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ABSTRACT

Recent advances in Large Language Models (LLMs) have enabled the develop-
ment of Video-LLMs, advancing multimodal learning by bridging video data with
language tasks. However, current video understanding models struggle with pro-
cessing long video sequences, supporting multi-turn dialogues, and adapting to
real-world dynamic scenarios. To address these issues, we propose STREAMCHAT,
a training-free framework for streaming video reasoning and conversational inter-
action. STREAMCHAT leverages a novel hierarchical memory system to efficiently
process and compress video features over extended sequences, enabling real-time,
multi-turn dialogue. Our framework incorporates a parallel system scheduling
strategy that enhances processing speed and reduces latency, ensuring robust per-
formance in real-world applications. Furthermore, we introduce STREAMBENCH,
a versatile benchmark that evaluates streaming video understanding across di-
verse media types and interactive scenarios, including multi-turn interactions and
complex reasoning tasks. Extensive evaluations on STREAMBENCH and other pub-
lic benchmarks demonstrate that STREAMCHAT significantly outperforms existing
state-of-the-art models in terms of accuracy and response times, confirming its
effectiveness for streaming video understanding. Code is available at StreamChat.

1 INTRODUCTION
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progress in multimodal learning by bridging video data
and language-based tasks, with applications spanning
from content analysis to human-robot interaction [9].

Despite these advancements, current offline models
primarily process videos as static clips and rely on
single-turn dialogues, incorporating visual information
through mechanisms like projection layers [4, 8] or
cross-attention structures [2]. However, these models
encounter computational bottlenecks when handling ex-
tended video sequences, often struggling to compress
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Figure 1: Performance comparison between
STREAMCHAT and previous Video-LLMs.

lengthy video features within limited memory resources [10]. Additionally, their inability to support
multi-turn dialogues reduces adaptability for interactive scenarios, and key information may be lost

due to insufficient video sampling methods (cf: Fig. 2(a)).

To address these issues, online models [10, 11] have emerged. They utilize memory-based approaches
and temporally aligned instruction-tuning to process long videos and enable multi-round interactions
(cf. Fig. 2(b)). While these models allow dynamic user interactions, they still face challenges
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Figure 2: The comparisons between StreamChat and other methods (§1). Offline methods process entire
videos, leading to information loss and limited to a single interaction. Previous online methods [10, 11] enable
multi-round interactions but still suffer from slow processing and answer correctly. The proposed method
achieves real-time video processing, improving the efficiency and accuracy with memory support.

maintaining rapid processing speeds and consistent performance across unfamiliar scenarios—critical
factors in real-time applications like robotic navigation and human-robot collaboration.

To overcome these limitations, we propose STREAMCHAT, a training-free framework for streaming
video understanding that offers three key innovations: (i) Training-free adaptability, allowing it
to efficiently process videos of various types and lengths without resource-heavy training. This
makes STREAMCHAT suitable for both online and offline video processing while maintaining stable
performance across diverse scenarios. (ii) Hierarchical memory storage, which manages and
compresses video information over long sequences. It integrates short-term memory for tracking
ongoing events, long-term memory for retaining past events in compressed form, and dialogue
memory to maintain conversational history, ensuring continuous and coherent dialogue understanding.
(iii) Optimized system scheduling, which improves model inference efficiency by processing tasks
in parallel across three threads: the selective frame stacking thread identifies and removes redundant
frames, the memory formation thread updates and refines memory information, and the contextual
summarization thread handles user requests and generates responses in real-time.

We evaluate STREAMCHAT on existing benchmarks [12—16] and identify their two major shortcomings:
(i) Short and monotonous video content, which fails to capture the complexity of real-world
streaming media, and (ii) Simplistic, single-round questions, which do not test the model’s ability
to engage in multi-turn dialogue or complex reasoning.

To address these deficiencies, we introduce STREAMBENCH, a comprehensive benchmark designed for
streaming video understanding. It includes a diverse array of video content such as egocentric videos,
web videos, and movie scenes, paired with text annotations that simulate multi-round interactions.
In terms of video selection, we perform rigorous manual curation from large datasets to ensure
both high-quality content and a broad range of categories. In terms of questions, we design six
distinct types of queries, probing various dimensions of the model’s reasoning abilities, from simple
factual retrieval to complex inference. Compared to previous benchmarks, STREAMBENCH not only
evaluates the accuracy of model responses but also incorporates latency metrics, which are essential
for assessing performance in real-time applications. This comprehensive evaluation framework offers
a more realistic and reliable measure of model robustness and practical utility.

In summary, our key contributions are as follows:

* We propose STREAMCHAT, a training-free method for streaming video understanding. Its novel
hierarchical memory storage and system scheduling strategy enables robust memory management,
real-time video processing, and multi-round interaction capabilities. These features ensure precise
and efficient response generation, catering to the dynamic nature of video contexts.

* We introduce STREAMBENCH, the first comprehensive benchmark to evaluate streaming video
understanding models. This benchmark simulates real-world interactions through multi-turn
dialogues and diverse question formats, offering a detailed assessment of model performance.

* STREAMCHAT sets new benchmarks (cf. Fig. 1), delivering a 64.7% accuracy on STREAMBENCH
for online settings, which is an 8.3% improvement over the previous best. In offline scenarios, it
outperforms the state-of-the-art method by an average of 2.5% across four public benchmarks.
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Figure 3: Benchmark overview (§2). Our benchmark covers 4 key domains and 16 sub-class video types. These
videos exhibit a broader distribution of length, with 6 different types that are evenly distributed.

* In terms of efficiency, STREAMCHAT achieves a processing speed of 32 FPS, marking a sixfold
increase over existing methods. Additionally, it maintains text generation latency under 0.9 seconds,
showcasing significant advances in interactive video processing.

2 COLLECTION AND COMPOSITION OF STREAMBENCH

2.1 VIDEO COLLECTION

Previous video understanding benchmarks [12—14, 16— Table 1: Comparisons of different bench-
18] primarily focus on offline scenarios, where all video marks. MRI denotes multi-round interac-
frames and user questions are provided to the model simul- tons.

taneously for generating answers. To find a more suitable [Benchmark MR Avg Tofal Video QA
method to assess a model’s ability to understand online sce- | MSVD [16] X 10s 14h  Web  Desc.

. ntrod benchmark mainly | MSRYTTE21 |l X 155 125h  Web  Desc.
narios, we 1ntr'0 uce STRE.AMB]?‘.NCH, a benchmark mamnly | aciviNet[14] || x 1126 25h  Web  Desc.
designed to simulate online video scenarios. There are | Next-QA [15] X 40s 1lh  Web Temporal
two distinct differences compared with other video un- [ MovieChat[7] || X 2135 h Movie Movie

p STREAMBENCH v 270s 25h  Mix Online

derstanding benchmarks. (i) Diverse video curation: we
collect four major domains and sixteen sub-classes of video sources, including egocentric videos,
web videos, working videos, and movies as the database of the benchmark. Each type has its unique
characteristics and challenges, which can verify the stability and reliability of the model in a wide
range of application scenarios. (ii) Crafted query types: we design six types of questions to meet
the specific needs of online video understanding and ensure that these types of questions appear once
in a single video, forming a multi-round dialogue. This section introduces how we collect videos and
construct annotations. More details about the diversity and distribution are shown in Fig. 3.

