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ABSTRACT

Deep neural networks with feature learning have shown surprising generalization
performance in high dimensional settings, but it has not been fully understood how
and when they enjoy the benefit of feature learning. In this paper, we theoretically
analyze the statistical properties of the benefit from feature learning in a two-layer
linear neural network with multiple outputs in a high-dimensional setting. For that
purpose, we propose a new criterion that allows feature lerning of a two-layer lin-
ear neural network in a high-dimensional setting. Interestingly, we can show that
models with smaller values of the criterion generalize even in situations where
normal ridge regression fails to generalize. This is because the proposed crite-
rion contains a proper regularization for the feature mapping and acts as an upper
bound on the predictive risk. As an important characterization of the criterion, the
two-layer linear neural network that minimizes this criterion can achieve the opti-
mal Bayes risk that is determined by the distribution of the true signals across the
multiple outputs. To the best of our knowledge, this is the first study to specifically
identify the conditions under which a model obtained by proper feature learning
can outperform normal ridge regression in a high-dimensional multiple-output lin-
ear regression problem.

1 INTRODUCTION

Thanks to the benefit of feature learning, neural networks have demonstrated superior generaliza-
tion performance across numerous high-dimensional problems, including image classification and
natural language processing. This empirical observation is surprising as it conflicts with conven-
tional statistical theory, which claims a model shouldn’t be too complex to predict unseen randomly
labeled data well. Therefore it has drawn great attention from the community of learning theory
(Belkin et al., 2018). To understand the generalization of high-dimensional statistical models, many
researchers have studied the generalization mechanism of simpler models such as linear models,
which are amenable to theoretical analysis in over-parametrized settings. Thanks to intensive re-
search, we’ve gained an understanding of benign overfitting phenomenon in many simple models.
In this phenomenon, models generalize well to unseen test data even when they interpolate train-
ing data with significant label noise, and we can see this in linear regression (Bartlett et al., 2020;
Hastie et al., 2022; Muthukumar et al., 2020; Negrea et al., 2020; Xu and Hsu, 2019), ridge regres-
sion (Tsigler and Bartlett, 2020; Dobriban and Wager, 2018; Mei and Montanari, 2022), logistic
regression (Montanari et al., 2019; Chatterji and Long, 2021), and kernel-based estimators (Liang
and Rakhlin, 2020; Belkin et al., 2019; Li et al., 2022). However, in practical use, neural networks
frequently surpass these simpler models in high-dimensional problem settings. Hence, understand-
ing the benefits of feature learning and its dominance over simple models without feature learning
remains crucial in order to elucidate the generalization of deep learning. For this reason, many re-
searchers have studied feature learning of two-layer neural networks, which is the simplest case of
neural networks. However, much of this research is confined to the setting of classification prob-
lems (Frei et al., 2022; Cao et al., 2022), with few studies dedicated to regression problems. This
is because there is a difficulty in feature learning for over-parameterized regression problems that
increasing the number of parameters excessively for feature mapping can lead to overfitting. Accord-
ingly, it’s crucial to apply regularization for parameters including feature mapping for appropriate
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feature learning. As a regularization for such parameters, a considerable number of researchers are
focusing on implicit regularization. This form of regularization is automatically induced by opti-
mization methods and deep learning architectures. Several studies have examined the influence of
implicit regularization on the generalization of two-layer neural networks in high-dimensional re-
gression problems (Chatterji et al., 2022; Azulay et al., 2021). However, these analyses on implicit
regularization aren’t enough to fully understand the benefit of feature learning. This is because such
implicit regularization does not always leverage the entire potential of feature learning, that is, it
isn’t necessarily an optimal regularization in terms of feature learning. In particular, the existing
work on implicit regularization as listed above missed important properties of feature learning such
as the Bayes risk optimality that will be shown in our study. Therefore, the goal of this work is to
answer the following question:

Can we design an optimal regularization of feature mapping to fully exploit the benefit of feature
learning and demonstrate its improvement over simpler models like ridge regression?

1.1 CONTRIBUTIONS

For the goal above, we consider a two-layer linear neural network which is the simplest setting of
feature learning in a multi-output linear regression problem setting. We use the ridge estimator as
the second-layer parameter and design a proper regularization on the first-layer parameter which
enables feature learning. Our contribution can be summarized as follows:

• We propose a criterion that gives an upper bound of the predictive risk and show that the
predictive risk for an estimator with smaller values of the criterion converges to zero. This
criterion has a proper regularization term on the first-layer parameter.

• An important characterization of the proposed criterion is that the minimizer of the criterion
achieves near-optimal Bayes risk under some conditions, which represents the adequacy of the
criterion. This is a merit of considering a multi-output setting.

• We characterize when the normal ridge estimator does not generalize and show the two-layer
neural network selected by the proposed criterion generalizes even in such situations using
examples. Indeed, the predictive risk of such an estimator can converge to zero even when that
of the naive ridge regression does not. This result demonstrates the benefit of feature learning
and its dominance over simpler models in high-dimensional regression problems.

