [18, 38] since the Hessian estimator in IMCN has a
more complicated structure. To address this issue, we approximate the Hessian ∇2P (xt) by Ht as

Ht = ∇2
xxf(xt,yt)+∇2

xyf(xt,yt)Ct∇2
yxf(xt,yt), (5)

where Ct =
c0
4ℓI+

1
2ℓ

∑K′

k=1 ckTk(Zt) and Zt =
4ℓ

ℓ−µ

(
− 1

2ℓ∇
2
yyf(xt,yt)− ℓ+µ

4ℓ I
)
. Here Tk(·) is

the matrix Chebyshev polynomials (shown in Section 4.1) leading to Ct ≈ −
(
∇2

yy(xt,yt)
)−1

. Note
that we never construct matrix Ht explicitly in implementation because all operations related to Ht

can be reduced to compute Hessian-vector products, which avoid any second-order oracle calls or
matrix factorization/inversion.

Then we provide the convergence analysis for the IMCN algorithm. Throughout this section, we
let L = 2κℓ and M = 4

√
2κ3ρ be the Lipschitz continuous constants of ∇P (x) and ∇2P (x). We

suppose ε ≤ L2/M , otherwise, the second-order condition ∇2P (x) ⪰ −
√
Mε I always holds and

we only need to use gradient methods [20, 21] to find first-order stationary point.

4.1 Approximating Hessian by Matrix Chebyshev Polynomials

We first show the error bound of matrix inverse approximation via matrix Chebyshev polynomials.

Lemma 7. Suppose symmetric matrix X ∈ Rd×d satisfies µ′I ⪯ X ⪯ ℓ′I with 0 < µ′ ≤ ℓ′ < 1,

then we have
∥∥X−1 −

(
c0
2 I +

∑K′

k=1 ckTk(Z
′)
)∥∥

2
≤

√
ℓ′/µ′−1√
ℓ′µ′

(
1 − 2/(

√
ℓ′/µ′ + 1)

)K′

where

Z′ = 2
ℓ′−µ′

(
X− ℓ′+µ′

2 I
)
, ck = 2√

ℓ′µ′

(√
µ′/ℓ′−1√
µ′/ℓ′+1

)k
, and Tk(·) are matrix Chebyshev polynomials

with T0(Z
′) = I, T1(Z

′) = Z′ and Tk(Z
′) = 2Z′Tk−1(Z

′)−Tk−2(Z
′) for k ≥ 2.

Based on Lemma 7, we can bound the approximation error of the Hessian estimator Ht as follows.

Lemma 8. Using the notation of Algorithm 3, we have∥∥∇2
xxP (xt)−Ht

∥∥
2
≤ 3ρκ2

√
κ+ 1

(
1− 1√

κ

)Kt/2

∥yt−1 − y∗(xt)∥2 + κℓ
(
1− 2√

κ+ 1

)K′

.

Lemma 8 means using AGD with Kt = O (
√
κ log(κρ/εH)) = Õ (

√
κ)2 and the number of terms

for Chebyshev polynomials with K ′ = O (
√
κ log(κℓ/εH)) = Õ (

√
κ) could achieve Ht with∥∥∇2P (xt)−Ht

∥∥
2
≤ εH for any εH > 0.

In the implementation of IMCN, all operations related to Ht can be viewed as computing Hessian-
vector products. Actually, we can obtain Htu

′ with O(K ′) = Õ(
√
κ) Hessian-vector calls for

any u′ ∈ Rdx , which avoids O
(
d2x + d2y

)
space to keep Hessian matrices. The detailed implementa-

tion is presented in Appendix E.

2Rigorously speaking, the term log(∥yt−1 − y∗(xt)∥2) also should be considered into the total complexity,
which will be discussed in later sections.

7

4.2 Complexity Analysis for IMCN

The IMCN method calls a gradient-based sub-problem solver (Algorithm 4) to optimize the following
cubic regularized problem [4, 38] in each iteration

min
s∈Rdx

m̃t(s) ≜ g⊤
t s+

1

2
s⊤Hts+

M

6
∥s∥32 . (6)

It requires at most K(ε, δ′) = O
(

L√
Mε

(
log
(√

dx

δ′

)
+ log

(L+
√
ρε√

Mε

)))
number of iterations to achieve

an approximate solution with enough accuracy. The detailed analysis for the complexity of Algo-
rithm 4 is deferred to appendix D.

Then we bound the total number of iterations for Algorithm 3.

Theorem 3. Running Algorithm 3 with Cσ = 1/4, δ′ = δ/T , T = ⌈626(P (x0)− P ∗)
√
Mε−1.5⌉

and sufficient large Kt and K ′ such that Assumption 5 holds with Cg = 1/240 and CH = 1/200.
Then the condition ∆t ≥ − 1

128

√
ε3/M in line 11 must hold in no more than T = O

(
κ1.5√ρε−1.5

)
iterations; and the output x̂ is an (ε, 2κ1.5√ρε)-SSP with probability 1− δ.

We also bound the number of gradient calls from AGD procedure in Algorithm 3 as follows.
Theorem 4. Under the setting of Theorem 3, if we run Algorithm 3 with

K′=

⌈√
κ+1

2
log

(
κℓ

2min
{
CH

√
Mε, εHL

})⌉ and Kt=

⌈
2
√
κ log

(√
κ+1
ε̃

∥y∗(x0)∥2
)⌉

, t = 0⌈
2
√
κ log

(√
κ+1
ε̃

(
ε̃+ κ ∥st−1∥2

))⌉
, t ≥ 1

where ε̃ = min
{
Cgε/ℓ,min

{
CH

√
Mε, εHL

}
/(6ρκ2)

}
and s0 = 0, then it holds that

∥∇P (xt)− gt∥2 ≤ Cgε,
∥∥∇2P (xt)−Ht

∥∥
2
≤ min

{
CH

√
Mε, εHL

}
and

T∑
t=0

Kt ≤T+1+
2
√
κT

3

[
3

T
log
(√κ+ 1

ε̃
∥y∗(x0)∥2

)
+ log

(
8(κ+ 1)1.5 +

8κ3(κ+ 1)1.5

T ε̃3

T∑
t=1

∥st−1∥32
)]

.

Note that the value of K ′ = Õ(
√
κ) corresponds to the number of Hessian vector calls for each

iteration of cubic sub-problem solver (Algorithm 4 and 5). Combining Theorem 3, Theorem 4 and
the value of K(ε, δ′), we obtain the main result for Algorithm 3 as follows.
Corollary 3. Under Assumption 1-4, if we run Algorithm 3 with Cσ = 1/4, δ′ = δ/T ,

K′=

⌈√
κ+1

2
log

(
κℓ

2min
{
CH

√
Mε, 3L

25

})⌉ and Kt=

⌈
2
√
κ log

(√
κ+1
ε̃

∥y∗(x0)∥2
)⌉

, t = 0⌈
2
√
κ log

(√
κ+1
ε̃

(
ε̃+ κ ∥st−1∥2

))⌉
, t ≥ 1

where T =
⌈
626(P (x0) − P ∗)

√
Mε′−1.5

⌉
, Cg = 1/240, CH = 1/200, s0 = 0, ε̃′ = ε/4 and

ε̃ = min
{
Cgε/(4ℓ),min

{
CH

√
Mε, 3L

25

}/
(12ρκ2)

}
, then the output x̂ is an

(
ε, κ1.5√ρε

)
-second-

order stationary point of P (x) with probability 1 − δ and the number of gradient calls is at most
Õ
(
κ2√ρε−1.5

)
. The number of Hessian-vector product calls is at most O

(
κ1.5ℓε−2

)
.

Following the analysis of Corollary 2, we can also achieve an approximate local minimax point by
running AGD based on the x̂ obtained from Algorithm 3.

5 Experiments

In this section, we conduct empirical studies for our methods against the classical GDA algorithm
[20] on both synthetic problem and real-world application.

5.1 Synthetic Minimax Problem

We construct the following nonconvex-strongly-concave minimax problem:

min
x∈R3

max
y∈R2

f(x,y) = w(x3)−
y21
40

+ x1y1 −
5y22
2

+ x2y2, (7)

8

where x = [x1, x2, x3]
⊤, y = [y1, y2]

⊤ and w(·) is the W-shaped scalar function [38] whose exact
form is shown in Appendix G.1. It is easy to verify that the problem has an strict saddle point at
(x0,y0) = ([0, 0, 0]⊤, [0, 0]⊤).

0.0 0.5 1.0 1.5
Time(s) 1e 3

10 7

10 5

10 3

P(
x)

P
*

GDA
MCN

0.0 0.5 1.0 1.5
Time(s) 1e 3

10 3

10 2

||
P(

x)
|| 2

GDA
MCN

0.0 0.5 1.0 1.5
Time(s) 1e 3

0.2

0.1

0.0

m
in

(
2 P

(x
))

GDA
MCN

(a) Initial point (x1,y1) (b) Initial point (x1,y1) (c) Initial point (x1,y1)

0.0 0.5 1.0 1.5
Time(s) 1e 3

10 14

10 10

10 6

10 2

P(
x)

P
*

GDA
MCN

0.0 0.5 1.0 1.5
Time(s) 1e 3

10 13

10 9

10 5

10 1

||
P(

x)
|| 2

GDA
MCN

0.0 0.5 1.0 1.5
Time(s) 1e 3

0.048

0.050

0.052

m
in

(
2 P

(x
))

GDA
MCN

(d) Initial point (x2,y2) (e) Initial point (x2,y2) (f) Initial point (x2,y2)

Figure 1: We present comparisons of error, gradient norms and Hessian minimum eigenvalues on the
synthetic problem. Figure (a), (b) and (c) shows the results with initial point (x1,y1). Figure (d), (e)
and (f) shows the results with initial point (x2,y2).