Data Sources. In selecting videos for our benchmarks, we prioritized diversity in type and length
to maintain high data quality. Our primary sources are the EgoSchema [13] and YouTube-8M [19]
datasets. EgoSchema offers a rich array of both indoor and outdoor scenes, providing an extensive
range of egocentric perspectives and actions, which aligns perfectly with our experimental needs.
From YouTube-8M, which features a comprehensive internet-sourced collection spanning over 4,000
classes, we filtered to procure high-quality web, work-related, and cinematic videos. This diverse
selection framework ensures our model is tested against a broad spectrum of real-world scenarios.

Filtering videos. It is a crucial step to ensure the quality of the videos used in the benchmark. To
achieve this, our data filtering pipeline consists of machine and human selection. Firstly, a multi-
modal language model [20] is utilized to classify the original data. The categories of videos are
provided by data source, we feed them with the videos to the machine and make it select the category
of the video. Secondly, human judgment is required to assess the redundancy: the change of scenes
in videos. Some static video content (e.g., ego view of drawing, watching TV) and high-noise data
from web videos (e.g., video games, advertisements) are removed according to human judgment.
Finally, StreamBench consists of 306 videos with a total duration of 24.8 hours and an average of 4.5
minutes each, offering a comprehensive collection of videos from different categories and lengths.
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2.2 CONSTRUCTION OF TASKS AND ANNOTATIONS

We have crafted six distinct tasks with annotations to simulate the conversation between the agent
and the human. Each task corresponds to a different real-world scenario, ensuring comprehensive
coverage of potential communication contexts.

* Object Search (OS): Challenges include accurately describing an object’s position in a video. The
task conditions are that the object must appear for less than 5 seconds and the interval from its
appearance to the user’s request should exceed 30 seconds, enhancing the difficulty of the search.

* Long-term Memory Search (LM): This task assesses the model’s memory by requiring recall of
events appearing for more than 5 seconds, with a delay exceeding 1 minute from the event’s end to
the user’s query, testing long-term memory retention.

* Short-term Memory Search (SM): To simulate the user’s interest in recent events, this task
sets the interval from event completion to the user’s query at less than 20 seconds, evaluating the
model’s response to recent activities.

* Conversational Interaction (CI): Sometimes the answer to a user’s current question is closely
related to conversation history. Therefore, the model must memorize conversation records and
retrieve the most relevant text from the memory as contextual support. This type is designed to
simulate multi-turn dialogue scenarios. We set the dialogue information associated with the user’s
current request to come from any previous conversation, with an interval of more than 2 dialogues.

* Knowledge-based Question Answering (KG): This type of question evaluates the model’s internal
knowledge, which is retained by the base large language models. In this benchmark, we set the
questions must be related to the events or objects occurring in the video so that it can simulate
scenarios where users have a specific need to understand background or encyclopedic knowledge.

 Simple Factual (SF): This type of question focuses on friendly dialogue starting between the user
and the model. Therefore, they must be asked within 30s after the beginning of the video. Although
the question is simple, the model needs to remember things in the short term to answer correctly.

To ensure the quality of the annotations, we additionally assign different workers to perform human
feedback for manual annotation. The human feedback step needs to focus on three parts: (1) check the
question formats are correct and diverse, (2) ensure the expressions are clear and consistent with the
video, and (3) remove sensitive topics such as those questions related to nationality or politics. These
steps of manual annotation and feedback, along with multi-modal large language model assisted
video collection, form our semi-automated benchmark construction pipeline (Appen. §A). Finally,
STREAMBENCH contains 1.8K high-quality QA pairs. The distribution of these annotations is shown
in Fig. 3. Some examples from the benchmark that offer an intuitive observation of our annotation
results and formats are shown Appen. §B.

3 STREAMCHAT

Given streaming broadcast video and timestamped questions as Table 2: Comparisons of recent video-
input, STREAMCHAT is designed to efficiently perform reasoning Mlms. Our streaming (S.) method with
and deliver accurate answers across multiple rounds. Building "0y (M.) al(;hleves processing video
upon LongVA [20] (Appen. §F) as a foundational Video-LLM, real_”.’ﬁf l( ; ;md g?ﬁirates afre
our design incorporates two key components: a hierarchical sponse with fow fatemcy .-
memory storage system (§3.1) that leverages long-term, short- |_Method s
term, and dialogue memories to compress and manage extensive | Video-LLaVA [4]
video sequences within constrained resources, thereby facilitat- | MovieChat (7]
ing effective video-content reasoning; and a system scheduling ;/,1:: 3{811::;;511 [l l] 0]
strategy (§3.2) that decouples video feature extraction from | . - =
memory updates, thereby preventing unbounded buffer growth

as the input video frames increase.
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3.1 HIERARCHICAL MEMORY STORAGE

STREAMCHAT treats videos as dynamic information repositories, utilizing hierarchical memory to
analyze and store the diverse content. This section details two specialized memory structures
devised to address the challenges of information storage and retrieval: long-short term memory
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Figure 4: Overview of StreamChat (§3), which comprises three main components: (i) Selective frame
stacking, which prepares vision features for processing, including encoding frames and filling the vision
buffer; (ii) Memory formation, where vision features are organized into structured memory; (iii) Contextual
summarization, utilizing hierarchical memory to respond to user queries by providing relevant context.

M, UM, = {ZZ}ZT:/OL U {s;};_, and dialogue memory M, = {d }P ). These memories manage
visual and conversational data where T is video duration, S is short memory length, D counts
dialogues, and L is the chunk size for long memory. The following sections introduce the functions
of the above parameters.

3.1.1 LONG-SHORT TERM MEMORY

Selective Frame Stacking. To reduce the feature storage overhead caused by redundant frames in
videos, we use Lucas-Kanade Optical Flow algorithm [21] in the selective frame stacking module
to assist in determining the validity of each video frame {F* € R ><WX:‘}T 0- Spe01ﬁcally, we
calculate the motion vector (u, v) between i-th frames F and the last frame ™~

{u] _ > Ir(l) > i Le ()1 (4) > — 1 (i) t(Z) n
Y L(WLG) X 1(0)? > — 1y (D)1 (2)

where 1,(i), I, (i), I;(i) represent the partial derivatives of the frame F'* with respect to position

i(z,y) and time ¢. We develop the motion vector magnitude ||0|| = vu? + v2 € [0, 1] to represent
the total motion intensity between frames. If ||6|| exceeds the predefined threshold ¢ € [0, 1], the
frame F* will be encoded into vision embedding e* € R™*? and pushed into buffer Byision-

v

Short-term Memory. We intend to design a human-like memory method that simulates the Atkinson-
Shiffrin model [22], which emphasizes the role of a short-term storage for maintaining readily
accessible, frequently updated information. Specifically, as shown in Fig. 5 (a), we select N vision
embeddings from the By;son as vision candidates C. Building on the Ebbinghaus Forgetting Curve
theory [23], we handle memory updates by randomly selecting S vision embeddings e’ from C to
construct the short-term memory My:
. . random
C = {O'Nflel_(N_l)7JNfzez_(N_2)7 ,0p0€ } T> M = {S € RnXd}S (2)
selec

where o; is the normalized forgetting probability of i-th unit of C, S represents the length.
Long-term Memory. The long-term memory simulates the complex and abstract memory of
humans [22]. For this reason, we design two forms of information in long-term memory: fext clues,
which is used to store declarative text ¢; describing events that occurred over a past period, and vision
memory, which is used to store compressed visual features v; € RE*4_ Text clues serve as an index
for retrieving relevant information from the long-term memory (introduced in §3.1.3). Our system
overcomes the bottleneck of VRAM consumption and the challenges of retrieving memory units [;
by constructing a tree structure as shown in Fig. 5 (a).