1.2 RELATED WORK

Benign overfitting of linear models. One line of research sought a theoretical understanding of
the benign overfitting phenomenon in linear models. Hastie et al. (2022) gave an asymptotic eval-
uation of the bias and variance of linear models and random feature regression. Additionally, they
demonstrated that the predictive risks associated with certain models exhibit a double descent curve
as the ratio of parameter size to sample size becomes large. Bartlett et al. (2020) derived a tight up-
per bound for the predictive risk of the minimum-norm interpolator in an over-parametrized setting.
They further elucidated the role of the input covariance matrix’s spectrum in enabling the model to
generalize well. Furthermore, Tsigler and Bartlett (2020) extended this result to ridge regression.
Belkin et al. (2019) showed that the Nadaraya-Watson estimator with a singular kernel that perfectly
fits training data enjoys the benign overfitting phenomenon, because thanks to singular kernels, this
model fits the training data with spike-like shape. Xu and Hsu (2019) gave an evaluation of the
predictive risk depending on the number of features in principal component regression and showed
that the number of features shouldn’t be reduced too much in high dimensional settings. Li et al.
(2022) showed that in the framework of (Bartlett et al., 2020), noises added to features play a role
of regularization and demonstrated that the double descent phenomenon occurs in this model. How-
ever, these methods are not optimal and can sometimes fail to generalize in our settings as this study
demonstrates.

Benign overfitting of two-layer neural network. Many recent works have characterized the gen-
eralization performance of two-layer neural networks. Chatterji et al. (2022) studied the two-layer
linear neural network setting we consider here and analyzed the generalization performance of a
two-layer linear neural network trained by gradient flow. Frei et al. (2022) studied benign overfitting
of a two-layer neural network with nonlinear activation function in classification problems. They
showed that if the ground truth is linear, a two-layer neural network trained by gradient descent can
achieve min-max optimal test error even if its training error is vanishingly small. Cao et al. (2022)
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also studied benign overfitting in classification problem settings. They characterized the benign
overfitting phenomenon in terms of signal-to-noise ratio in a convolutional neural network whose
activation function is the power of ReLU. Additionally, they demonstrated that if the signal-to-noise
ratio satisfies a certain condition, a two-layer CNN trained by gradient descent achieves arbitrary
small training and test loss, and otherwise, the CNN can only achieve constant level test loss. Other
works (Ba et al., 2022; Damian et al., 2022) showed that the two-layer neural networks with one
gradient step on the first-layer parameter can outperform fixed kernel regression. Especially, Ba
et al. (2022) highlighted the importance of a large learning rate in the early phase of training and
demonstrated that if the learning rate is small, the two-layer neural network can’t defeat the best lin-
ear model. However, these analyses handled only one-step gradient learning, as they were motivated
by optimizability, and it’s unknown what kind of statistical optimality the actual optimal solution
satisfies in situations where n ≪ d. Indeed, both were considering settings where n ≥ d.

2 PROBLEM SETTINGS AND NOTATIONS

Multivariate linear regression. In this paper, we focus on the multi-output lin-
ear regression problem. Suppose that we observe n training examples Dn ={(

x1,
(
y
(1)
1 , . . . , y

(m)
1

))
, . . . ,

(
xn,
(
y
(1)
n , . . . , y

(m)
n

))}
, where xi ∈ Rd and

(
y
(1)
i , . . . , y

(m)
i

)
∈ Rm,

generated by
y
(j)
i = β⊤

∗jxi + ϵ
(j)
i , j = 1, . . . ,m,

with the unknown signals β∗j (j = 1, . . . ,m) that we want to learn, where (xi)
n
i=1 are i.i.d. sample

from some distribution Pχ with mean 0 and covariance matrix Σx, and
(
ϵ
(j)
i

)n
i=1

are noise inde-
pendent of xi. This setting is called multivariate linear regression, which has been studied for a
long time (Breiman and Friedman, 1997; Bai et al., 1992). Indeed, we encounter a multivariate
output setting in several situations. Especially, in standard deep learning applications, we typically
deal with multivariate output like multi-label classification problems. Our problem setting could be
considered as the simplest problem setting to consider such a problem.

Assumption. Throughout the paper, we put the following sub-gaussian assumption on the
input random variable. We define ∥Z∥ψ2

to be sub-gaussian norm defined by ∥Z∥ψ2
:=

inf
{
t > 0 : E

[
exp

(
Z2/t2

)]
≤ 2
}

for any random variable Z taking its value in R, and ∥Z∥ψ2
:=

sups ̸=0 ∥⟨s, Z⟩/∥s∥∥ψ2
for any random variable vector Z taking its value in Rd. Let design matrix

X := (x1, . . . , xn)
⊤ ∈ Rn×d, and then we assume the following condition on the distribution of X .

Assumption 1. For some positive constants σx = O(1) and σ = O(1), the rows of XΣ
− 1

2
x are sub-

gaussian vectors with the sub-gaussian norm at most σx and components of ϵ(i) are independent
and have sub-gaussian norms bounded by σ.

Two-layer linear neural network. In this paper, we consider estimating the target linear functions
β⊤
∗ix by a two-layer linear neural network which is given by a form of fi(x;W,β) = β⊤

i Wx where
W ∈ Rd×d and βi ∈ Rd (i = 1, . . . ,m). When the first-layer’s parameter W is given, we estimate
the second layer’s parameter βi as the ridge regression estimator:

β̂i(W ) = WX⊤ (XW⊤WX⊤ + nλIn
)−1

y(i), i = 1, . . . ,m. (2.1)

Note that the first layer’s parameter W works as a linear coordinate transform. Accordingly, we
estimate the target function by fi(x;W, β̂i(W )) = β̂i(W )⊤Wx. Then, our question becomes what
kind of W yields better performance.