We conduct experiments on problem (7) with two different initial points

(x1,y1) =
(
[10−3, 10−3, 10−3]⊤, [0, 0]⊤

)
and (x2,y2) =

(
[0, 0, 1]⊤, [0, 0]⊤

)
.

Notice that problem (7) has an strict saddle point at (x0,y0) = ([0, 0, 0]⊤, [0, 0]⊤). The initial
point (x1,y1) is close to (x0,y0) and (x2,y2) is far from (x0,y0). We compare the proposed
algorithm MCN with GDA. The learning rate of GDA and AGD step in MCN is selected from{
c · 10−i : c ∈ {1, 5}, i ∈ {1, 2, 3}

}
. For MCN method, we choose M = 10. We compare the

running time against P (x) − P ∗, ∥∇P (x)∥2 and λmin(∇2P (x)) for two algorithms and plot the
results in Figure 1. From the curves corresponding to initial point (x2,y2), we observe that both
MCN and GDA converge to the minimum when the initial point is far from the strict saddle point,
but MCN converges much faster than GDA. When the initial point is close to the strict saddle point,
Figure 4(b) shows that the GDA algorithm gets stuck at the strict saddle point since its Hessian
minimum eigenvalue are always negative. However, our MCN algorithm can reach the points which
have positive Hessian minimum eigenvalues.

5.2 Domain Adaptation

The Domain-Adversarial Neural Network (DANN) [9] is a classic method to domain adaptation.
Suppose the source domain dataset is S = {(aSi , bSi)}

NS
i=1 where aSi is the feature vector of the i-th

sample and bSi is the corresponding label. The target domain dataset T = {aTi }
NT
i=1 only contains

features. Then DANN aims to solve the following nonconvex-strongly-concave minimax problem

min
[x1;x2]∈Rdx

max
y∈Rdy

L1(x1,x2)− α · L2(x1,y),

where L1(x1,x2) =
1

NS

∑NS
i=1 l(x2; Φ(x1;a

S
i), b

S
i) is the loss of supervised learning and

L2(x1,y) =
1

NS

NS∑
i=1

DS(h(y; Φ(x1;a
S
i)))−

1

NT

NT∑
i=1

DT (h(y; Φ(x1;a
T
i))) + λ∥y∥2

is the domain classification loss. Here Φ is a single-layer neural network of size (28× 28)× 200 with
parameter x1 and l is a two-layer neural network of size 200× 20× 10 with parameter x2, followed

9

0.0 0.5 1.0 1.5
Oracle Calls 1e5

1

0

1

2

P(
x)

GDA
IMCN

0.0 0.5 1.0 1.5
Time(s) 1e3

1

0

1

2

P(
x)

GDA
IMCN

0.0 0.5 1.0 1.5
Oracle Calls 1e5

0

1

2

P(
x)

GDA
IMCN

0.0 0.5 1.0 1.5
Time(s) 1e3

0

1

2

P(
x)

GDA
IMCN

(a) MNIST to MNIST-m (b) MNIST to MNIST-m (c) MNIST-m to MNIST (d) MNIST-m to MNIST

Figure 2: We present results on DANN model. Figure (a) and (b) show the results of domain
adaptation from MNIST to MNIST-m. Figure (c) and (d) show the results of domain adaptation from
MNIST-m to MNIST.

by a cross entropy loss.We choose the sigmoid function as the activation function for them. With
the commonly used logistic loss for L2, we let h(y; z) = 1/(1 + exp(−y⊤z)), DS(z) = 1− log(z)
and DT (z) = log(1− z).

Since the dimension of the minimax problem is quite large, we implement the IMCN algorithm
instead of the MCN algorithm for efficiency. We compare IMCN with GDA on the domain adaptation
problem between two different datasets: MNIST [19] and MNIST-m [9]. Since we do not know
the close form of P (x), we estimate the value of P (x) = maxy f(x,y) by AGD procedure. More
details about our experimental setup can be found in Appendix G.2.

We compare IMCN and GDA algorithms via running time and oracle calls and show the results in
Figure 2. We run the experiments for five times with different random initialization and report the
average results. The oracle calls of GDA only contains gradient while the oracle calls of IMCN
contains both gradient and Hessian-vector product. Based on Figure 2, we observe that IMCN
significantly outperforms GDA in both time and oracle comparison. Notice that IMCN requires to
call much more gradient/Hessian-vector oracles on y than the gradient oracles on x. These results
verify our convergence analysis and show the advantage of proposed algorithm.

6 Conclusions and Future Work

In this paper, we study second-order optimization methods for nonconvex-strongly-concave minimax
problems. We have proposed a novel algorithm so-called minimax cubic Newton (MCN) which could
find an (ε, κ1.5√ρε)-SSP of the primal function with O(κ1.5√ρε−1.5) second-order oracle calls and
Õ(κ2√ρε−1.5) gradient oracle calls. We also provide an efficient algorithm for high dimensional
problem, which avoids accessing second-order oracle and contains Õ(κ1.5ℓε−2) Hessian-vector
oracle calls and Õ(κ2√ρε−1.5) gradient oracle calls. To best of our knowledge, this paper first
achieves non-asymptotic convergence result for finding SSP of minimax problem without convex-
concave assumption.

There are several interesting problems for future work: (a) The proposed algorithms and analysis
require the strongly convexity assumption on y. We would like to study how to find SSPs for general
nonconvex-concave minimax problems. (b) The upper complexity bounds of proposed algorithms
look not optimal. It is possible to apply the acceleration techniques to establish more efficient
algorithms for our task. (c) The implementations of proposed IMCN still require accessing the
Hessian-vector oracle. It is interesting to investigate how to find SSPs of our minimax problem by
pure first-order algorithms. (d) This paper does not consider the specific structure of the objective
function. However, many machine learning models can be formulated as minimax problems where
the objective functions have finite-sum or expectation form. Designing efficient stochastic algorithms
for such formulations is an interesting problem to the machine learning community.

Acknowledgements

Luo Luo is supported by National Natural Science Foundation of China (No. 62206058) and Shanghai
Sailing Program (22YF1402900). Cheng Chen is supported by Singapore Ministry of Education
(AcRF) Tier 1 grant RG75/21.

10

References
[1] Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding

approximate local minima faster than gradient descent. In STOC, 2017.

[2] Owe Axelsson. Iterative Solution Methods. Cambridge University Press, 1994.

[3] Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Global optimality of local search
for low rank matrix recovery. In Advances in Neural Information Processing Systems, pages
3873–3881, 2016.

[4] Yair Carmon and John Duchi. Gradient descent finds the cubic-regularized nonconvex newton
step. SIAM Journal on Optimization, 29(3):2146–2178, 2019.

[5] Coralia Cartis, Nicholas I.M. Gould, and Philippe L. Toint. Adaptive cubic regularisation
methods for unconstrained optimization. part I: motivation, convergence and numerical results.
Mathematical Programming, 127(2):245–295, 2011.

[6] Coralia Cartis, Nicholas I.M. Gould, and Philippe L. Toint. Adaptive cubic regularisation
methods for unconstrained optimization. part II: worst-case function-and derivative-evaluation
complexity. Mathematical programming, 130(2):295–319, 2011.

[7] Ziyi Chen, Qunwei Li, and Yi Zhou. Escaping saddle points in nonconvex minimax optimization
via cubic-regularized gradient descent-ascent. arXiv preprint arXiv:2110.07098, 2021.

[8] Tanner Fiez, Lillian Ratliff, Eric Mazumdar, Evan Faulkner, and Adhyyan Narang. Global
convergence to local minmax equilibrium in classes of nonconvex zero-sum games. In NeurIPS,
2021.

[9] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural
networks. Journal of Machine Learning Research, 17(1):2096–2030, 2016.

[10] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points-online stochastic
gradient for tensor decomposition. In COLT, 2015.

[11] Rong Ge, Jason D. Lee, and Tengyu Ma. Matrix completion has no spurious local minimum. In
NIPS, 2016.

[12] Zhishuai Guo, Zhuoning Yuan, Yan Yan, and Tianbao Yang. Fast objective & duality gap con-
vergence for nonconvex-strongly-concave min-max problems. arXiv preprint arXiv:2006.06889,
2020.

[13] Yuze Han, Guangzeng Xie, and Zhihua Zhang. Lower complexity bounds of finite-sum
optimization problems: The results and construction. arXiv preprint arXiv:2103.08280, 2021.

[14] Filip Hanzely, Nikita Doikov, Yurii Nesterov, and Peter Richtarik. Stochastic subspace cubic
newton method. In ICML, 2020.

[15] Feihu Huang, Shangqian Gao, Jian Pei, and Heng Huang. Accelerated zeroth-order momentum
methods from mini to minimax optimization. arXiv preprint arXiv:2008.08170, 2020.

[16] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape
saddle points efficiently. In International Conference on Machine Learning, pages 1724–1732.
PMLR, 2017.

[17] Chi Jin, Praneeth Netrapalli, and Michael I. Jordan. What is local optimality in nonconvex-
nonconcave minimax optimization? In ICML, 2020.

[18] Jonas Moritz Kohler and Aurelien Lucchi. Sub-sampled cubic regularization for non-convex
optimization. In ICML, 2017.

[19] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

11

[20] Tianyi Lin, Chi Jin, and Michael I. Jordan. On gradient descent ascent for nonconvex-concave
minimax problems. In ICML, 2020.

[21] Tianyi Lin, Chi Jin, and Michael I. Jordan. Near-optimal algorithms for minimax optimization.
In COLT, 2020.