The construction of the long-term memory tree can be outlined in the following steps: Firstly, the
vision buffer is chunked, and each chunk is clustered and assigned a caption:
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Figure 5: The hierarchical memory storage (§3.1). (a) Long-short term memory, where the long memory
tree M; and short-term memory M are constructed along the video time line. (b) The dialogue memory My is
updated after each inference conversation for managing the dialogue histories.

Biyision = {ICi}ZZOLM = {0, = fiemeans(Ki), ti = po(xi|KC;) 3)
where v; € RE*? is the i-th cluster formed from feature chunks {ICl}ZT:/ OL , C'is the clustering goals
, and t; represents the i-th caption of each chunk. Each chunk /C; contains L features e! € R™*¢

which come from buffer Byision- Next, a clustered feature v; and a caption ¢; together form a long
memory unit /;, which also serves as the basis nodes of our tree structure:

(lo,l1, -+, lim1]nodes il li = {vi, t;} “)

Finally, basic nodes are further grouped into higher level nodes [I3, 11, ..., [}] in chronological order
until a tree structure is formed and all the basic nodes are exhausted :

My = {031 = { femeans ({vi}0_0)s o (2] {8:}9_0) } o)

3.1.2 DIALOGUE MEMORY

In our approach, each round of question {Q;}2, and answer {A;}2  is viewed as a memory
fragment, which is pre-encoded by the encoder model E(-) into a contextual representation d;.
Thus, the entire dialogue history M, is pre-encoded as shown in the following formula: M, =

{do,d1,...,d;i—1} Luh d; = E(< Q;, A; >) where the length of M is equal to the conversation
number D, and we select MiniLM-L6 [24] as our encoder model.

3.1.3 RETRIEVAL

When a user question (); comes in, the memory system will search for the most relevant knowledge
as supplementation by the retrieval algorithm. In long memory tree M;, the @); and text clue

units {tl}?iOL are encoded by the tokenizer and the embedding layer of LLM. Based on the cosine
similarity between encoded @; and text clue ¢;, the memory system will search for the retrieved
tokens M, U {v, € RE*4}£_ where L represent the layer number of M;. In dialogue memory My,
the user requests (); is encoded by E(-) as a query to search for the context < Qretieved, Aretrieved >
based on the FAISS [25] index. More details about our retrieval algorithm are shown in Appen. §C.

3.2 SYSTEM SCHEDULING

As shown in Fig. 4, our method includes three different parts: selective frame stacking, memory
formation and contextual summarization. These components are operated as independent threads to
optimize inference speed and minimize latency. System scheduling is crucial as it enables concurrent
execution of these threads without interference, significantly enhancing processing speed.

Specifically, the (i) slective frame stacking thread actively populates the vision buffers Byison With
features e’. Once full, these features are cleared from the buffer and passed to the (ii) memory forma-
tion thread, which updates the memory structures by building the long-term memory tree M; and
refreshing the short-term memory M. Concurrently, previous dialogue records (< @Q;_1, A;—1 >)
are stored in the dialogue memory M. Upon receiving a new query Q;, the (iii) contextual sum-
marization thread retrieves relevant information from the hierarchical memory to provide timely
responses. This architecture supports sub-second latency (<0.9s) and video processing up to 32 FPS.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Table 3: Memory configura-
tions for three models.
[ Version [ ¢ L g C|

Memory Configurations. To adapt the model to various application
scenarios, we configure three versions with different memory settings:
Base, Fast, and Slow. These variants adjust key memory parameters,

including threshold (), chunk length (L), group size (g), and clustering ;izz 8;2 32 :(5) §
goals (C), as summarized in Tab. 3. The Fast model is optimized for | Fast 058 30 15 5
rapid video processing, while the Slow model prioritizes accuracy in responses. The Base model
balances processing speed and accuracy.

Evaluation Metrics. We evaluate semantic similarity in single conversations using the LLaMA-3
model [3], which assigns a semantic correctness score (Sco.) ranging from [0, 5], where higher scores
reflect responses that more closely align with the expected answers. For assessing coherence in
multi-turn dialogues, we compute score fluctuations across turns; smaller fluctuations (Coh.) indicate
a smoother dialogue experience. Additionally, we measure request processing delay (RPD), defined
as the time (in seconds) from user request submission to the start of response generation. A smaller
RPD signifies lower latency, resulting in reduced wait times for users. Appen. §D offers more details.

Implementation Details. We utilize CLIP-L-P14 [26] as the vision encoder and we set the number
of selected memory units S to 5 and candidate length C to 20. Experiments were conducted on two
NVIDIA Tesla A800 GPUs with 80GB of memory each (more details in Appen. §F ). We benchmark
our model against state-of-the-art methods, including Video-LLaVA [4], LLaMA-VID [2] and etc.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Online Scenarios. As shown in Tab. 4, Table 4: Quantitative results in StreamBench. RPD is
our models demonstrate significant improve- measured for streaming methods. Fr.: sampled frames.

ments over the previous best method, Video- | Method [[ FPST Fr. [ Sco. Acc. Coh. RPD]
online [1 1] Human performance - - 403 794 1.16 -
GPT-40 [27] - | 50 | 370 710 166
* Slow: Achieves an 8.3% higher accuracy | GPT-4o[271 ©| 35| 364 698 172
. . . GPT-40-mini [27] - | 35 | 317 591 201
and a 0.37 higher score than Video-online. | j,ucr-muning
. . : : Video-LLaVA [4] 8 | 281 489 219
Fast: Processes video at 32 FPS, mak%ng LLaMAVID [2] 150 | 201 s12 208
it much faster than all previous streaming LLaVA-NEXT [28] 8 265 462 2.18
methods, while still improving accuracy by | LLaVA-Hound [29] 8 | 312 547 183
. . LongVA [20] 8 | 305 524 196
5.3% and scoring 0.17 higher than [11]. MiniCMP2.6 [30] s | 297 566 241
e Base: Reaches 63.8% Acc. and 3.42 score. | VILALSI[31] 8 | 310 571 220
i ] InternVL2 [32] 8 | 315 576 211
» Best model: Surpasses [11] with a 0.18 im- | InternLM-XCP2.5 [33] 8 | 321 577 212

provement in coherence score and reduces | Trwiningfree

latency by 0.17s, delivering smoother con- ﬁﬁ‘e’gi?f h[‘g]”‘ H ) ‘ 342 ‘ %’% gg; %??
versations with shorter wait times. Streaming
. . Video-online [11] 5 - 311 564 194 1.07
Due to system scheduling, all models main- | Flash-VStream [10] H 1 ‘ - ‘ 289 521 221 4.5
tain nearly the same response time of about | STREAMCHAT
. Slow 15 | - | 348 647 176 090
0.9s. Tab. 5 presents the detailed scores Base 20 342 638 179 089
across six question types. Using hierarchical Fast 32 328 617 181 085

memory storage, our method excels in object

search (OS), long-term memory search (LM), short-term memory search (SM), and conversational
interaction (CI) tasks. Notably, our S1ow model increases accuracy by 10.3% in OS, 5.1% in LM,
4.9% in SM, and 5.8% in CI compared to Video-online.