Notations. We write a ≲ b if there exists an absolute constant c such that a ≤ cb, and a ≲σx b if
there exists an absolute constant cx that only depends on constant σx such that a ≤ cxb. For positive
semidefinite matrix M , we define ∥ · ∥M :=

√
x⊤Mx. For any matrix M ∈ Rn×d, we define

Mk ∈ Rn×k to be the matrix which is composed of the first k columns of M , M−k ∈ Rn×d−k to
be the matrix which is composed of the rest of d − k columns of M . Accordingly, for any matrix
M ∈ Rd×d, we define the eigenvalues of M in decreasing order by µ1(M) ≥ · · · ≥ µd(M),
Mk,k ∈ Rk×k to be the submatrix of M which is composed of the upper left k × k components
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of M , and M−k,−k ∈ Rd−k×d−k to be the submatrix of M which is composed of the lower right
d − k × d − k components of M . For matrix A,B, if B − A is positive semidefinite, we write
A ⩽ B.

3 MAIN RESULTS

3.1 SELECTING FIRST-LAYER PARAMETER W

Given the ridge estimator for the second layer’s parameter, our interest is what kind of W yields
generalization. A natural strategy is choosing W corresponding to vanishingly small predictive risk
which is unknown a priori. For this purpose, we aim to construct an estimator of the predictive risk
as a function of W . More specifically, we introduce a criterion R(W ) as an upper bound of the
predictive risk defined as

R(W ) =
1

m

m∑
i=1

min
βi∈Rd

1

n

∥∥∥y(i) −XW⊤βi

∥∥∥2 + λ∥βi∥2 +
σ′2

n
Tr

(
Σ̂wx

(
Σ̂wx + λId

)−1
)
,

where Σ̂wx := 1
nWX⊤XW⊤ and σ′2 is a hyper-parameter. Note that the last term plays a role

of regularization on feature mapping W as stated in the introduction. For Σwx := WΣxW
⊤, we

obtain an upper bound of the predictive risk by bias-variance decomposition as follows:

1

m

m∑
i=1

Ex
[(

x⊤β∗i − x⊤W⊤β̂i (W )
)2]

≲ B + V,

where,

B :=
1

m

m∑
i=1

∥∥∥(Id −WX⊤ (XW⊤WX⊤ + nλIn
)−1

XW⊤
)
W−⊤β∗i

∥∥∥2
Σwx

,

V :=
1

m

m∑
i=1

∥∥∥WX⊤ (XW⊤WX⊤ + nλIn
)−1

ϵ(i)
∥∥∥2
Σwx

.

B and V correspond to bias and variance terms respectively. R(W ) is essentially important because
it indeed yields an upper bound of the bias and variance as stated in the following theorem.
Theorem 1. There exist (large) constants c1, c2 and c3 which only depend on σx such that if t
satisfies t ∈

(
1,min

{
n/c1, n/4c

2
1

})
, and σ′2 satisfies tσ2 ≲ σ′2, then it holds that with probability

at least 1−24e−t/c1 −8e−c3n− (log 2)(1+σ2
x)σ

2 max∥β∗i∥2
Σx

nδ2 , for all W which satisfies R(W )−σ2 ≤
σ′2

max{8c21,c2}
,

B + V ≲σx
max{R(W )− σ2, δ}.

Theorem 1 asserts that if we take σ′2 moderately large, R(W ) plays a role of a criterion to select
first-layer representation W because R(W )− σ2 can be regarded as an estimator for the predictive
risk. Therefore, a small function value of R(W ) directly leads to small predictive risk, and if we
obtain W which makes R(W ) − σ2 close to zero, the two-layer neural network with such W gen-

eralizes in the sense of predictive risk. The regularization term σ′2Tr

(
Σ̂wx

(
Σ̂wx + λId

)−1
)

is called “degrees of freedom”, which we can see in Widely Applicable Information Criterion
(WAIC) (Watanabe, 2010) or Mallows’ Cp (Mallows, 1973) of ridge regression defined as L̂(λ) :=∥∥y −X(X⊤X + nλId)

−1X⊤y
∥∥2 + 2σ̂2Tr

(
Σ̂x

(
Σ̂x + λId

)−1
)

. This criterion is used to select

optimal λ in d ≪ n settings. Our proposed function can be regarded as a kind of extension in the
sense that we can select optimal basis W in d ≥ n settings. Note that, the theoretical properties of
Mallows’ Cp and WAIC are valid only in d ≪ n settings, and so a theoretical guarantee of the de-
grees of freedom as a penalty term in high-dimensional settings is a novelty of our work. Typically,
in a high dimensional setting where the eigenvalues of Σx have slow decay, the ridge regression
with positive λ is not necessarily optimal (Wu and Xu) and this kind of classic degrees of freedom
may not work because the sum of eigenvalues diverges (Bartlett et al., 2020; Tsigler and Bartlett,
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2020). Indeed, diverging eigenvalue-sum is essentially important for obtaining benign overfitting.
However, in a two-layer neural network setting, the coordinate transformation by W can change the
problem into like a kernel regime. The W chosen by R(W ) yields an optimal kernel basis in terms
of predictive risk, enabling the model to generalize even in situations where it could not generalize
without the transformation as we will see later. This can happen if the β∗j are well correlated to
each other. Such a condition will be distilled to Assumption 3, under which we can show the ridge
regression with the optimal W minimizing R(W ) gives the Bayes optimal risk.