[22] Songtao Lu, Meisam Razaviyayn, Bo Yang, Kejun Huang, and Mingyi Hong. Finding second-
order stationary points efficiently in smooth nonconvex linearly constrained optimization prob-
lems. In NeurIPS, 2020.

[23] Songtao Lu, Ioannis Tsaknakis, Mingyi Hong, and Yongxin Chen. Hybrid block successive
approximation for one-sided non-convex min-max problems: algorithms and applications. IEEE
Transactions on Signal Processing, 68:3676–3691, 2020.

[24] Luo Luo, Haishan Ye, Zhichao Huang, and Tong Zhang. Stochastic recursive gradient descent
ascent for stochastic nonconvex-strongly-concave minimax problems. In NeurIPS, 2020.

[25] Luo Luo, Guangzeng Xie, Tong Zhang, and Zhihua Zhang. Near optimal stochastic al-
gorithms for finite-sum unbalanced convex-concave minimax optimization. arXiv preprint
arXiv:2106.01761, 2021.

[26] Eric V Mazumdar, Michael I Jordan, and S Shankar Sastry. On finding local nash equilibria
(and only local nash equilibria) in zero-sum games. arXiv preprint arXiv:1901.00838, 2019.

[27] Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

[28] Yurii Nesterov and Boris T. Polyak. Cubic regularization of newton method and its global
performance. Mathematical Programming, 108(1):177–205, 2006.

[29] Yurii E Nesterov. A method for solving the convex programming problem with convergence
rate o(1/k2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547, 1983.

[30] Barak A. Pearlmutter. Fast exact multiplication by the Hessian. Neural computation, 6(1):
147–160, 1994.

[31] Shuang Qiu, Zhuoran Yang, Xiaohan Wei, Jieping Ye, and Zhaoran Wang. Single-timescale
stochastic nonconvex-concave optimization for smooth nonlinear TD learning. arXiv preprint
arXiv:2008.10103, 2020.

[32] Maziar Sanjabi, Jimmy Ba, Meisam Razaviyayn, and Jason D. Lee. On the convergence and ro-
bustness of training GANs with regularized optimal transport. arXiv preprint arXiv:1802.08249,
2018.

[33] Nicol N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural Computation, 14(7):1723, 2002.

[34] Alexander Shapiro. Second-order derivatives of extremal-value functions and optimality condi-
tions for semi-infinite programs. Mathematics of Operations Research, 10(2):207–219, 1985.

[35] Aman Sinha, Hongseok Namkoong, and John Duchi. Certifying some distributional robustness
with principled adversarial training. In ICLR, 2018.

[36] Ju Sun, Qing Qu, and John Wright. Complete dictionary recovery over the sphere I: Overview
and the geometric picture. IEEE Transactions on Information Theory, 63(2):853–884, 2016.

[37] Ju Sun, Qing Qu, and John Wright. A geometric analysis of phase retrieval. Foundations of
Computational Mathematics, 18(5):1131–1198, 2018.

[38] Nilesh Tripuraneni, Mitchell Stern, Chi Jin, Jeffrey Regier, and Michael I. Jordan. Stochastic
cubic regularization for fast nonconvex optimization. In NeurIPS, 2018.

[39] Yuanhao Wang and Jian Li. Improved algorithms for convex-concave minimax optimization. In
NeurIPS, 2020.

12

[40] Yuanhao Wang, Guodong Zhang, and Jimmy Ba. On solving minimax optimization locally: A
follow-the-ridge approach. In ICLR, 2019.

[41] Wenhan Xian, Feihu Huang, Yanfu Zhang, and Heng Huang. A faster decentralized algorithm
for nonconvex minimax problems. NeurIPS, 2021.

[42] Tengyu Xu, Zhe Wang, Yingbin Liang, and H Vincent Poor. Gradient free minimax optimization:
Variance reduction and faster convergence. arXiv preprint arXiv:2006.09361, 2020.

[43] Guojun Zhang, Kaiwen Wu, Pascal Poupart, and Yaoliang Yu. Newton-type methods for
minimax optimization. arXiv preprint arXiv:2006.14592, 2020.

[44] Siqi Zhang, Junchi Yang, Cristóbal Guzmán, Negar Kiyavash, and Niao He. The complexity of
nonconvex-strongly-concave minimax optimization. arXiv preprint arXiv:2103.15888, 2021.

[45] Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic variance-reduced cubic regularization
methods. Journal of Machine Learning Research, 20(134):1–47, 2019.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

The appendix is organized as follows. We first present some basic lemmas used in our proofs in
Section A. Then we provide the proofs for Section 2, Section 3 and Section 4 in Section B, Section C
and Section D, respectively. We compare the complexity of MCN and IMCN with first-order methods
in Section F. We introduce the implementation details of IMCN in Section E and provide the details
of experiments in Section G.

A Basic Lemmas

In this section, we provide some basic lemmas.

Lemma 9. Under assumptions of Lemma 2, then ∇2
xyf(x, ·)

(
∇2

yyf(x, ·)
)−1 ∇2

yxf(x, ·) is 3κ2ρ-
Lipschitz continuous for fixed x.

Proof. For fixed x ∈ Rdx and any y, y′ ∈ Rdy , we have∥∥∥(∇2
yyf(x,y)

)−1 −
(
∇2

yyf(x,y
′)
)−1
∥∥∥
2

=
∥∥∥(∇2

yyf(x,y)
)−1 (∇2

yyf(x,y)−∇2
yyf(x,y

′)
) (

∇2
yyf(x,y

′)
)−1
∥∥∥
2

≤ 1

µ2

∥∥∇2
yyf(x,y)−∇2

yyf(x,y
′)
∥∥
2
≤ ρ

µ2

and ∥∥∥(∇2
yyf(x,y)

)−1
∥∥∥
2
≤ 1

µ
.

Similar to the analysis of Lemma 3, we apply Lemma 12 on
(
∇2

yyf(x, ·
)−1

and ∇2
yxf(x, ·) which

means
(
∇2

yyf(x, ·)
)−1 ∇2

yxf(x, ·) is (κ+1)ρ/µ-Lipschitz continuous and its norm is bounded by κ.

Then again applying Lemma 12 on ∇2
xyf(x, ·) and

(
∇2

yyf(x, ·)
)−1 ∇2

yxf(x, ·) means the Lipschitz

continuous coefficient of ∇2
xyf(x, ·)

(
∇2

yyf(x, ·)
)−1 ∇2

yxf(x, ·) is (κ2 + 2κ)ρ ≤ 3κ2ρ.

Then we introduce two classical lemmas for cubic Newton methods.
Lemma 10 ([28]). Under assumptions of Lemma 3, we have∥∥∇P (x′)−∇P (x)−∇2P (x)(x′ − x)

∥∥
2
≤ M

2
∥x− x′∥22 (8)

and∣∣∣∣P (x′)− P (x)−∇P (x)⊤(x′ − x)− 1

2
(x′ − x)⊤∇2P (x)(x′ − x)

∣∣∣∣ ≤ M

6
∥x− x′∥32 . (9)

Lemma 11 ([28]). For any M ′ > 0, the solution s∗ of the following cubic regularized quadratic
problem

s∗ = argmin
x∈Rdx

(
g⊤s+

1

2
s⊤Hs+

M ′

6
∥s∥32

)
satisfies

g +Hs∗ +
M ′

2
∥s∗∥2 s

∗ =0, , (10)

H+
M ′

2
∥s∗∥2 I ⪰0, (11)

g⊤s∗ +
1

2
(s∗)⊤Hs∗ +

M ′

6
∥s∗∥32 ≤− M ′

12
∥s∗∥32 . (12)

14

B Proofs for Section 2

In this section, we provide the proofs for lemmas in Section 2.

B.1 The Proof of Lemma 2

Proof. The implicit function theorem means y∗(·) is differentiable. The optimality of y∗ means

∇yf(x,y
∗(x)) = 0.

Taking total derivative on above equation achieves

∇2
yxf(x,y

∗(x)) +∇2
yyf(x,y

∗(x))∇y∗(x) = 0. (13)

Taking total derivative on the result of Lemma 1, we have

∇2P (x) = ∇2
xxf(x,y

∗(x)) +∇2
xyf(x,y

∗(x))∇y∗(x). (14)

The strongly concavity on y implies ∇2
yyf(x,y) is non-singular. Hence, we connect (13) and (14) to

obtain the desired result.

B.2 The Proof of Lemma 3

We first introduce the following lemma.
Lemma 12. Suppose operators H1 : D → F and H2 : D → F are α1-Lipschitz continuous and
α2-Lipschitz continuous with respect to norms ∥·∥D and ∥·∥F defined on D and F , that is, for any z
and z′ in D, we have

∥H1(Z)−H1(Z
′)∥F ≤ α1 ∥Z− Z′∥D and ∥H2(Z)−H2(Z

′)∥F ≤ α2 ∥Z− Z′∥D .

We further suppose that there exist some β1, β2 ≥ 0 such that ∥H1(Z)∥F ≤ β1 and ∥H2(Z)∥F ≤ β2

for any z in D; and norm ∥·∥F is submultiplicative on F , that is, for any Z and Z′ in F , we have
∥ZZ′∥F ≤ ∥Z∥F ∥Z′∥F if ZZ′ also in F . Then, the operator H1(·)H2(·) is (α1β2+α2β1)-Lipschitz
continuous, that is, for any Z,Z′ ∈ D, we have

∥H1(Z)H2(Z)−H1(Z
′)H2(Z

′)∥F ≤ (α1β2 + α2β1) ∥Z− Z′∥D .