Offline Scenarios. We compare our Base model against other methods in general offline video
understanding benchmarks including MSRVTT-QA [12], ActivityNet [14], NExT-QA [15], MSVD-
QA [16]. Since these benchmarks involve open-ended questions, we evaluate performances using
score and accuracy as metrics, employing the same score model [3] as used in online tests. It should
be noted that considering the limited average video length in the MSRVTT [12] and MSVD [16]
shown in Table 1, we did not apply long-term memory M; for our model during the test. Additionally,
since these open-ended question-answering test format benchmarks do not evaluate multi-round
dialogue capabilities, we removed the dialogue memory My component from our model.
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Table 5: Quantitative comparison across six tasks. Detailed results for tasks ‘OS’, ‘LM’, ‘SM’, ‘CI’, ‘KG’,
and ‘SF’. For full names and definitions, refer to §2.1

oS LM SM CI KG SF
Method Publication Sco.  Acc. Sco.  Acc. Sco.  Acc. Sco.  Acc Sco.  Acc. Sco.  Acc.
Human performance -- 395 71.8 | 381 693 | 407 815 | 414 826 | 406 80.7 | 430 80.7
GPT-40-50 [27] Arxiv 2024 327 605 | 335 612 | 341 644 | 381 723 | 458 939 | 383 747
GPT-40-35 [27] Arxiv 2024 322 596 | 328 586 | 345 653 | 376 717 | 454 933 | 3.50 66.1

GPT-40-mini-35 [27] Arxiv 2024 252 468 | 270 458 | 280 51.0 | 350 640 | 467 952 | 290 533

Instruct-tuning

Video-LLaVA [4] EMNLP 2024 225 312 | 231 359 | 250 418 | 3.18 56.1 381 746 | 293 548
LLaMA-VID [2] ECCV 2024 232 339 | 243 382 | 263 441 | 331 584 | 393 769 | 3.06 57.1
VILALS5 [31] CVPR 2024 233 361 | 254 443 | 287 508 | 359 683 | 397 786 | 338 655
InternVL2 [32] CVPR 2024 249 385 | 270 46.6 | 289 509 | 361 676 | 402 810 | 329 622
LLaVA-NEXT [28] Arxiv 2024 217 350 | 214 314 | 215 360 | 255 427 | 388 76.1 3.12 576
LLaVA-Hound [29] Arxiv 2024 249 376 | 268 432 | 3.09 534 | 321 557 | 389 763 | 335 620
LongVA [20] Arxiv 2024 2.61 418 | 281 474 | 320 57.6 | 329 598 | 401 80.7 | 3.48 66.1
MiniCMP-v2.6 [30] Arxiv 2024 232 376 | 278 519 | 2.62 437 | 335 657 | 3.19 662 | 327 642

InternLM-XCP2.5 [33] Arxiv 2024 240 388 | 281 433 | 289 508 | 3.62 656 | 441 884 | 323 605

Training-Free

MovieChat [7] CVPR 2024 145 186 | 142 204 | 176 265 | 228 423 | 339 672 | 205 358
FreeVA [8] ‘ Arxiv 2024 H 239 356 ‘ 233 375 ‘ 262 437 ‘ 3.16 588 ‘ 424 840 ‘ 287 537
Online
Video-online [11] CVPR 2024 || 261 414 | 287 488 | 3.01 529 | 331 627 | 3.58 69.2 | 3.39 64.1
Flash-VStream [10] ‘ Arxiv 2024 H 238 37.1 ‘ 264 445 ‘ 278 486 ‘ 313 581 ‘ 334 664 ‘ 3.17 592
STREAMCHAT
Slow -- 301 517 | 293 539 | 321 578 | 3.8 685 | 438 881 | 3.57 69.3
Base -- 293 505 | 2.87 529 | 3.15 56.1 | 382 67.6 | 437 879 | 3.56 68.8
Fast -- 278 481 | 273 495 | 3.02 535 | 3.69 652 | 412 867 | 346 676

Table 6: Performance comparison of various models in offline video understanding benchmark.

’ [ ActNet [ NExT-QA | MSVD [ MSRVIT [  Average |

Method Publication || Sco. Acc. | Sco. Acc. | Sco. Acc. | Sco. Acc. | Sco. Acc. |
Video-LLaVA [4] | EMNLP 2024 [[ 1.96 35.8 2.02 349 294 5715 224 428 229 427
LLaMA-VID [2] ECCV 2024 || 2.09 36.6 2.07 36.0 2.83 56.9 223 42.6 230 431
MovieChat [7] CVPR 2024 || 227 37.8 2.05 35.6 297 579 215 430 236 435
Video-online [11] | CVPR 2024 || 2.01 36.5 2.03 35.8 2.87 54.2 2.06 38.2 224 411
LongVA [20] Arxiv 2024 || 2.48 47.1 274 454 2.98 57.8 222 424 260  48.1
LLaVA-Hound [29] | Arxiv = 2024 || 2.69 487 256 437 307 568 242 427 268 479
FreeVA [8] Arxiv 2024 || 248 46.7 2.32 41.7 3.02 58.1 2.16 383 249 462
Flash-VStream [10] | Arxiv 2024 || 2.02 373 2.06 36.1 291 56.1 2.08 39.8 226 423
STREAMCHAT -- 2.78 50.1 2.84 50.5 3.08 58.7 2.38 434 2.77 50.6

In the MSVD and MSRVTT benchmarks, our short-term memory module allows the model to
capture more specific visual details, leading to accuracies of 58.7% and 43.4%, respectively.
With the integration of long-term memory module, our model enhances the longer video perfor-
mance, surpassing the previous best streaming method Flash-VStream [10] for 12.8 % and the best
offline method LLaVA-Hound [29] for 1.4% in ActivityNet [14] benchmark. In NExT-QA [15],
our method can further improve the foundation model LongVA [20] by 5.1% in accuracy.
Although the base model Long VA [20] has achieved the best average accuracy in offline benchmarks,
our method further improves it by 2.5%, proving the effectiveness of the memory module.

4.3 CASE STUDY

In Fig. 6, we illustrate the reasoning process of STREAMCHAT with g = 2 to simplify the observation
of internal mechanisms. The scenario involves a user asking STREAMCHAT to identify a tool meeting
specific requirements and to describe its environment. The memory structure consists of a dialogue
memory, My, with two historical entries, and a layered memory, M;, with two levels. The memory
tree visualization shows that the system initially searches for key information at level 1. It computes
cosine similarity between the user’s query (J; and two memory units, Summary (1) and (2), obtaining
scores of 0.3993 and 0.4751, respectively. Based on these results, STREAMCHAT selects the path from
the second node (v;) due to its higher similarity score and continues along this path. Subsequently,
the system aggregates value {v,.}1_, from Mj into retrieved tokens that are then incorporated into the
reasoning process. Additionally, a high similarity score of 0.6983 between (; and the first historical
conversation helps provide context, enhancing the depth and relevance of the response.