3.2 EVALUATION OF THE MINIMUM RISK ESTIMATE R(W )− σ2

Based on Theorem 1, we may have an upper bound of the predictive risk by evaluating how small
R(W ) − σ2 can be. Here, we give an explicit form of the upper bound by using the eigenvalues of
Σx and the covariance matrix of (β∗j)

m
j=1. We let Σβ := 1

m

∑m
i=1 β∗iβ

⊤
∗i, and define σ2

1 ≥ · · · ≥ σ2
d

and v1, . . . , vd ∈ Rd as eigenvalues of Σβ and corresponding eigenvectors respectively. Let V :=
(v1, . . . , vd). Then, we can obtain an upper bound of the infimum of the objective R(W ) − σ2 as
stated in the theorem below.

Theorem 2. Suppose there exists k ≤ n such that µk+1

(
Σ

1
2

βΣxΣ
1
2

β

)
≤ σ′2

n ≤ µk

(
Σ

1
2

βΣxΣ
1
2

β

)
. For

W = diag (w1, . . . , wd)V
⊤ such that w2

i =
nλ
σ′2σ

2
i , there exists a constant c which only depends on

σx such that, with probability at least 1− 4e−cn,

R(W )− σ2 ≲σx

d∑
i=1

min

{
σ′2

n
, µi

(
Σ

1
2

βΣxΣ
1
2

β

)}
:= UNN. (3.1)

Therefore, as long as the right-hand side of (3.1) is close to 0, W in Theorem 2 can make the
predictive risk itself close to 0. This means that the two-layer neural network selected by R(W )
can generalize. Qualitatively, this result is due to “good” regularization via feature learning using
R(W ) on the second-layer parameter. Normal l2 regularization is often not enough because this
regularization can be too strong even in a direction where signals have large contribution, which
leads to large bias. In an ideal regularization, directions in which the signals have a large contribution
should be weakly regularized, thereby resulting in small bias. Conversely, directions where signals
have a small contribution ought to be strongly regularized to facilitate small variance. For this
ideal regularization, information about the distribution of signals is essential which is usually not
accessible. Thanks to degrees of freedom as a regularization on W , R(W ) enables us to make use
of the information on the distribution of signals, and this is one of the biggest merits of selecting W
by R(W ).

3.3 BAYES RISK OPTIMALITY

So far, we have derived an upper bound of the predictive risk. In this section, we show that the
derived upper bound can achieve a lower bound under some conditions using the optimal Bayes
risk. As stated in the introduction, this is the first attempt to show that an optimized two-layer neural
network can achieve Bayes risk optimality. We suppose Σβ is positive definite. To construct a lower
bound of the predictive risk of the two-layer linear neural network we consider here, we introduce the
optimal Bayes risk Ropt(X,σ) := inf

β̂:estimator
Eβ∗∼N (0,Σβ)

[
EY∼N(Xβ∗,σ2I)

[
∥β∗ − β̂∥2Σx

]]
where

X = (x1, . . . , xn) is a given training input data, Y = Xβ∗+ϵ with ϵi ∼ N(0, σ2), and the infimum
is taken over all estimators depending on (X,Y ). The Bayes risk coincides with the predictive risk
of the multi-output linear regression averaged over the multiple-output since the Bayes risk is an
average of risks over the choice of β∗. Therefore, it is natural to expect that attaining the Bayes
optimal risk directly leads to minimizing the predictive risk of the multiple-output regression. The
Bayes estimator β̂Bayes is defined as the minimizer that attains the infimum.

Proposition 1. For positive definite matrices Σx,Σβ , we suppose x ∼ N (0,Σx), β∗ ∼
N (0,Σβ), ϵi ∼ N (0, σ2) and training data (xi, yi)

n
i=1 ∈ Rd × R is generated by yi = β⊤xi + ϵi.

For X = (x1, . . . , xn), ϵ = (ϵ1, . . . , ϵd)
⊤ and y(β∗, ϵ) = (y1, . . . , yn)

⊤, the Bayes estimator β̂Bayes

can be explicitly given by

β̂Bayes(β∗, ϵ) =
(
X⊤X + σ2Σ−1

β

)−1

X⊤y(β∗, ϵ).
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This regularization term Σ−1
β enables ideal regularization discussed above. Further-

more, for WB =
√
nλ
σ̃ Σ

1/2
β , we can write this optimal Bayes estimator as β̂Bayes =

W⊤
B

(
WBX

⊤XW⊤
B + nId

)−1
WBX

⊤y. Therefore, we can represent this Bayes estimator with
a two-layer linear neural network and this WB coincides with W in Theorem 2 except for constant
factor. As we will see later, minimum norm interpolator or more generally, normal ridge regression,
does not achieve Bayes risk optimality. Asymptotically, this result coincides with the result of (Wu
and Xu) when Σx and Σβ have the same eigenvectors. To construct a lower bound of this optimal

Bayes risk, for σ̃2 = Var
[
ϵ
(j)
i

]
we make the following assumptions:

Assumption 2. We assume that the variance of label noise is not too large, i.e., it holds 2σ̃2 ≤ 1.
Assumption 3. We assume that the contribution to the output of the components correspond-
ing to small eigenvalues of Σx is not too large, that is, there exists k ≤ n, such that∑d
i=k+1 µi

(
Σ

1
2

βΣxΣ
1
2

β

)
≤ σ̃2.

This assumption ensures that Σ
1
2

βΣxΣ
1
2

β has a rapidly decreasing eigenvalues, which indicates that
alignment between Σβ and Σx has anisotropic property and then we may have better performance
by finding the informative direction in the first layer. Under these assumptions, we can construct a
lower bound of the predictive risk in the regime of (Tsigler and Bartlett, 2020) as follows:

Theorem 3. Write eigenvectors of Σ
1
2

βΣxΣ
1
2

β as uB,1, . . . , uB,d ∈ Rd and UB :=

(uB,1, . . . , uB,d) ∈ Rd×d. Suppose that components of the rows of XW⊤
B UB are independent.