Proof. For any Z,Z′ ∈ D, we have

∥H1(Z)H2(Z)−H1(Z
′)H2(Z

′)∥F
≤∥H1(Z)H2(Z)−H1(Z)H2(Z

′)∥F + ∥H1(Z)H2(Z
′)−H1(Z

′)H2(Z
′)∥F

≤∥H1(Z)∥F ∥H2(Z)−H2(Z
′)∥F + ∥H2(Z

′)∥F ∥H1(Z)−H1(Z
′)∥F

≤(α1β2 + α2β1) ∥Z− Z′∥D .

Then we prove Lemma 3 as follows.

Proof. Using Lemma 2 and triangle inequality, we have∥∥∇2P (x)−∇2P (x′)
∥∥
2

≤
∥∥∇2

xxf(x,y
∗(x))−∇2

xxf(x
′,y∗(x′))

∥∥
2
+∥∥∇2

xyf(x,y
∗(x))(∇2

yyf(x,y
∗(x)))−1∇2

yxf(x,y
∗(x))

−∇2
xyf(x

′,y∗(x′))(∇2
yyf(x

′,y∗(x′)))−1∇2
yxf(x

′,y∗(x′))
∥∥.

(15)

Assumption 2 means ∇2
xxf(·, ·) is ρ-Lipschitz continuous, which implies for any x and x′, we have∥∥∇2

xxf(x,y
∗(x))−∇2

xxf(x
′,y∗(x′))

∥∥2
2

≤ρ2
(
∥x− x′∥22 + ∥y∗(x)− y∗(x′)∥22

)
15

≤ρ2
(
∥x− x′∥22 + κ2 ∥x− x′∥22

)
≤2κ2ρ2 ∥x− x′∥22 ,

where the second inequality use Lemma 1 that y∗(·) is κ-Lipschitz continuous. In other words,
the partial Hessian ∇2

xxf(·,y∗(·)) is
√
2κρ-Lipschitz continuous. Similarly, the partial Hessians

∇2
xyf(·,y∗(·)), ∇2

yxf(·,y∗(·)) and ∇2
yyf(·,y∗(·)) are also

√
2κρ-Lipschitz continuous.

Then we verify the Lipschitz continuity of
(
∇2

yyf(·,y∗(·))
)−1

. For any x and x′, we have∥∥∥(∇2
yyf(x,y

∗(x))
)−1 −

(
∇2

yyf(x
′,y∗(x′))

)−1
∥∥∥
2

=
∥∥∥(∇2

yyf(x,y
∗(x))

)−1 (∇2
yyf(x,y

∗(x))−∇2
yyf(x

′,y∗(x′))
) (

∇2
yyf(x,y

∗(x′))
)−1
∥∥∥
2

≤ 1

µ2

∥∥∇2
yyf(x,y

∗(x))−∇2
yyf(x

′,y∗(x′)))
∥∥
2
≤

√
2κρ

µ2
∥x− x′∥2 ,

where we use the strongly-concavity of f which implies (∇2
yyf(x,y

∗(x)))−1 ⪯ µ−1I, then(
∇2

yyf(·,y∗(·))
)−1

is (
√
2κρ/µ2)-Lipschitz continuous.

We use Lemma 12 with

H1(·) =
(
∇2

yyf(·,y∗(·))
)−1

, H2(·) = ∇2
yxf(·,y∗(·)),

α1 =

√
2κρ

µ2
, β1 =

1

µ
, α2 =

√
2κρ, β2 = ℓ,

which means
(
∇2

yyf(·,y∗(·))
)−1 ∇2

yxf(·,y∗(·)) is (2
√
2κ2ρ/µ)-Lipschitz continuous, since

α1β2 + α2β1 =

√
2κ2ρ

µ
+

√
2κρ

µ
≤ 2

√
2κ2ρ

µ
.

We also have
∥∥∥(∇2

yyf(·,y∗(·))
)−1 ∇2

yxf(·,y∗(·))
∥∥∥
2
≤ κ. We use Lemma 12 again with

H1(·) = ∇2
xyf(·,y∗(·)), H2(·) =

(
∇2

yyf(·,y∗(·))
)−1 ∇2

yxf(·,y∗(·))

α1 =
√
2κρ, β1 = ℓ, α2 =

2
√
2κ2ρ

µ
, β2 = κ,

then we obtain

α1β2 + α2β1 =
√
2κ2ρ+ 2

√
2κ3ρ ≤ 3

√
2κ3ρ

and ∇2
xyf(·,y∗(·))

(
∇2

yyf(·,y∗(·))
)−1 ∇2

yxf(·,y∗(·)) is 3
√
2κ3ρ-Lipschitz continuous. Finally, we

have ∥∥∇2P (x)−∇2P (x′)
∥∥
2

≤
∥∥∇2

xxf(x,y
∗(x))−∇2

xxf(x
′,y∗(x′))

∥∥
2

+
∥∥∇2

xyf(x,y
∗(x))(∇2

yyf(x,y
∗(x)))−1∇2

yxf(x,y
∗(x))

−∇2
xyf(x

′,y∗(x′))(∇2
yyf(x

′,y∗(x′)))−1∇2
yxf(x

′,y∗(x′))
∥∥

≤
√
2κρ ∥x− x′∥2 + 3

√
2κ3ρ ∥x− x′∥2

=4
√
2κ3ρ ∥x− x′∥2 .

C Proofs for Section 3

In this section, we provide the proofs for theorems and lemmas in Section 3.

16

C.1 Proof of Lemma 6

Proof. Lemma 11 means

∥∇P (xt+1)∥2

=

∥∥∥∥∇P (xt+1)− gt −Htst −
M

2
∥st∥2 st

∥∥∥∥
2

≤
∥∥∇P (xt+1)−∇P (xt)−∇2P (xt)st

∥∥
2
+ ∥∇P (xt)− gt∥2 +

∥∥∇2P (xt)st −Htst
∥∥
2
+

M

2
∥st∥22

≤M

2
∥st∥22 + Cgε+ CH

√
Mε ∥st∥2 +

M

2
∥st∥22

=M ∥st∥22 + Cgε+ CH

√
Mε ∥st∥2

≤M ∥st∥22 + Cgε+
CH

(
ε+M ∥st∥22

)
2

=
(1 + CH)M

2
∥st∥22 +

(
Cg +

CH

2

)
ε,

which implies

∥st∥22 ≥ 2

(1 + CH)M

(
∥∇P (xt+1)∥2 −

(
Cg +

CH

2

)
ε

)
.

We also have

∇2P (xt+1)

⪰Ht −
∥∥Ht −∇2P (xt+1)

∥∥
2
I

⪰− M

2
∥st∥2 I−

∥∥Ht −∇2P (xt+1)
∥∥
2
I

⪰− M

2
∥st∥2 I−

∥∥Ht −∇2P (xt)
∥∥
2
I−

∥∥∇2P (xt)−∇2P (xt+1)
∥∥
2
I

⪰− M

2
∥st∥2 I− CH

√
MεI−M ∥st∥2 I

⪰− M + 2M

2
∥st∥2 I− CH

√
MεI,

which implies

∥st∥2 ≥ − 2

M + 2M
λmin

(
∇2P (xt+1)

)
− 2CH

√
M

M + 2M

√
ε.

If xt+1 is not an (ε,
√
Mε)-second-order stationary point, then

• If ∥∇P (xt+1)∥2 ≥ ε, we have

∥st∥2 ≥

√
2

(1 + CH)M

(
1− Cg −

CH

2

)
ε >

1

2

√
ε

M
.

• If −λmin

(
∇2P (xt+1)

)
≥

√
Mε, we have

∥st∥2 ≥ 2

3M

√
Mε− 2CH

√
Mε

3M
>

1

2

√
ε

M
.

17

C.2 Proof of Theorem 1

Proof. Lemma 6 means we only needs to show that T is no more than
⌈
192(P (x0)−P ∗)

√
Mε−1.5

⌉
by assuming ∥s∗t ∥2 ≥ 1

2

√
ε/M for all t = 1, . . . , T − 1. We have

P (xt+1)− P (xt)

≤∇P (xt)
⊤s∗t +

1

2
(s∗t)

⊤∇2P (xt)s
∗
t +

M

6
∥s∗t ∥

3
2

=g⊤
t s

∗
t +

1

2
(s∗t)

⊤Hts
∗
t +

M

6
∥s∗t ∥

3
2 + (∇P (xt)− gt)

⊤s∗t +
1

2
(s∗t)

⊤(∇2P (xt)−Ht)s
∗
t

≤− M

12
∥s∗t ∥

3
2 + Cgε ∥s∗t ∥2 +

CH

√
Mε

2
∥s∗t ∥

2
2

≤− M

12
∥s∗t ∥

3
2 + 4CgM ∥s∗t ∥

3
2 + CHM ∥s∗t ∥

3
2 ,

(16)

where the first inequality comes from (9) of Lemma 10; the second inequality comes from (12) of
Lemma 11 and Assumption 5; the last step is due to the assumption ∥s∗t ∥2 ≥ 1

2

√
ε/M . The result of

(16) can be written as

1

8

(
1

12
− 4Cg − CH

)√
ε3

M

≤
(

1

12
− 4Cg − CH

)
M ∥s∗t ∥

3
2

≤P (xt)− P (xt+1).

(17)

Summing over inequality (17) with t = 0, . . . , T − 1, we have

T

192

√
ε3

M
≤ P (x0)− P (xt) ≤ P (x0)− P ∗,

which implies

T ≤ 192(P (x0)− P ∗)
√
Mε−3/2.

Hence, Lemma 6 means the algorithm could find an
(
ε,
√
Mε

)
-second-order stationary point of

P (x) with at most
⌈
192(P (x0)− P ∗)

√
Mε−1.5

⌉
+ 1 iterations.