4.4 ABLATION STUDY

Exploring Effects of Hierarchical Memory. We conduct ablation experiments using the Base
model to assess the impact of different memory components on performance. As shown in Table 7,
adding M to the base model improved performance on the CI task by 4.1% without affecting other



Published as a conference paper at ICLR 2025

Ask time: 83 Search in histories
ﬁ Ask time: 83s T—-----= oo ________

—— First dialogue sim: 0.6983  Second dialogue sim: 03562 { The text caption memory information ) ™ You need to synthesize )
User_Query: The size of the board " ~ article most relevant to the curtent |\ | hig information and give |
seem to be wrong and I could need g—'«wmw didIput (2 Itappears that you placed the gaWhul is the 5 1tis a green bucket | problem is: first dialogue 1+ an answer to the following |
to reconstruct it by myself [using a === the green bucket  green bucket on a work surface thing I brought that appears 10 be | Get text | 1 1€ image information you currently : ! question: (UREHIQUERD |
power cutter]. Can you tell me that 1 just brought or platform, possibly near some. with my left emptywith nothing [ memory [ 1 5¢¢ and recall in the: retrieved tokens | \__ _ _ U _ o 1

[where I can find) it? My o) machinery or equipment. hand justnow? inside it * [ 1is cqually important as the contextual | @ Thought

| \inform: carlier. /) - 2!
"
m—————--——-———-————-—_—_ < - ——------—--—————— R
/: Summary (1) :{ A series of videos 1 ) (i) é] Caption (1) :{ In this video, a man in orange | Prnmpl‘ @
ntotevet1 ;|00 capuring aperso i vaioussages | moteveto is using an eleetric tool to cut long white 1 R M

| (sim0.3093) ©f home improvementor f 11 (Gimi0,4652) Wood strips. The surrounding environment 1 pa @ Based on the image and the
] consrctonpojects withdiferent] | gy gy 11 (LY ook ke awnar yard ousdea hovse | ‘j}‘j} 5}@ context provided, it appears that
! * S s i H | transport short-term memory (VY 1> 5 S s Ieeava et srotect
- RY ’ r home improvement projec
1 Summary (2):{ A series videos I [G0[aC ) Caption (2):{ In this video, a man is walking | {sihi fvo, o1} outdoors. The emvironment.
V! showcasing outdoor work and DIY | V1L (5| towards a house, he enters the house, there ~ ” suggests an outdoor work area

M, | M, ! =

1 o] 0.4751, Projects, including construction, ! 1 i 04225 e different boxes and crates in the house, | » with grass beneath your feet.

WY | imi047S))  maintenance, and repair tasks with | V- (5im:0.4228) 4 there are various tools on the ground, | You have various tools and
S { retrieved V0. o015 and cquipment.} A \ such as hammers, wrenches, ctc.} | materials around you, including
————————————————————— . R R . what looks like a power cutter

Search in long memory tree Integration or eircular saw.

Figure 6: An inference example of StreamChat (§4.3). Given a question, our system retrieves the most related
information in a long memory tree and dialogue histories based on the highest cosine similarity.

Table 7: Analysis of hierarchical memory. This table shows the impact of various memory configurations.
(0N LM SM CI KG SS Average
Sco.  Acc. | Sco. Acc. | Sco. Acc. | Sco. Acc. | Sco. Acc. Sco.  Acc. Sco.  Acc.

254 416 | 255 455 | 293 525 | 330 60.1 | 444 899 | 3.9 72.6 | 327 603
255 419 | 255 457 | 294 525 | 3.66 642 | 444 887 | 378 724 | 332 609
258 433 | 262 466 | 3.09 557 | 331 607 | 439 881 | 3.68 698 | 328 60.7
285 495 | 278 517 | 296 535 | 332 6l.1 | 442 884 | 3.65 694 | 333 622
291 504 | 288 53.0 | 310 560 | 355 634 | 436 876 | 358 687 | 339 63.1
293 505 | 287 529 | 315 561 | 3.82 67.6 | 437 879 | 356 688 | 342 638

‘Ml M, My

AN N
NN XN\ %%
X X X% N %

tasks. Adding M; improved the LM task performance by 6.2%, while the use of M boosts SM
task performance by 3.2%. The results indicate that the model’s performance in each subtask aligns
with the inclusion of specific memory attributes. Additionally, we observe that different memory
components can complement each other. When both long-term M, and short-term memory M, are
applied simultaneously, the average accuracy increases by 0.9%.

Tradeoffs in Speed and Threshold Settings. The threshold of the Lucas-Kanade Optical Flow
algorithm significantly influences video processing speeds. As illustrated in Fig. 7 (a), increasing
the threshold initially accelerates the processing speed. However, this increase saturates when ¢
reaches 0.55, stabilizing at 32 FPS. Importantly, higher processing speeds are discouraged due to
their detrimental impact on model performance (64.0%—60.7%). Elevating thresholds leads to more
pronounced changes in frame differences and loss of original data, thereby limiting the model’s
ability to effectively utilize the full spectrum of video information.

Design of Long Memory Tree. The chunk length (L), group size (g), and clustering goal (C)
significantly impact the effectiveness of the memory tree (M;). In Fig. 7 (b-d), we evaluate how these
factors influence online video understanding tasks, using the Base model with ¢=0.35.

* As shown in Fig. 7 (b), increasing L form 15 to 30 leads to better performance (61.2%—64.0%).
However, further increasing L to 40 results in a slight decline (64.0%—63.1%), and substantially
increases latency (0.84s—1.26s), due to the computational demands of the clustering algorithm.

* Increasing g from 2 to 12, which represents the less compression of visual information and increases
input sequence length C' x L, enhances performance (62.0%—63.9%) as greater diversity in the
knowledge at each node of the long memory tree M; is achieved. However, it intensifies the load
on the retrieval, leading to an increase in RDP (0.76s—1.02s), illustrated in Fig. 7 (c).

* The clustering goal (C') primarily influences the number of tokens (v;) stored in the M;. Fig. 7 (d)
shows that increasing the dimension of v; (3—10) enhances model performance (59.4%—64.0%)
by enriching the stored knowledge, which also exacerbates VRAM limitations (20—56 GB).