Then under Assumption 2, 3, for k in Assumption 3 there exists some absolute constant c such that
for any t which satisfies c < t < min

{
n, n

2σ2
x

}
and k + 2σ2 +

√
ktσ2 < n/2, it holds that with

probability at least 1− 24e−t/c,

min
W

1

m

m∑
i=1

Ex,ϵ(i)
[(

x⊤β∗i − x⊤W⊤β̂i (W )
)2]

≥Ropt(X, σ̃)≳
d∑
i=1

min

{
σ̃2

n
, µi

(
Σ

1
2

βΣxΣ
1
2

β

)}
.

Recalling that the upper bound is UNN =
∑d
i=1 min

{
σ′2

n , µi

(
Σ

1
2

βΣxΣ
1
2

β

)}
, Theorem 3 claims that

the upper bound of the bias and variance of the optimized two-layer neural network (3.1) achieves
the lower bound of the optimal Bayes risk as long as σ′2 = Ω

(
σ̃2
)
. This result characterizes the

effectiveness of feature learning using the proposed criterion R(W ). In other words, minimizing
R(W ) can properly find the informative direction, which can be realized thanks to the multiple-
output setting. This result indicates that the degrees of freedom is the optimal regularization of
feature mapping W in terms of feature learning in the multivariate linear regression problem. Even
though R(W ) isn’t employed in real-world applications, we can establish that in practical terms,
neural networks utilize the full potential of feature learning by identifying the implicit regularization
that lowers the value of this criterion.

4 COMPARISON WITH NORMAL RIDGE REGRESSION

In this section, we discuss the generalization performance of the two-layer linear neural network
whose first-layer representation W is chosen based on R(W ), and compare this to a normal ridge
estimator without feature learning. Here, we compare the predictive risk of the selected two-layer
linear neural network with that of the normal ridge regression (i.e., W = I). For that purpose,
we derive an upper bound of the predictive risk of the normal ridge regression. This is the first
attempt to clarify when a two-layer linear neural network surpasses normal ridge regression in the
setting of high-dimensional, multivariate linear regression problems. To construct an upper bound,
first, we define eigenvalues of Σx and their corresponding eigenvectors as λ1 ≥ · · · ≥ λd and
u1, . . . , ud ∈ Rd. Accordingly, we define U := (u1, . . . , ud) ∈ Rd×d and σ̃2

i := u⊤
i Σβui. In the

same way as (Tsigler and Bartlett, 2020), for any k < n, we define ρk := 1
nλk+1

(
nλ+

∑
i>k λi

)
and Ak(XU, λ) := (XU)−k (XU)

⊤
−k + nλIn. Then, we can evaluate the predictive risk of normal

ridge regression as stated below.

Corollary 1. Suppose it is known that for some δ < 1− 4−n/c
2
x , with probability at least 1− δ, the

condition number of Ak (XU, λ) is at most L. Then there exists a constant cx, which only depends
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on σx, such that for any λ ∈ R, k ≤ n/cx , and t ∈ (1, n/cx), if Ak(XU, λ) is positive definite and
ρk = O

(
1
L

)
, then it holds that with probability at least 1− δ − 20e−t/cx ,

1

m

m∑
i=1

Ex
[(

x⊤β∗i − x⊤β̂i(Id)
)2]

≲ BNorm + VNorm,

BNorm

L3 max
{
L,

∑
i>k λi

nλ+
∑

i>k λi

} =

k∑
i=1

λiσ̃
2
i

ρ2kλ
2
k+1

λ2
i

+

d∑
i=k+1

λiσ̃
2
i , (4.1)

VNorm

L2
=

ktσ2

n
+

tσ2

n

d∑
i=k+1

λ2
i

ρ2kλ
2
k+1

, (4.2)

where BNorm corresponds to the bias term and VNorm corresponds to the variance term.

This result is an extension of the result of Tsigler and Bartlett (2020) for multi-output linear regres-
sion. k is called effective dimensionality (Bartlett et al., 2020; Tsigler and Bartlett, 2020), which
stands for the effective complexity of the ridge regression estimator in high-dimensional settings.
Notice that λ in Corollary 1 can be negative. In fact, some negative λ can show higher general-
ization performance than any λ > 0 under some conditions (Kobak et al., 2020; Wu and Xu). In
particular, when λ = 0 this ridge estimator coincides with minimum norm interpolator (Bartlett
et al., 2020; Liang and Rakhlin, 2020). In a similar way as Tsigler and Bartlett (2020), we can
construct lower bounds of the bias BNorm and the variance VNorm (See Lemma 6 and Lemma 7 in
Appendix C), and we can also show that the upper bounds and the lower bounds match under some
conditions (See Appendix 3). Furthermore, we can demonstrate that the upper bound UNN of the
selected model and that of normal ridge regression coincide when Σβ is isotropic (See Appendix G).
This result is natural because when Σβ is isotropic, the ideal regularization is equivalent to normal
l2 regularization, that is, W selected by the criterion R(W ) also becomes close to being isotropic,
which indicates that the selected two-layer neural network comes close to normal ridge estimator. In
the following part of this section, we discuss the condition that the selected two-layer linear neural
network outperforms normal ridge regression comparing UNN and BNorm + VNorm. Note that since
BNorm and VNorm achieve their lower bounds, this comparison is reasonable. For simplicity, we
assume that Σx and Σβ have the same eigenvectors.