C.3 Proof of Theorem 2

Proof. We first use induction to show that

∥yt − y∗(xt)∥2 ≤ ε̃ (18)

holds for any t ≥ 0. For t = 0, Lemma 5 directly implies ∥y0 − y∗(x0)∥2 ≤ ε̃. Suppose it holds
that ∥yt−1 − y∗(xt−1)∥2 ≤ ε̃ for any t = t′ − 1, then we have

∥yt′ − y∗(xt′)∥2

≤
√
κ+ 1

(
1− 1√

κ

)Kt′/2

∥yt′−1 − y∗(xt′)∥2

≤
√
κ+ 1

(
1− 1√

κ

)Kt′/2 (
∥yt′−1 − y∗(xt′−1)∥2 + ∥y∗(xt′−1)− y∗(xt′)∥2

)
≤
√
κ+ 1

(
1− 1√

κ

)Kt′/2

(ε̃+ κ ∥xt′−1 − xt′∥2)

=
√
κ+ 1

(
1− 1√

κ

)Kt′/2 (
ε̃+ κ

∥∥s∗t′−1

∥∥
2

)
≤ ε̃,

where the first inequality is based on Lemma 5; the second one use triangle inequality; the third one
is based on induction hypothesis and the last step use the definition of Kt and ε̃.

18

Combining inequality (18) with Lemma 1, Assumption 1 and Assumption 2, we obtain

∥gt −∇P (xt)∥2
= ∥∇xf(xt,yt)−∇xf(xt,y

∗(xt))∥2
≤ℓ ∥yt − y∗(xt)∥2 ≤ Cgε

and ∥∥∇2P (xt)−Ht

∥∥
2

=
∥∥∇2f(xt,y

∗
t (xt))−∇2f(xt,yt)

∥∥
2

≤ρ ∥yt − y∗(xt)∥2
≤CH

√
Mε.

The total gradient calls from AGD in Algorithm 2 satisties

T∑
t=0

Kt

≤2
√
κ

[
K0 +

T∑
t=1

log

(√
κ+ 1 +

κ
√
κ+ 1

ε̃
∥s∗t−1∥2

)]
+ T + 1

=
2
√
κ

3

[
3K0 +

T∑
t=1

log

(√
κ+ 1 +

κ
√
κ+ 1

ε̃
∥s∗t−1∥2

)3
]
+ T + 1

≤2
√
κ

3

[
3K0 +

T∑
t=1

log

(
8(κ+ 1)1.5 +

8κ3(κ+ 1)1.5

ε̃3
∥s∗t−1∥

3

2

)]
+ T + 1

=
2
√
κ

3

[
3K0 + log

(
T∏

t=1

(
8(κ+ 1)1.5 +

8κ3(κ+ 1)1.5

ε̃3
∥s∗t−1∥

3

2

))]
+ T + 1

≤2
√
κ

3

3K0 + log

(
1

T

T∑
t=1

(
8(κ+ 1)1.5 +

8κ3(κ+ 1)1.5

ε̃3
∥s∗t−1∥

3

2

))T
+ T + 1

=
2
√
κT

3

[
3

T
log

(√
κ+ 1

ε̃
∥y∗(x0)∥2

)
+ log

(
8(κ+ 1)1.5 +

8κ3(κ+ 1)1.5

T ε̃3

T∑
t=1

∥s∗t−1∥
3

2

)]
+ T + 1,

where the first inequality is based on the fact (a+b)3 ≤ 8(a3+b3) for a, b ≥ 0; the second inequality
is based on AM–GM inequality.

C.4 Proof of Corollary 1

Proof. The output is a desired second-order-stationary point can be proved by directly combining
Theorem 1 and Theorem 2. Here we introduce ε′ to eliminate the constant term 4

√
2 in M . Connecting

the upper bound of
∑T

t=1 Kt in Theorem 2 and inequality (17) in the proof of Theorem 1, we have

T∑
t=1

Kt ≤
2
√
κT

3
log

(
3

T
log

(√
κ+ 1

ε̃
∥y∗(x0)∥2

)
+ 8(κ+ 1)1.5 +

192κ3(κ+ 1)1.5

TMε̃′3
(P (x0)− P ∗)

)
=Õ

(√
κMε−1.5

)
= Õ

(
κ2√ρε−1.5) .

The claim follows from the fact that we call gradient oracle for O(
∑T

t=1 Kt) times and perform
Hessian (inverse) and exact cubic sub-problem solver calls for O(T) times.

19

C.5 Proof of Corollary 2

Proof. Following the the proof of Theorem 2, Lemma 5 means

∥ŷ − y∗(x̂)∥2

≤
√
κ+ 1

(
1− 1√

κ

)K̂/2

∥yt − y∗(x̂)∥2

≤
√
κ+ 1

(
1− 1√

κ

)K̂/2 (
∥yt − y∗(xt)∥2 + ∥y∗(xt)− y∗(x̂)∥2

)
≤
√
κ+ 1

(
1− 1√

κ

)K̂/2

(ε̃+ κ ∥s∗t ∥2)

≤
√
κ+ 1

(
1− 1√

κ

)K̂/2(
ε̃+

κ

22.25

√
ε

M

)
≤min

{
α

2ℓ
,

β

8κ2ρ

}
,

(19)

where we use ∥s∗t ∥2 ≤ 1
2

√
ε/M which is based on Lemma 6. Corollary 1 means x̂ is an

(
ε, κ1.5√ρε

)
-

second-order stationary point of P (x). Then using smoothness of f and inequality (19), we have

∥∇xf(x̂, ŷ)∥2 ≤∥∇xf(x̂,y
∗(x̂))∥2 + ∥∇xf(x̂,y

∗(x̂))−∇xf(x̂, ŷ)∥2

≤∥∇P (x̂)∥2 + ℓ ∥y∗(x̂)− ŷ∥2 =
5α

6

and

∥∇yf(x̂, ŷ)∥2 = ∥∇yf(x̂, ŷ)−∇yf(x̂,y
∗(x̂))∥2 ≤ ℓ ∥ŷ − y∗(x̂)∥2 ≤ α

2
,

which means ∥∇f(x̂, ŷ)∥2 ≤ α. We also have

∇2
xxf(x̂, ŷ)−∇2

xyf(x̂, ŷ)
(
∇2

yyf(x̂, ŷ)
)−1 ∇2

yxf(x̂, ŷ)

⪰∇2
xxP (x̂)−

∥∥∥∇2
xxf(x̂, ŷ)−∇2

xyf(x̂, ŷ)
(
∇2

yyf(x̂, ŷ)
)−1 ∇2

yxf(x̂, ŷ)−∇2P (x̂)
∥∥∥
2
I

⪰∇2
xxP (x̂)−

∥∥∇2
xxf(x̂, ŷ)−∇2

xxf(x̂,y
∗(x̂))

∥∥
2
I

−
∥∥∥∇2

xyf(x̂, ŷ)
(
∇2

yyf(x̂, ŷ)
)−1 ∇2

yxf(x̂, ŷ)−∇2
xyf(x̂,y

∗(x̂))
(
∇2

yyf(x̂,y
∗(x̂))

)−1 ∇2
yxf(x̂,y

∗(x̂))
∥∥∥
2
I

⪰− β

2
I− κρ ∥ŷ − y∗(x̂)∥2 I− 3κ2ρ ∥ŷ − y∗(x̂)∥2 I

⪰− βI,

where the third inequality depends Lemma 9 that ∇2
xyf(x, ·)

(
∇2

yyf(x, ·)
)−1 ∇2

yx is 3κ2ρ-Lipschitz
continuous.Hence, Definition 5 means there exists a local minimax point (x∗,y∗) such that
∥x̂− x∗∥22 + ∥ŷ − y∗∥22 ≤ γ2.

D Proof of Section 4

In this section, we provide the proofs for Theorems and Lemmas in Section 4.

D.1 Proof of Lemma 7

Proof. Since X is symmetric positive definite and 0 ≺ µ′I ⪯ X ⪯ ℓ′I ≺ I, we have Axelsson [2,
Section 8.6.1]

X−1 =
c0
2
I+

∞∑
k=1

ckTk(Z
′). (20)

20

Chebyshev polynomials on scalar domain −1 ≤ λ ≤ 1 can be written as Tk(λ) = cos
(
k cos−1(λ)

)
.

Let eigenvalue decomposition of Z′ be UΛU⊤, then we have ∥Tk(Z
′)∥2 =

∥∥UTk(Λ)U⊤
∥∥
2
≤ 1.

Combining definition of ck and (20), we have∥∥∥∥∥∥X−1 −

c0
2
I+

K′∑
k=1

ckTk(Z
′)

∥∥∥∥∥∥
2

=

∥∥∥∥∥
∞∑

k=K′+1

ckTk(Z
′)

∥∥∥∥∥
2

≤ 2√
ℓ′µ′

∞∑
k=K′+1

∣∣∣∣∣
√
µ′/ℓ′ − 1√
µ′/ℓ′ + 1

∣∣∣∣∣
k

=

√
ℓ′/µ′ − 1√

ℓ′µ′

(
1− 2√

ℓ′/µ′ + 1

)K′

.

D.2 Proof of Lemma 8

Proof. Recall that −ℓI ⪯ ∇2
yyf(xt,yt) ⪯ −µI. We estimate the inverse of Hessian of y as(

− 1

2ℓ
∇2

yyf(xt,yt)

)−1

≈ c0
2
I+

K′∑
k=1

ckTk(Zt).

Lemma 7 means∥∥∥∥∥∥
(
− 1

2ℓ
∇2

yyf(xt,yt)

)−1

−

c0
2
I +

K′∑
k=1

ckTk(Zt)

∥∥∥∥∥∥
2

≤ 2(κ−
√
κ)

(
1− 2√

κ+ 1

)K′

.