65.0 352 64.5 1.40 64.5 1.40 65.0 70
640 302 640 120 64.0 - 2‘3‘»2 ®
, 630 252 L 635 100 L 035 1.00 2 620 50
£ 620 202 5 2630 \‘\. T f60 T S 40
g & 5 080 § 3 080 § £ 61.0 ]
3 61.0 152 E 62.5 2 3 62.5 ./ & 2600 30
60.0 102 620 0.60 620 0.60 500 © 20
590 —@— Acc —*— Speed 52 61.5 -8 Acc RDP | 0.40 61.5 -8 Acc RDP 040 58.0 —o— Acc Memory 10
58.0 02 61.0 0.20 61.0 0.20 57.0 0
015025035 0.5 0.6 0.7 15 20 25 30 35 40 25 10 12 15 20 23 5 8 10 12 15 20
(@a)L=25 g=10 C=5 (b)t=035 g=10 C=5 (¢)t=035 L=25 C=5 (d) t=035 L=25 9=10

Figure 7: Analysis of memory parameters. (a) The influence between speed and threshold; Impact of (b) chunk
length and (c) group size on performance and latency; (d) Effect of clustering goal on performance and VRAM.
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5 RELATED WORK

Multi-modal Language Models (MLMs). Recent developments of large language models [3, 34—
38] and multi-modal alignment techniques have significantly advanced MLMs’ capability [39—44].
The LLaVA series [45, 46] utilizes straightforward mapping layers and visual instruction tuning to
broaden image understanding tasks to video data. Challenges in video processing primarily involve
efficiently compressing video within limited contextual windows. Innovations like ChatUniVi’s [5]
use of a K-NN clustering algorithm dynamically compress visual tokens, while LLaMA-VID [2]
reduces single images to two tokens via cross-attention, and MovieChat [7] leverages long and
short-term memory frameworks for extensive data handling. Despite these advances, the transition
to effective real-time streaming video understanding in practical applications remains insufficiently
addressed. Our research introduces a robust solution designed to meet the real-time demands of
online video understanding, aiming to fill this critical gap.

Streaming Video Understanding. Streaming video understanding demands real-time responses from
models to user queries, even as video durations potentially extend indefinitely. This is particularly
challenging for traditional benchmarks like action recognition [47], multi-round video dialogue [48],
and first-person question answering [13] which rely on uniform frame sampling. In response to these
limitations, there is a growing shift towards online models that process only current and past video
frames to formulate responses [10, 11]. Despite these advancements, these models often struggle
with slow processing speeds and inadequate generalization capabilities, underlining a critical need
for further exploration and enhancement in this field.

Retrieval-Augmented Generation (RAG). RAG combines information retrieval and text generation
to produce more precise and informative responses by incorporating external knowledge into language
models [49-59]. This technique has become increasingly popular for addressing knowledge retention
and real-time information access challenges. MemoryBank [60] enhances interaction by storing
real-time conversations and leveraging similarity search to retrieve contextually relevant information,
enriching the depth and coherence of dialogue. This approach significantly improves a model’s
ability to maintain continuity in conversations, particularly in long or multi-turn interactions where
maintaining context is crucial. Inspired by RAG’s efficiency, we introduce a multi-modal memory
system that integrates and updates textual and visual data in real time. Using a RAG-inspired retrieval
mechanism, this system efficiently accesses the most relevant information from our memory bank,
enabling the multi-modal language model to deliver precise, query-specific responses for enhanced
video language understanding.

6 CONCLUSION

In this work, we introduce STREAMBENCH, a comprehensive benchmark specifically crafted to
assess streaming video understanding, covering a broader range of video lengths and types with six
question formats to simulate real-world human-robot interactions. This broader scope enhances our
ability to evaluate model performance in complex and dynamic scenarios. Alongside, we present
STREAMCHAT, a training-free method designed for efficient streaming video understanding, which
treats video frames as compressible and storable units and manages them through a hierarchical
memory structure. With advanced system scheduling, STREAMCHAT achieves real-time processing
speeds and reduced interaction latency, demonstrating robust performance across both online and
offline settings in our extensive experiments.

Limitations and Future Works. Our current retrieval algorithm relies on basic matching techniques,
occasionally leading to incorrect responses. Enhancing this with more fine-grained retrieval mecha-
nisms is an essential next step. Additionally, the VRAM constraints of our tree-structured storage
could limit scalability as video duration and complexity further grow. Investigating more efficient or
adaptive compression techniques will address these limitations. Moreover, to achieve lower latency,
we plan to explore closer hardware integration and the potential adoption of fast-serving, multi-modal
distributed systems to accommodate larger model parameters and increased user demands.
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SUMMARY OF THE APPENDIX

This appendix contains additional details for the ICLR 2025 submission, titled ‘Streaming Video
Understanding and Multi-round Interaction with Memory-enhanced Knowledge’, which is organized
as follows:

* §A presents the dataset collection pipeline.

¢ §B visualizes more cases of our benchmark.

* §C offers the details about retrieval algorithm.

¢ §D introduces the details and calculation method of metrics.
* §E shows failure cases and analysis.

» §F discusses model selection and deployment strategies.

* §G outlines our plans for benchmark expansion.

A DATA PIPELINE

Step 1: Classification video time line

\ frame 1

Please help categorize the video into o Video 1: Cookin informative ? N—
one of the following categories: — > Video 2: Gurdegin low-noise ? id 3
{A.Cooking, B.Construction, C.Room- — i 9 H multi-object ? save video database
Tour, D.Gardening, E.Others). VideoMLLM uman

Step 3: Annotation and Check i
P orartol . extract video g

database / Check ‘evnse
extract video S _

database Annotator Annotations Final

Figure 8: The date preparation pipeline utilized in STREAMBENCH.

Fig. 8 presents our video collection pipeline. It consists of 3 parts: (1) Classification; (2) Human
judge; and (3) Annotation check. First, a MLLM [4] is utilized to complete the video classification
based on our requirements. The following prompt is used during the first data filtering step:

“ Based on the observed video information, categorize the video
into one of the predefined categories listed in {All Classes}.
Respond exclusively in the format of a Python dictionary string

with the keys ‘'pred’ and ‘score’. The ‘pred’ key should contain
the uppercase STRING of the chosen category. Refrain from
providing any additional text or explanatory output. Your
response should strictly follow this example: { ‘pred’: ‘AT

{All_Class} isthe options formation. When dealing with different datasets, we need to change
the options. For example, when dealing with Youtube-8M [19], itis {A: Drama, B: Action,
C: Cartoon, D: Romance, E: Sci-fi, F: Others} and {A: Cooking, B:
Construction, C: Room-Tour, D: Gardening, E: Others} for EgoSchema [13]
dataset. We save the output to a JSON file and then find categories from the file as needed. It
is worth noting that we also used the original category information in the YouTube data. The
above classification process is used primarily for secondary classification of MovieClips data. For
EgoSchema, we need to classify all original videos as they don’t contain category annotations.

B MORE VISUALIZATIONS

In Fig. 9-12, we visualize several STREAMCHAT cases applied to different types of videos. Specifically,
Fig. 9 illustrates an egocentric video annotation, where the system engages in interactive questioning
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based on the visual information captured from a first-person perspective. In this figure, various types
of annotation questions are showcased, including object identification, memory recall, and knowledge-
based interactions. Each example contains six distinct questions, with the Simple Start (SS) question
placed first, while the sequence of the remaining five questions varies randomly throughout the video.
The questions explore aspects such as short-term memory, long-term memory, object search, and
conversational interaction, allowing for a broad range of analysis. To further enhance clarity, specific
frames are highlighted along with the locations of key objects referenced in the questions, enabling a
better understanding of how the system interacts with the visual context at different moments.

video time line
3 20s 35s 42s 50s

Q: Is there a small knife with a blue handle on the table in front of me?