4.1 WHEN λi DECREASE SLOWLY

In this section, we show that there appears separation between feature learning by R(W ) and the
naive ridge regression when the eigenvalues λi decrease slowly. The situation where the decay of
λi is slow appears in the benign overfitting regime (Bartlett et al., 2020; Xu and Hsu, 2019). The
following argument shows selecting W by R(W ) is effective in such a setting. Indeed, for the case

of normal ridge regression, observing Corollary 1, if λi is large in comparison with ρkλk+1, ρ
2
kλ

2
k+1

λ2
i

in the first term of the bias BNorm can be seen as a weight that controls the impact of λiσ2
i to the bias.

However, if the decay of λi is gradual, the weight ρ
2
kλ

2
k+1

λ2
i

can be close to 1, thereby enhancing the
effect of the bias. On the other hand, in the context of the two-layer linear neural network which is
chosen based on R(W ), the upper bound of Theorem 2 is written as UNN =

∑d
i=1 min

{
σ′2

n , λiσ
2
i

}
.

This bound implies that the effect of bias λiσ2
i is no larger than σ′2

n and this prevents the bias term
from deteriorating the predictive risk of the model. The example below reflects the difference in the
generalization performance of both models discussed above.
Example 1. We suppose

√
n ∈ N and eigenvalues of Σx decay slowly, that is, we consider the

situation as follows:

λi =

{
1 i ≤ n

1
i+1−n i ≥ n

, σi =
n

log n
e−i, σ2 = 1, σ′2 = 1, d ≥ 2n.

Then for any k < n in Corollary 1, it holds that

BNorm ≳ 1, UNN ≲
log n

n
.

Example 1 claims that the two-layer linear neural network selected by R(W ) can generalize even
when the decay of Σx is slow and normal ridge regression can’t generalize. This result reflects the

7
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effect of the good regularization discussed above, using W obtained by feature learning via R(W ).
This allows for weak regularization in directions where signals make significant contributions, and
strong regularization where the signals’ contributions are minor.

4.2 WHEN x AND β∗i ARE MISALIGNED

In this section, we compare the predictive performance of the selected two-layer neural network and
normal ridge regression when x and β∗i are misaligned. First, we introduce the notion of alignment
and misalignment. We say that x and β∗i are aligned when the directions of large variance for x
and that of β∗i closely match. In other words, an aligned situation is that the eigenvectors of Σx
corresponding to large eigenvalues and those of Σβ are in close directions. On the other hand, if
the direction in which x has large variance and that of β∗i are different, that is, if eigenvectors
of Σx corresponding to large eigenvalues and those of Σβ are orthogonal, we refer to x and β∗i
as being misaligned. We may define the alignment in a more rigorous way by considering the
situation where Σx and Σβ have the same eigenvectors. In this setting, for λ1 ≥ · · · ≥ λd if
σ1 ≥ · · · ≥ σd then we say x and β∗i are aligned, and on the contrary, if σ2

1 ≤ · · · ≤ σd, then we
say x and β∗i are misaligned. Here, we consider a misaligned situation, that is, σ2

1 ≤ · · · ≤ σ2
d.

For the case of normal ridge regression, for any k < n, we can write the bias term as BNorm =∑k
i=1 λiσ

2
i
ρ2kλ

2
k+1

λ2
i

+
∑d
i=k+1 λiσ

2
i . Since σ2

1 ≤ · · · ≤ σ2
d, σ2

k+1, . . . , σ
2
d can be large and this

leads to large bias. On the other hand, the two-layer neural network selected by R(W ) can decrease
both bias and variance thanks to good regularization via learning with R(W ) as the example below
demonstrates.
Example 2. We suppose x and β∗i are misaligned, that is, we consider the situation as follows:

λi = i−1, σ2
i = iei−d, σ2 = 1, σ′2 = 1.

Then for any k < n in Corollary 1, it holds that

BNorm ≳ 1, UNN ≲
log n

n
.

This result indicates that the estimator selected by R(W ) outperforms the normal ridge estimator in
misaligned situations.

4.3 WHEN TAIL EIGENVALUES OF Σx ARE LARGE

In this section, we show that the selected two-layer linear neural network outperforms normal ridge
regression when tail eigenvalues of Σx are large. In normal ridge regression, for any k = o(n), the
variance term is written as VNorm

L2tσ2 = k
n + 1

nρ2kλ
2
k+1

∑d
i=k+1 λ

2
i . We can see that if tail eigenvalues of

Σx are large, that is, if
∑
i>k λ

2
i is large, then the second term of VNorm can also be large. This indi-

cates that normal ridge regression doesn’t generalize. On the other hand, because of feature learning
via R(W ), the selected two-layer linear neural network can generalize even when the normal ridge
regression can’t generalize as the following example shows.
Example 3. Suppose that tail eigenvalues of Σx are large, that is, we consider the situation as
follows:

λi =

{
i−1 i ≤ n
1
n i > n

, σ2
i = i−2, σ2 = 1, σ′2 = 1, d = n3.

Then for any k < n in Corollary 1, it holds that
BNorm + VNorm ≳ 1, UNN ≲ n− 2

3 .

Qualitatively, this result also reflects the good regularization obtained by R(W ). W selected by
R(W ) enables strong regularization in directions where signals don’t contribute significantly, lead-
ing to a decrease in variance without a drastic increase in bias.