Hence, we have∥∥∥∥∥∥∇2
xyf(xt,yt)

(
−∇2

yyf(xt,yt)
)−1 ∇2

yxf(xt,yt)−∇2
xyf(xt,yt)

(
c0
4ℓ

I +
1

2ℓ

K′∑
k=1

ckTk(Zt)

)
∇2

yxf(xt,yt)

∥∥∥∥∥∥
2

≤
∥∥∇2

xyf(xt,yt)
∥∥
2

∥∥∥∥∥∥(−∇2
yyf(xt,yt)

)−1 −

 c0
4ℓ

I +
1

2ℓ

K′∑
k=1

ckTk(Zt)

∥∥∥∥∥∥
2

∥∥∇2
yxf(xt,yt)

∥∥
2

≤ℓ(κ−
√
κ)

(
1− 2√

κ+ 1

)K′

≤ κℓ

(
1− 2√

κ+ 1

)K′

(21)

Consider that ∇2
xxP (x) = ∇2

xxf(x,y
∗(x))−∇2

xyf(x,y
∗(x))

(
∇2

yyf(x,y
∗(x))

)−1 ∇2
yxf(x,y

∗(x))
and we obtain yt ≈ y∗(xt) by AGD. Then we can bound the approximation error of Ht as follows∥∥∥∥∥∥∇2

xxP (xt)−

∇2
xxf(xt,yt) +∇2

xyf(xt,yt)

 c0
4ℓ

I +
1

2ℓ

K′∑
k=1

ckTk(Zt)

∇2
yxf(xt,yt)

∥∥∥∥∥∥
2

≤
∥∥∥∇2

xxP (xt)−
(
∇2

xxf(xt,yt)−∇2
xyf(xt,yt)

(
∇2

yyf(xt,yt)
)−1 ∇2

yxf(xt,yt)
)∥∥∥

2

+

∥∥∥∥∥∇2
xxf(xt,yt)−∇2

xyf(xt,yt)
(
∇2

yyf(xt,yt)
)−1 ∇2

yxf(xt,yt)

−

∇2
xxf(xt,yt) +∇2

xyf(xt,yt)

 c0
4ℓ

I+
1

2ℓ

K′∑
k=1

ckTk(Zt)

∇2
yxf(xt,yt)

∥∥∥∥∥
2

≤3κ2ρ ∥yt − y∗(xt)∥2 + κℓ

(
1− 2√

κ+ 1

)K′

≤3ρκ2
√
κ+ 1

(
1− 1√

κ

)Kt/2

∥yt−1 − y∗(xt)∥2 + κℓ

(
1− 2√

κ+ 1

)K′

,

where the second inequality is according to ∇2
xyf(x, ·)

(
∇2

yyf(x, ·)
)−1 ∇2

yxf(x, ·) is 3κ2ρ-Lipschitz
continuous (Lemma 9) and the result of (21); the last step is based on Lemma 5.

21

D.3 Proof of Theorem 3

We first introduce some lemmas.

Lemma 13 (Tripuraneni et al. [38, Lemma 7 and Lemma 11]). Suppose problem (6) holds that
∥g∥2 ≤ L2/M and ∥H∥2 ≤ (1 + εH)L for some εH ≤ 3/25. Running Algorithm 4 with

η =
1

20L
, σ =

CσM
2
√

ε3/M3

4608(4L+
√
Mε)

and

K(ε, δ′) =
19200L

Cσ

√
Mε

[
6 log

(
3+

9
√
dx

δ′

)
+18 log

(
6L√
Mε

)
+14 log

(
48(L+ CH

√
Mε)

Cσ

√
Mε

+
24

Cσ

)]

=Õ
(

L√
Mε

)
,

where Cσ > 0. Then with probability 1− δ′, the output satisfies

∥ŝ∥2 ≤ ∥s∗∥2 +
√
Cσ

24

√
ε

M
.

If we further suppose ∥s∗∥2 ≥ 1
2

√
ε/M , it holds that

m̃(ŝ) ≤ m̃(s∗) +
CσM

12
∥s∗∥32 and ∆ = m̃(ŝ) ≤ −1− Cσ

96

√
ε3

M
.

Proof. Most of the results in this lemma can be obtain by Lemma 7 and Lemma 11 of Tripuraneni
et al. [38] directly. Here, we should the derivation of detailed expression for K(ε, δ′). We follow
the proof of Tripuraneni et al. [38]’s Lemma 11 to show it. Using notations in this paper, we have

L′3

3∥s∗t ∥
3
2

≤ σ̄ ≤ 1, η = 1/20L, L′ = 1
2

√
ε/M , ε′ = CσM

24 ∥s∗t ∥
3
2, ∥s∗∥2 ≥

√
ε/M = L′ and

γ = −λmin(H). The notation K(ε, δ′) corresponds to T (ε) of Tripuraneni et al. [38]. The optimal
condition of cubic sub-problem means ∥s∗t ∥2 ≤ 3L/M . We have

min

{
1

M ∥s∗t ∥2 − γ
,
10 ∥s∗t ∥

2
2

ε′

}
= min

{
1

M ∥s∗t ∥2 − γ
,

240

CσM ∥s∗t ∥2

}
,

then

K(ε, δ′)

=
1 + σ̄

η
min

{
1

M ∥s∗t ∥2 − γ
,
10 ∥s∗t ∥22

ε′

}[
6 log

(
1 + I{γ>0}

3
√
d

σ̄δ′

)
+ 14 log

(
(β +M ∥s∗t ∥2) ∥s

∗
t ∥22

ε′

)]

≤ 2

1/20L
· 240

CσM ∥s∗t ∥2

[
6 log

(
1 +

3
√
d

σ̄δ′

)
+ 14 log

(
(β +M ∥s∗t ∥2) ∥s

∗
t ∥22

ε′

)]

=
9600L

CσM ∥s∗t ∥2

[
6 log

(
3σ̄ +

9
√
d

δ′

)
+ 6 log

(
1

3σ̄

)
+ 14 log

(
24β ∥s∗t ∥22
CσM ∥s∗t ∥

3
2

+
24M ∥s∗t ∥32
CσM ∥s∗t ∥

3
2

)]

≤ 9600L

CσM
1
2

√
ε/M

[
6 log

(
3 +

9
√
d

δ′

)
+ 18 log

(
∥s∗t ∥2
L′

)
+ 14 log

(
24β

CσM
1
2

√
ε/M

+
24

Cσ

)]

≤ 19200L

Cσ

√
Mε

[
6 log

(
3 +

9
√
d

δ′

)
+ 18 log

(
6L√
Mε

)
+ 14 log

(
48(L+ CH

√
ρε)

Cσ

√
Mε

+
24

Cσ

)]

=Õ
(

L√
Mε

)
.

22

The following lemma corresponds to the case of calling Algorithm 4 when ∥g∥2 ≥ L2/M . It extends
Lemma 9 of Tripuraneni et al. [38], leading to the result includes term ∥st∥2 additionally, which is
useful to bound the number of gradient calls from AGD in further analysis.
Lemma 14. Using the notation of Algorithm 3, we suppose ∥gt∥2 ≥ L2/M and Assumption 5 holds
with CH ≤ 1/40 and Cg ≤ 7/600 at t-th iteration. Let st = −RCgt/ ∥gt∥2, where

RC = − g⊤
t Htgt

M ∥gt∥22
+

√√√√(g⊤
t Htgt

M ∥gt∥22

)2

+
2 ∥gt∥2
M

.

Then we have

∆t = m̃t(st) ≤ − 7

20

√
ε3

M
and

M

24
∥st∥32 ≤ − 7

20

√
ε3

M
+ P (xt)− P (xt + st).

Proof. The assumption on ∥gt∥2 means

RC =− g⊤
t Htgt

M ∥gt∥22
+

√√√√(g⊤
t Htgt

M ∥gt∥22

)2

+
2 ∥gt∥2
M

≥ 1

M

−g⊤
t Htgt

∥gt∥22
+

√√√√(g⊤
t Htgt

∥gt∥22

)2

+ 2L2

 .

Note that function −x+
√
x2 + 2 is decreasing on R and

∥∥∇2P (xt)
∥∥
2
≤ L. Combining conditions of∥∥∇2P (xt)−Ht

∥∥
2
≤ CH

√
Mε and ε ≤ L2/M , we obtain

∥∥(∇2P (xt)−Ht)gt

∥∥
2
≤ CHL ∥gt∥2,

which implies g⊤
t Htgt ≤ (1 + CH)L ∥gt∥22. Hence, for all CH ≤ 1/40, we have

RC ≥ L

M

(
−(1 + CH) +

√
(1 + CH)2 + 2

)
≥ L

M

−
(
1 +

1

40

)
+

√(
1 +

1

40

)2

+ 2

 ≥ 7L

10M
.

(22)

Observe that we have RC = argminη∈R+ m̃t(−ηgt/ ∥gt∥2), which means the derivative of function
qt(η) = m̃t(−η · gt/ ∥gt∥2) is 0 at η = RC . Hence, we have

m̃t (st) = m̃t

(
−RCgt

∥gt∥2

)
= −

RC ∥gt∥2
2

− MR3
C

12
≤ − 7L3

20M2
− MR3

C

12
≤ − 7

20

√
ε3

M
− MR3

C

12
. (23)

Using inequality (9) of Lemma 10, we have

P (xt + st)− P (xt)

≤∇P (xt)
⊤st +

1

2
(st)

⊤∇2P (xt)st +
M

6
∥st∥32

=g⊤
t st +

1

2
(st)

⊤Htst +
M

6
∥st∥32 + (∇P (xt)− gt)

⊤st +
1

2
(st)

⊤(∇2P (xt)−Ht)st

≤m̃t (st) + Cgε ∥st∥2 +
CH

√
Mε

2
∥st∥22

=−
RC ∥gt∥2

2
− MR3

C

12
+ Cgε ∥st∥2 +

CH

√
Mε

2
∥st∥22

=−
RC ∥gt∥2

2
− MR3

C

24
−

(
MR3

C

24
− Cgε ∥st∥2 −

CH

√
Mε

2
∥st∥22

)

≤− 7

20

√
ε3

M
− MR3

C

24
− L2RC

24M

((
MRC

L

)2

− 24Cg − 12CH

(
MRC

L

))
.