Q: Based on what you’ve seen, what do you think is cooking in my pot? Shl(\"fg-r:leorm
A: Yes, there is a small knife with a blue handle on the table.

A: I see that you are cooking something similar to sausages in the pot. time: 54s

102s 104s 116s 125s

Q: Where did I place the cup that I just filled with coffee grounds? Long-term Q: What are the ingredients for sausage? Knowledge

A: If I’'m not mistaken, you placed the cup on the countertop, Memory A: The ingredients for sausage typically include: Meat; Fat; Based

next to a clear plastic iner and a stainless steel pot lid. time: 88s Seasonings; Binders; Casings; and Additional Ingredients. _time: 1275
134s 138s 142s 148s

Q: Based on the context, what do you think is Converastional|
the main ingredient I'm cooking this time? Interaction|

A: I believe the main ingredient you are cooking
this time is sausage, as we've discussed that you
were preparing something similar to it. time: 179s

Q: Where can I find my glass pot lid? Object Search| End —
A: You can check in the sink next to you.  time: 153s Egocentric Video

Figure 9: Visualization of egocentric video analysis.

video time line
2s

Q: What is the man wearing a black bow tie Simple
and not wearing glasses holding in his hand? Factual
A: The man holds a glass bottle. time: 9s

Q: Where is the glass bottle that held by the man Object Search
wearing a black bow tie and not wearing glasses?
A: Itis on the table next to the man. time: 90s

112s 119s 123s

Q: Based on what you see, where is the desk telephone whose Long-term] Q: What vitamins are found in red wine? ~Knowledge

handset was picked up by the person wearing a yellow vest? Memory| A: Red wine contains small amounts Based

A: The telephone is on the cabinet next to the sofa. time: 110s of vitamins B6, B12, and folate. time: 124s)
138s 141s 150s 152s 198s 214s 227s

i i iqui i Short-term) C erastional End
Q: Where is the glass with red liquid that the person wearing a yellow vest held? Q: Are there any tools can be used for onverastional
A: The glass is on the table with lass botdl Memory communication in the video? Interaction
: The glass is on the table with many glass bottles. time: 153s A: There is a telephone on the cabinet. time: 232s

Figure 10: Visualization of web video analysis.
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video time line

[Q: ‘What color are these tents? Simple Factual Q
A: These tents are white. time: 24s A: It's next to a hammer, on top of an iron box.

103s 108s 113s 118s

Q: Can you tell me what this person with ear muffs and black clothing is Short-term (Q: What can a hammer do in a smelting plant? Knowledge

doing with the hammer? Memory A: In a smelting plant, a hammer is essential for tasks Based|

A: The person in the video is striking one end of the iron rod with a hammer. time: 120s such as forging, shaping, and flattening metal. time: 200s
227s 255s 292s 324s 354s 378s

Converastional
Interaction

Q: I can't quite remember, what color was the clothing of Long-term
the man with black glasses and brown hair who was Memory
wearing gloves and striking an iron rod with a hammer?

A: His clothing was black. time: 300s

Q: What is the person in the video wearing a
blue shirt and a black hat doing with the hammer?
A: He is using the hammer to alter the shape of one
end of the iron rod. time: 380s

Figure 11: Visualization of working video analysis.

video time line

4s

Q: Does the person standing near the door Short—lerm]

Q: What color is the hat worn by Simple]
the man wearing a red shirt? Factual wear a round hat or a baseball cap? Memory
A: His hat is black. time: 8s A: Yes, this person wears a round hat. time: 44s

Q: Where is a pair of black gloves? Object Search
A: There is a pair of black gloves being worn
by the man standing close to the wall. time: 90s

Q: Which ancient civilizations were among the first to use horses for transportation? Knowledge
Based

A: Several ancient civilizations were early adopters of horses for transportation,
including the Indo-European peoples, the Sumerians, the Egyptians, and the Hittites.  time: 51s

107s 114s 119s 134s 144s 154s

(Q: Based on what you see, are the legs of ~ Long-term [Q: Does this video show any hats? Converastional
the table all on the ground in this video? Memory - Interaction
A: There appears to be at most one . N
A: No, I can’t see any table legs. time: 120s black hat in the video. time: 155s Movie Video

Figure 12: Visualization of movie video analysis.

C RETRIEVAL ALGORITHM

Inspired by the retrieval argumentation system [49], our approach enhances the model’s capability
to address complex queries by retrieving the most relevant information from long-term memory for
contextual support. As outlined in Algorithm 1, we compute the similarity, Sim, between the user’s
request, (), and entries 7}, in the memory. This process identifies the optimal path for accessing the
most pertinent stored knowledge, Tpes; and Chpes;. Leveraging our tree-like storage structure, we
efficiently focus on the highest-similarity nodes at each layer, minimizing the computational load
by avoiding exhaustive sub-node calculations. The selected knowledge, Tpest and Chess, is then
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integrated with @) in a mixed prompt format to serve as the final input for the multi-modal language
model, facilitating accurate response generation.

Algorithm 1 Knowledge Retrieval from Long-Term Memory

1: Input: User request @
2: Qutput: Best matching knowledge 7" and C'
3: Initialize similarity Sim,,q, < —00
4: Initialize best path knowledge Thest, Chest < 0,0
5: for each node n in the tree structure do
6: Compute similarity Sim(Q, T;,) where T, is the caption at node n
7: if Sim(Q,T,) > Simq. then
8: SiMmae < Sim(Q,T,)
9: Thests Crest < Tn, Ch > Update best match knowledge
10: end if
11: if node n has children then
12: Continue to next level
13: end if
14: end for

15: Reconstruct input for MLLM using Tpest, Chest, and @
16: return Tpeqt, Chest

D DETAILS OF METRICS

We design the following metrics to measure the model’s ability to stream video understanding:

(1) Score and Accuracy: To assess the semantic correctness of a single-turn dialogue, using language
models is a mainstream approach [12, 14, 16-18]. We also use this as a key metric in our benchmark.
In our test benchmark, we use the open-source language model LLaMA-3 8B [3] Instruct version as
our scoring model f. Here is the prompt that we used during scoring:

s )

Prompt =[ {"role": "system", "content": "You are an intelligent chatbot designed
for evaluating the correctness of generative outputs for question-answer pairs.

Your task is to compare the predicted answer with the correct answer and determine if they match
meaningfully. Here’s how you can accomplish the task:

INSTRUCTIONS:

- Focus on the meaningful match between the predicted answer and the correct answer.

- Consider synonyms or paraphrases as valid matches.

- Evaluate the correctness of the prediction compared to the answer. "}

{"role": TM"system", "content": "Please evaluate the following video-based question-
answer pair: Question: question; Correct Answer: answer; Predicted Answer: prediction

Provide your evaluation only as a yes/no and score where the score is an integer value between 0 and
5, with 5 indicating the highest meaningful match.