4.4 WHEN y(i) IS LARGE

In this section, we demonstrate that the selected two-layer linear neural network surpasses normal
ridge regression when the norm of y(i) is notably large. In normal ridge regression, the bias can

be written as BNorm =
∑k
i=1 λiσ

2
i
ρ2kλ

2
k+1

λ2
i

+
∑d
i=k+1 λiσ

2
i and the weights ρ2kλ

2
k+1

λ2
i

in the first term

contribute to reducing the impact on the bias term. However, if y(i) is large, that is, λiσ2
i is large, then

8
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the bias term doesn’t vanish even if the weight is small. This means that an isotropic regularization is
not enough to effectively decrease the effect of bias in such situations. On the contrary, the selected
model with good regularization via feature learning by R(W ) is capable of bringing both the bias
and variance close to zero. The following example demonstrates the difference between the selected
two-layer neural network and normal ridge regression.

Example 4. We suppose n
2
3 ∈ N and norm of y(i) is large, that is, we consider the situation as

follows:

λi = i−1, σ2
i =

{
n

3
2 i ≤ n

2
3

i−1 i > n
2
3

, σ2 = 1, σ′2 = 1.

Then for any k < n in Corollary 1, it holds that

BNorm + VNorm ≳ 1, UNN ≲ n− 1
3 .

5 NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to justify our theoretical results. We consider the
setting that (d, n,m) = (1, 000, 500, 1, 000), Σx = diag

(
1, 2−1, . . . , 1, 000−1

)
, x ∼ N (0,Σx),

Σβ = diag (1, 2−a, . . . , 1, 000−a) (a = 0, 0.5, 1, . . . , 10), (σ2, σ′2) = (1, 2) and ϵ
(j)
i ∼i.i.d.

N (0, σ2). Since the criterion R(W ) is non-convex, we optimized this function with gradient
Langevin dynamics, which is a noisy gradient descent method aiming to escape from sharp local
minima. For a random variable matrix ξt which satisfies (ξt)i,j ∼i.i.d. N (0, 1), learning rate η and
inverse temperature parameter β, the update of the gradient Langevin dynamics can be written as

W (t+1) = W (t) − η∇R
(
W (t)

)
+
√

2η
β ξt. In this experiment, we set (η, β) = (0.1, 100, 000) and

iterated the update 500 times and selected W corresponding to the smallest R(W ). Figure 1 shows
the comparison of the predictive risks with a base-10 logarithm between the obtained two-layer
linear neural network, normal ridge regression, and Bayes-optimal estimator. The regularization
parameters for ridge regression were chosen from 1.0, 0.5, 0.1, 0.01, 0.001, 0.0001 to minimize the
predictive risk calculated using additional data. When a is small and the eigenvalues of Σβ de-
cay slowly, the proposed method has equivalent performance to or falls below the ridge regression.
However, as a becomes larger and the eigenvalues of Σβ decay more quickly, it can be seen that the
proposed method begins to outperform ridge regression. This reflects the fact that the more isotropic
Σβ is, the more isotropic the optimal parameter of the first layer becomes, hence the benefit of find-
ing informative directions by feature learning is diminished in such cases. 2 shows the minimum
values of the proposed criterion R(W )−σ2 with a base-10 logarithm obtained by gradient Langevin
dynamics and predictive risks with a base-10 logarithm of the two-layer linear neural network with
corresponding W . We can see that the behavior of the function values of R(W )− σ2 captures that
of predictive risk. This result shows that the proposed criterion R(W ) − σ2 can play a role of an
estimator for an upper bound of the predictive risk.

Figure 1: Comparison of predictive risks. Figure 2: R(W )− σ2 and predictive risk.

6 CONCLUSION AND FUTURE WORK

In this paper, we have considered the feature learning of a multi-output linear regression problem
using a two-layer linear neural network. We have proposed a criterion with penalty term on feature
mapping W like Mallows’ Cp and have shown that an estimator selected by the criterion leads to
making its predictive risk close to zero. Then, we have shown the optimized model by the proposed
criterion can achieve nearly optimal Bayes risk. Furthermore, we have characterized when normal
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ridge regression doesn’t generalize and shown that the selected two-layer linear neural network gen-
eralizes even in such situations. We state the future directions of this research. On the optimization
aspect, we have to guarantee that we can minimize the proposed criterion well. It is not obvious
whether we can obtain the optimal solution by standard optimization techniques such as stochastic
gradient descent because the objective is non-convex. Another future direction is replacing the acti-
vation function. Although we considered identity in this paper, we usually use nonlinear activation
functions such as ReLU in real applications.
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A PROOF OF THEOREM 1

Proof. We define Xw = XW⊤, Σwx = WΣxW
⊤, Σ̂wx = W Σ̂xW

⊤ and Σwβ = W−⊤ΣβW
−1.

Accordingly, we introduce the following notations:

• Let λ̂1 ≥ · · · ≥ λ̂d be eigenvalues of Σ̂wx and û1, . . . , ûd be corresponding eigenvectors.
Then, we define Û = (û1, . . . , ûd).

• Let Σ̂ûx := Û⊤Σ̂wxÛ = diag
(
λ̂1, . . . , λ̂d

)
.

• Let Σûx := Û⊤ΣwxÛ .

• Let βwi = W−⊤β∗i and Σwβ = W−⊤ΣβW
−1.

• Let σ̂2
i := û⊤

i Σwβ ûi, and Σûβ := Û⊤ΣwβÛ .