(24)

23

Consider that function q(x) = x2 − 24Cg − 12CHx is minimized at 7/10 on {x : x ≥ 7/10} when
CH ≤ 1/40. Since inequality (22) means MRC/L ≥ 7/10, we have

−

((
MRC

L

)2

− 24Cg − 12CH

(
MRC

L

))
≤ −

(
7

10

)2

+ 24Cg + 12CH

(
7

10

)
≤ 0

when CH ≤ 1/40 and Cg ≤ 7/600. Combining all above results, we have

M

24
∥st∥32 ≤ − 7

20

√
ε3

M
+ P (xt)− P (xt + st).

Since we approximate ∇P (xt) and ∇2P (xt) by gt and Ht respectively, the procedure of Algorithm 3
can be viewed as solving nonconvex optimization problem minx∈Rdx P (x) by inexact first-order and
second-order information. Hence, the following lemma holds for our algorithm.

Lemma 15 (Tripuraneni et al. [38, Claim 2]). Suppose that Assumption 5 holds with Cg ≤ 1/240

and CH ≤ 1/200; and we have ∥gt∥2 ≤ L2/M and m̃t(st) ≤ − 1−Cσ

96

√
ε3/M with Cσ ≤ 1/4. We

have

P (xt + st)− P (xt) ≤− M

32
∥s∗t ∥

3
2 −

1

625

√
ε3

M
.

Proof. We directly use the proof of Claim 2 of Tripuraneni et al. [38]. The notation of c1, c2,
c3 and c4 of Tripuraneni et al. [38]’s paper corresponds to Cg, CH , Cσ and

√
Cσ/24 here. If

∥s∗t ∥2 ≥ 1
2

√
ε/M , we have

P (xt+1)− P (xt)

≤−
(
1− Cσ − 48(Cg + CH

√
Cσ/24)− 12CHCσ/576

12

)
M ∥st∥∗2 +

(
Cg +

CH

√
Cσ

48

)
Cσ

24

√
ε3

M

≤−
(
1− 1/4− 48(1/240 + 1/9600)− 3/576/200

12

)
M ∥st∥∗2 +

(
1

240
+

1/2

9600

)
1

96

√
ε3

M

≤− 9M

20
∥s∗t ∥

3
2 +

1

10000

√
ε3

M
≤ −2M

5
∥s∗t ∥

3
2 −

1

150

√
ε3

M
.

If ∥s∗t ∥2 ≤ 1
2

√
ε/M , we have

P (xt+1)− P (xt)

≤− 1− Cσ

96

√
ε3

M
+
(Cg + CH

√
Cσ/24)ε

2

√
ε

M
+
CHCσ/576

√
Mε3

8M
+
(
Cg+

CH

√
Cσ/24

2

)√Cσ

24

√
ε3

M

≤− 1

256

√
ε3

M
− 1

256

√
ε3

M
+

1/240 + 1/9600

2

√
ε3

M
+

1/800

4608

√
ε3

M
+
(
1/240 +

1/9600

2

) 1

48

√
ε3

M

≤− 1

256

√
ε3

M
− 1

256

√
ε3

M
+

23

10000

√
ε3

M
≤ −M

32
∥s∗t ∥

3
2 −

1

625

√
ε3

M
.

We finish the proof by combing above results.

We first bound the norm of st.

Lemma 16. Under the setting of Theorem 3, if it satisfies ∆t ≤ − 1
128

√
ε3/M , we have

M

256
∥st∥32 ≤ P (xt)− P (xt + st)−

1

626

√
ε3

M
.

with probability 1− δ′.

24

Proof. In the case of ∥gt∥2 ≥ L2/M , Lemma 14 implies

M

24
∥st∥32 ≤ − 7

20

√
ε3

M
+ P (xt)− P (xt+1). (25)

In the case of ∥gt∥2 ≤ L2/M , using the condition ∆t ≤ − 1
128

√
ε3/M and Lemma 15, we have

P (xt + st)− P (xt) ≤− M

32
∥s∗t ∥

3
2 −

1

625

√
ε3

M
. (26)

On the other hand, Lemma 13 implies with probability 1− δ′, we have

∥st∥2 ≤ ∥s∗t ∥2 +
√
Cσ

24

√
ε

M
=⇒ M ∥st∥32 ≤ 8M ∥s∗t ∥

3
2 +

8C1.5
σ M

243

√
ε3

M3
,

which means

−M

32
∥s∗t ∥

3
2 ≤ − M

256
∥st∥32 +

1

3538944

√
ε3

M
. (27)

Connecting inequalities (26) and (27), we have

P (xt + st)− P (xt) ≤− M

256
∥st∥32 −

1

626

√
ε3

M
. (28)

Combining the results of (25) and (28), we prove this lemma.

Then we give the proof of Theorem 3.

Proof. To bound the number of iterations, we are only interested in the iteration with ∆t ≤
− 1

128

√
ε3/M , otherwise the condition in line 7 holds and the algorithm will break the loop. In such

case, Lemma 16 mean

M

256
∥st∥32 ≤ P (xt)− P (xt + st)−

1

626

√
ε3

M
.

Suppose the total number of iteration is T ′. Summing over t = 0, . . . , T ′, we have

T ′ ≤ 626(P (x0)− P (xT))
√
Mε−1.5 ≤ 626(P (x0)− P ∗)

√
Mε−1.5 = O

(
κ1.5√ρε−1.5

)
.

Lemma 6 says if xt + s∗t is not an
(
ε,
√
Mε

)
-second-order stationary point of P (x), then we have

∥s∗t ∥2 ≥ 1
2

√
ε/M . Combining Lemma 13 and Lemma 14, we have

∆t = m̃t(st) ≤ max

{
− 7

20
,−1− Cσ

96

}√
ε3

M
≤ − 1

128

√
ε3

M
.

Hence, if condition in line 7 holds, we conclude that xt+ s∗t is an
(
ε,
√
Mε

)
-second-order stationary

point and Lemma 8 of Tripuraneni et al. [38] means the output x̂ = xt+ ŝ is a (ε, 2κ1.5√ρε)-second-
order stationary point of P (x).

Note that Lemma 13 means each iteration of our algorithm succeed with probability 1− δ′. Let Ft

be the event that t-th iteration fail. The union bound implies

P

(
T⋃

t=1

Ft

)
≤

T∑
t=1

P (Ft) = Tδ′ = δ.

Hence, the probability of success is at least 1− δ.

25

D.4 Proof of Theorem 4

Proof. We first use induction to show that

∥yt − y∗(xt)∥2 ≤ ε̃ (29)

holds for any t ≥ 0. For t = 0, Lemma 5 directly implies ∥y0 − y∗(x0)∥2 ≤ ε̃. Suppose it holds
that ∥yt−1 − y∗(xt−1)∥2 ≤ ε̃ for any t = t′ − 1, then we have

∥yt′ − y∗(xt′)∥2

≤
√
κ+ 1

(
1− 1√

κ

)Kt′/2

∥yt′−1 − y∗(xt′)∥2

≤
√
κ+ 1

(
1− 1√

κ

)Kt′/2 (
∥yt′−1 − y∗(xt′−1)∥2 + ∥y∗(xt′−1)− y∗(xt′)∥2

)
≤
√
κ+ 1

(
1− 1√

κ

)Kt′/2

(ε̃+ κ ∥xt′−1 − xt′∥2)

=
√
κ+ 1

(
1− 1√

κ

)Kt′/2

(ε̃+ κ ∥st′−1∥2) ≤ ε̃,

(30)

where the first inequality is based on Lemma 5; the second one use triangle inequality; the third one
is based on induction hypothesis and the last step use the definition of Kt and ε̃.

Combining inequality (29) with Lemma 1 and Assumption 1, we obtain

∥gt −∇P (xt)∥2 = ∥∇xf(xt,yt)−∇xf(xt,y
∗(xt))∥2 ≤ ℓ ∥yt − y∗(xt)∥2 ≤ Cgε.

Combining inequality (29) with Lemma 8 and Assumption 2, we have∥∥∇2
xxP (xt)−Ht

∥∥
2

≤3ρκ2
√
κ+ 1

(
1− 1√

κ

)Kt/2

∥yt−1 − y∗(xt)∥2 + κℓ

(
1− 2√

κ+ 1

)K′

≤3ρκ2ε̃+
CH

√
Mε

2
≤ CH

√
Mε.

We obtain the upper bound of
∑T

t=0 Kt by following the analysis of Theorem 2.

D.5 Proof of Corollary 3

Proof. The output is a desired second-order-stationary point can be proved by directly combining
Theorem 3 and Theorem 4. Connecting the upper bounds of

∑T
t=1 Kt and Theorem 4 , we conclude

the total number of gradient calls is at most

T∑
t=1

Kt

≤2
√
κT

3
log

(
3

T
log

(√
κ+ 1

ε̃
∥y∗(x0)∥2

)
+ 8(κ+ 1)1.5 +

2048κ3(κ+ 1)1.5

626TMε̃′3
(P (x0)− P ∗)

)
=Õ

(
κ2√ρε−1.5

)
.