Please generate the response in the form of a Python dictionary string with keys *llama pred’ and
’score’, where the value of ’llama pred’ is a string of ’yes’ or 'no’ and the value of ’score’ is in
INTEGER, not STRING. DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION.
Only provide the Python dictionary string. For example, your response should look like this: {’llama
pred’: YOUR JUDGE, ’score’: YOUR SCORE.}" } ]

Table 8: Prompt given to the LLaMA-3 model for evaluation.

We organize the question @), reference answer R, and model’s response M into the Tab. 8 formation
and send to scoring model, which then provides a score in the range of 0-5 and evaluates whether the
model’s response is semantically correct:

N

1
Si = R, M), Acc = — I(s; >T 6
£(@Q ), Ace N;(_) ©)
A higher score S; and Acc indicates that the answer is closer to the reference answer.

(2) Coherence: Given that a single video may involve multiple rounds of dialogue, we need to
evaluate the model’s ability to provide a coherent experience across different rounds. We introduce
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the coherence metric, which calculates the absolute value of the difference between the semantic
scores .S; of different dialogues within a single scenario. The average of all these differences is used
as the coherence metric. The calculation formula is as follows:

1 N-1
C:ﬁ;|si—si+1|7 (7)

where C' is the coherence score, N is the total number of dialogue turns in the scenario, S; represents
the semantic score of the i-th dialogue turn and |.| is the absolute difference between the semantic
scores of consecutive dialogue turns. It is evident that a smaller C' indicates that the model provides a
better coherence experience for the user.

(3) Request Processing Delay: For online scenarios, system latency consists of two parts: 1. Request
processing delay; 2. Generation delay. The generation delay is mainly influenced by factors such as
context length, language model parameters, and deployment methods, and can be adjusted through
various methods. In this benchmark, we primarily assess (1) request processing delay, which is
calculated as the time from when the user completes the request input to when the model starts
generating the response. The calculation formula is as follows:

RPD = Tyan — Tinput ()

E FAILURE CASE AND ANALYZE

We present some failure cases that occurred during testing and explain why they occurred. Most
of these cases come from object search, long-term memory, short-term memory and conversational
interaction tasks. The problems that occurred are mainly grouped into four types:

* Temporal Fine-grained: In the object search task, our method still struggles to identify key
information when the queried objects or events appear too briefly or sporadically. For instance, as
demonstrated in case (1), the user’s question pertains to a candle. However, due to the infrequent
appearance of the candle and its small size, the model fails to provide an accurate response.

* Spatial Fine-grained: Whether in object search or short-term memory task, our method faces
limitations when the user’s target is too small or blends into the background, even if the object
appears multiple times in the video. For example, in short-term memory task case (2) and object
search task case (3), the target objects (porcelain bowl and red cup) are too small relative to the
foreground, making it difficult for the model to accurately detect and locate them. We will continue
to improve our method to enhance the perception of small objects.

* Target Movement: During the reasoning process, we observed that in some cases, even when the
model correctly identified the target, its interpretation of the target’s actions and relationships with
surrounding objects was still inaccurate. For instance, in the long-term memory task case (4) the
model failed to recognize the action and position association between the “person” and the “box,”
leading to an incorrect response.

* Context Induction: In the conversational interaction task, the model’s performance is influenced
by the accuracy of its responses to previous related questions. For instance, in case 5, the model
retrieved information from the dialogue history, but when that historical information was incorrect,
it became challenging for the model to provide the correct answer.

* Information Loss: According to the experimental results in Tab. 5, although our method shows
balanced performance in various tasks of StreamChat, our hierarchical memory storage still has the
potential risk of losing information. Since our existing method is too dependent on the accuracy of
the retrieval algorithm, we will continue to update our method to minimize information loss.

F MODEL SELECTION AND DEPLOYMENT

Our research indicates that a suitable model should possess the following key attributes:

* Long-Form Video Understanding: Effective processing of long videos is crucial. While we
utilize K-Means for feature compression, the information retrieved by our memory mechanism
remains relatively long, requiring a model capable of handling extended sequences.

* Robustness to Prompt Variations: For accurate and coherent multi-turn conversations, the model
must be robust to changes in prompt wording. This robustness is essential to prevent inconsistencies
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..... R ; 7 ) - v
@ Where are the The image information does not X [The white candles are on the table.V) Temporal Fine-grained

white candles? MLLM L:ontain any visible white candles. where people are sitting around. I

?) &3 Can you tell me where you =~ [No, I did not see any porcelain‘~xr‘ Yes, there are some porcelain bowls onV) Spatial Finegrained

saw any porcelain bowls? ;"\, | bowls in the provided informatiof the countertop, to the right of the stovej

E

..... Where (e the painting The painting tools and the paint container are likely in a ‘)S On a bench not far from you,
A3) tm_)ls I J“St_ used and the LL designated storage area or workspace, such as a garage or a there seem to be the tools you
paint container ? dedicated painting station, where they would be kept after use. are looking for.

& Based on what you see, what is The hand of the person wearing black and white slriped‘\X, The box contains.Y’)
@) inside the bo.x that the hand of.the MLLM clo.thes toulched the lid of a box, but without more context| | yellow, green, Target Movement
person wearing black and white or information about the contents or purpose of the box, and red cherry-
striped clothes touched the lid of ? it is not possible to accurately determine what is inside. sized objects.

5) watzrl?‘l;g with| MLLM and the focus is on a large screen displaying text or a document. If you are looking for a | | wearing a red short-sleeved shirt,
airedidy’ specific object within this environment, it would not be present in the image shown. | | adjacent to a stack of serval books.

= Are there any cups @
in this video ? MLLM

- S o
< gy Where i d @ Based on the image provided, there is no visible red water cup with a red lid. The ‘~x‘ There is a red water cup with a red! \/,‘
GeBeM image shows a classroom setting with individuals engaged in an educational ncﬁvity," lid on the table next to the girl T

X V)
(No, there are no cups in this video)J @'here is a red water cup with a red lid in the video) Context Induction

Figure 13: Visualization of failure cases.

or hallucinations in the model’s output when prompts are adjusted to incorporate information from
the memory mechanism.

By integrating LongVA with our proposed system, we successfully extend its capabilities to en-
compass streaming video processing and multi-turn conversations while preserving these critical
characteristics. As we introduced in §4, we utilize 2 GPUS to complete the deployment of our method.
The main reason is that during system scheduling, we need to utilize tensor parallelism to distribute
the computational load for efficient execution. Specifically, the (i) selective frame stacking thread
and (iii) context summarization thread are running on GUP1 while (ii) memory formation thread is
running on GPU2.Therefore, the compressed video tensors need to be transmitted between different
GPUs to ensure the stable operation of the system.

G EXPANSION PLAN OF STREAMBENCH

* Video scale: We are trying to expand the number of videos contained in the StreamBench to
reach a higher standard. We are working on expanding the number of videos to thousands while
maintaining the diversity of video length and types.

* Annotation scale: We are continuing to promote the development of high-quality annotations.
Based on your suggestions, we will use manual annotation methods to expand the annotation of
existing benchmarks to the order of ten thousand levels and also use manual inspection to filter
out toxic labels and erroneous information.

* Diverse tasks: Given that the current benchmark only has a single task type, we are continuing to
expand the types of tasks included in the benchmark, including but not limited to multiple-choice
questions, video captioning, and video grounding and etc.
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