The total number of Hessian-vector calls from Algorithm 4 is at most

T · K(ε, δ′) ·K ′

≤Õ
(
κ1.5√ρε−1.5

)
· Õ
(

L√
Mε

)
· Õ
(√

κ
)

=Õ
(
κ1.5√ρε−1.5

)
· Õ
(

κℓ

κ1.5√ρε

)
· Õ
(√

κ
)
= Õ

(
κ1.5ℓε−2

)
.

26

Using Lemma 8 of Tripuraneni et al. [38], we know the total number of Hessian-vector calls from
Algorithm 5 is at most

Õ
(√

κ
)
· O
(

L2

Mε

)
= Õ

(
ℓ2√
κρε

)
,

which is not the leading term in total complexity for small ε.

E Implementation of IMCN

In the implementation of IMCN (the cubic sub-problem solver), all of steps related to Ht can be view
as computing Hessian-vector product of the form

Htu
′ =

∇2
xxf(xt,yt) +∇2

xyf(xt,yt)

 c0
4ℓ

I+
1

2ℓ

K′∑
k=1

ckTk(Zt)

∇2
yxf(xt,yt)

u′, (31)

where u′ ∈ Rdx is given. Recall that Chebyshev polynomial satisfies

Tk(Zt) = 2ZtTk−1(Zt)−Tk−2(Zt),

which allows us computing (31) without constructing any Hessian matrix explicitly. Concretely, For
fixed t, we define

u = ∇2
yxf(xt,yt)u

′, Bk =
c0
4ℓ

I+
1

2ℓ

K∑
k=1

ckTk(Zt), vk = Tk(Zt)u and wk = Bku.

Since we have Zt =
4ℓ

ℓ−µ

(
− 1

2ℓ∇
2
yyf(xt,yt)− ℓ+µ

4ℓ I
)

, it holds that

wk =(Bk−1 + ckTk(Zt))u

=wk−1 + ck (2ZtTk−1(Zt)−Tk−2(Zt))u

=wk−1 + ck

(
8ℓ

ℓ− µ

(
− 1

2ℓ
∇2

yyf(xt,yt)−
ℓ+ µ

4ℓ
I

)
vk−1 − vk−2

)
=wk−1 −

4ck
ℓ− µ

∇2
yyf(xt,yt)vk−1 −

2ck(ℓ+ µ)

ℓ− µ
vk−1 − ckvk−2

(32)

and

vk =Tk(Zt)u

=2ZtTk−1(Zt)u−Tk−2(Zt)u

=
8ℓ

ℓ− µ

(
− 1

2ℓ
∇2

yyf(xt,yt)−
ℓ+ µ

4ℓ
I

)
vk−1 − vk−2

=− 4

ℓ− µ
∇2

yyf(xt,yt)vk−1 −
2(ℓ+ µ)

ℓ− µ
vk−1 − vk−2.

(33)

Hence, based on update rules (32) and (33), we can obtain Htu
′ with O(K ′) = Õ(

√
κ) Hessian-

vector calls. Additionally, this strategy avoids O
(
d2x + d2y

)
space to keep Hessian matrices.

F Complexity Comparison

Table 1 summarizes the theoretical results of proposed algorithms and existing methods. Note that the
original analysis of GDA [20] and PPA [21] are based on the variable y lies in a convex and compact
constraint set. In fact, both of these analysis can be extended to unconstrained case easily. We give a
brief sketch for the modification as follows.

GDA Consider the proof in Section C.3 of Lin et al. [20]. We only needs to keep the term δ0 and
do not relax it into the diameter of the constraint set. Then it achieves O

(
(κ2ℓ+ κℓ2)ε−2

)
gradient

call upper bound for unconstrained case.

27

Table 1: We present the comparison of the algorithms for nonconvex-strongly-concave minimax
optimization. Note that only the proposed MCN and IMCN guarantee to find the approximate
second-order stationary point.

Algorithm GDA [20] PPA [21] MCN (Corollary 1) IMCN (Corollary 3)

∥∇P (x)∥2 ≤ ε ! ! ! !

∇2P (x) ⪰ −κ1.5√ρε I % % ! !

first-order oracle O
(
(κ2ℓ+ κℓ2)ε−2

)
Õ
(√

κℓε−2
)

Õ
(
κ2√ρε−1.5

)
Õ
(
κ2√ρε−1.5

)
second-order oracle – – O

(
κ1.5√ρε−1.5

)
–

Hessian-vector oracle – – – Õ
(
κ1.5ℓε−2

)

PPA Recall the proof in Section D.3 of Lin et al. [21]. Let δ = O
(
ε2/(κ2ℓ)

)
. To achieve the

corresponding result for unconstrained case in Table 1, we only needs to find xt+1 such that

max
y∈Rd

f(xt+1,y) + ℓ ∥xt+1 − xt∥22 ≤ min
x∈Rx

{
max
y∈Ry

f(x,y) + ℓ ∥x− xt∥22

}
+ δ

in Õ(
√
κ log(1/ε)) gradient calls, which can be obtained by AL-SVRE with n = 1 [25]. More

specifically, we require using AL-SVRE with n = 1 to solve the following minimax problem

min
x∈Rx

max
y∈Ry

ft(x,y) ≜ f(x,y) + ℓ ∥x− xt∥22 . (34)

Since we have supposed f(x,y) is ℓ-smooth and µ-strongly-concave in y, the function ft(x,y) is
3ℓ-smooth, ℓ-strongly-convex in x and µ-strongly-concave in y. Then the condition numbers of
ft(x,y) are κx = 3ℓ/ℓ = 3 and κy = 3ℓ/µ = 3κ respectively. Note that the proof of Corollary 1 of
[25] does not depend on that x or y is constrained in a bounded set. Hence, applying it with n = 1
means we need at most Õ (

√
κ log(1/ε)) gradient calls to solve problem (34) with desired accuracy.

G Experimental Details

In this section, we present the details of both synthetic minimax problem and the setting of domain
adaptation experiments.

G.1 Details of Synthetic Minimax Problem

Our synthetic experiment are based on the following nonconvex-strongly-concave minimax problem

min
x∈R3

max
y∈R2

f(x,y) = w(x3)−
y21
40

+ x1y1 −
5y22
2

+ x2y2,

where x = [x1, x2, x3]
⊤, y = [y1, y2]

⊤ and

w(x) =

√
ϵ
(
x+ (L+ 1)

√
ϵ
)2 − 1

3

(
x+ (L+ 1)

√
ϵ
)3 − 1

3
(3L+ 1)ϵ3/2, x ≤ −L

√
ϵ;

ϵx+
ϵ3/2

3
, −L

√
ϵ < x ≤ −

√
ϵ;

−
√
ϵx2 − x3

3
, −

√
ϵ < x ≤ 0;

−
√
ϵx2 +

x3

3
, 0 < x ≤

√
ϵ;

−ϵx+
ϵ3/2

3
,

√
ϵ < x ≤ L

√
ϵ;

√
ϵ
(
x− (L+ 1)

√
ϵ
)2

+
1

3

(
x− (L+ 1)

√
ϵ
)3 − 1

3
(3L+ 1)ϵ3/2, L

√
ϵ ≤ x.

28

-0.5 0.5

-0.006

-0.004

-0.002

0.002

0.004

0.006

Figure 3: Tripuraneni et al. [38] designed the W-shaped function and provided this figure for
visualization.

The nonconvex function w(x) is designed by Tripuraneni et al. [38] and we set ϵ = 0.01 and L = 5
in our experiment. We can verify that

y∗(x) =

[
20x1

x2

5

]
and P (x) = w(x3) + 10x2

1 +
1

10
x2
2.

G.2 Domain Adaptation

The experiments are conducted on a workstation with Intel Xeon 2.6GHz CPU, 256GB memory and
one Nvidia Tesla V100 GPU. We implement the algorithms by using Pytorch 1.10.1 and Python 3.8.8.
We choose α = 1 and λ = 0.2 for the model.

The learning rate of GDA and AGD is selected from
{
c · 10−i : c ∈ {1, 5}, i ∈ {1, 2, 3, 4, 5}

}
. In the

implementation of the GDA, the learning rate of x and y are chosen separately. For IMCN algorithm,
the parameter M is selected from

{
c · 10−i : c ∈ {2, 5}, i ∈ {0, 1, 2}

}
. We set the threshold of using

Cauchy point (i.e., Line 2 of Algorithm 4) as 0.01. The number of AGD iterations and Cubic-Solver
iterations are selected from {50, 100, 150, 200}. The learning rate of cubic solver is selected from
{0.2, 0.02, 0.002}.

29

	Introduction
	Preliminaries
	Notations and Assumptions
	Local Optimality of Minimax Optimization
	Accelerated Gradient Descent
	Cubic Regularized Newton

	Minimax Cubic Newton Algorithm
	Minimax Cubic Newton Method
	Complexity Analysis for MCN

	Inexact Minimax Cubic Newton Algorithm
	Approximating Hessian by Matrix Chebyshev Polynomials
	Complexity Analysis for IMCN

	Experiments
	Synthetic Minimax Problem
	Domain Adaptation

	Conclusions and Future Work
	Basic Lemmas
	Proofs for Section 2
	The Proof of Lemma 2
	The Proof of Lemma 3

	Proofs for Section 3
	Proof of Lemma 6
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Corollary 1
	Proof of Corollary 2

	Proof of Section 4
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Corollary 3

	Implementation of IMCN
	Complexity Comparison
	Experimental Details
	Details of Synthetic Minimax Problem
	Domain Adaptation