• Let Ak(XwÛ , λ) =
(
XwÛ

)
−k

(
XwÛ

)⊤
−k

+ nλIn
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From Proposition 2, there exists a constant cx which only depends on σx such that for any t and k

which satisfies t ∈ (1, n/cx) and
√
k +

√
t ≤

√
n/cx, if cond

(
Ak(XwÛ , λ)

)
≤ L, then it holds

that with probability at least 1− 20e−t/cx ,

1

m

m∑
i=1

Ex
[(

x⊤β∗i − x⊤W⊤β̂i (W,λ)
)2]

≲σx
B + V,

B

L4
= Tr

(
(Σûx)

−1
k,k(Σûβ)−k,−k

)(
λ+

1

n
Tr ((Σûx)−k,−k)

)2

+Tr ((Σûx)−k,−k(Σûβ)−k,−k) , (A.1)

V

L2tσ2
=

k

n
+

1

n

Tr
(
(Σûx)

2
−k,−k

)
(
λ+ 1

nTr
(
(Σûx)−k,−k

))2 . (A.2)

From Lemma 2, there exist constant cb, Cb which only depend on σx such that it holds with proba-
bility at least 1− 2e−cbn for any k′ < n,(

3

2
+ Cb

√
k′

n

)−1(
Tr

((
(Σûx)k′,k′ + λI ′k

)−1

(Σûx)k′,k′ (Σûβ)k′,k′

))

≤ Tr

(((
Σ̂ûx

)
k′,k′

+ λI ′k

)−1 (
Σ̂ûx

)
k′,k′

(Σûβ)k′,k′

)

≤

(
3

2
+ Cb

√
k′

n

)(
Tr

((
(Σûx)k′,k′ + λI ′k

)−1

(Σûx)k′,k′ (Σûβ)k′,k′

))
. (A.3)

For these cx and Cb, we assume that it holds R(W )−σ2 ≤ σ′2

max{8c2x,8C2
b}

. Then, we define kw such

that µkw
(
Σ̂wx

)
≤ λ ≤ µkw+1

(
Σ̂wx

)
. Suppose kw > n

max{4c2x,4C2
b}

, then

R(W )− σ2 ≥ σ′2

n
Tr

(
Σ̂wx

(
Σ̂wx + λId

)−1
)

=
σ′2

n

n∑
i=1

µi

(
Σ̂wx

)
λ+ µi

(
Σ̂wx

)
≥ σ′2

n

kw∑
i=1

µi

(
Σ̂wx

)
λ+ µi

(
Σ̂wx

)
≥ σ′2

2n
kw

>
σ′2

max{8c2x, 8C2
b }

.

This contradicts with the assumption above, and therefore it holds kw ≤ n
max{4c2x,4C2

b}
. We set

k = kw and k′ = kw. Since kw ≤ n
4c2x

, if t satisfies
√
n/2cx +

√
t ≤

√
n/cx, then t also

satisfies
√
kw +

√
t ≤

√
n/cx. Combining with t ∈ (1, n/cx), the condition on t can be written as

t ∈
(
1,min{n/cx, n/4c2x}

)
. Furthermore, since kw ≤ n

4C2
b

, we can also evaluate as

1

2

(
Tr

((
(Σûx)kw,kw + λI ′k

)−1

(Σûx)kw,kw (Σûβ)kw,kw

))
≤ Tr

(((
Σ̂ûx

)
kw,kw

+ λI ′k

)−1 (
Σ̂ûx

)
kw,kw

(Σûβ)kw,kw

)
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≤ 2

(
Tr

((
(Σûx)kw,kw + λI ′k

)−1

(Σûx)kw,kw (Σûβ)kw,kw

))
.

From Lemma 3, there exists constant c1 such that with probability at least 1− 4e−c1n, it holds

λ+
1

n
Tr
(
(Σûx)−kw,−kw

)
≲ λ ≲ µk

(
(Σûx)kw,kw

)
.

Therefore, we can evaluate the first term of A.1 as

Tr
(
(Σûx)

−1
kw,kw

(Σûβ)kw,kw

)(
λ+

1

n
Tr ((Σûx)−kw,−kw)

)2

≲ λ2Tr
(
(Σûx)

−1
kw,kw

(Σûβ)kw,kw

)
=

kw∑
i=1

µi ((Σûx)kw,kw) σ̂
2
kw,i

λ2

µi ((Σûx)kw)
2

≲
kw∑
i=1

µi ((Σûx)kw,kw) σ̂
2
kw,i

λ2

(µi ((Σûx)kw,kw) + λ)
2

≤
kw∑
i=1

µi ((Σûx)kw,kw) σ̂
2
kw,i

λ

µi ((Σûx)kw,kw) + λ

= λTr
(
((Σûx)kw,kw + λIkw)

−1
(Σûx)kw,kw(Σûβ)kw,kw

)
.

Therefore, we can evaluate (A.1) as

B

L4
≲ λTr

(
((Σûx)kw,kw + λIkw)

−1
(Σûx)kw,kw(Σûβ)kw,kw

)
+ Tr ((Σûx)−kw,−kw(Σûβ)−kw,−kw) .

By Lemma 11, it holds that with probability at least 1− 2e−c2t,

Tr

((
Σ̂ûx

)
−kw,−kw

(Σûβ)−kw,−kw

)
≥

(
1− t

n
σ2
x

)
Tr
(
(Σûx)−kw,−kw (Σûβ)−kw,−kw

)
.

Combining (A) and these two inequalities, we have

B

L4
≲σx

Tr

(((
Σ̂ûx

)
kw,kw

+ λIkw

)−1 (
Σ̂ûx

)
kw,kw

(Σûβ)kw,kw

)

+Tr

((
Σ̂ûx

)
−kw,−kw

(Σûβ)−kw,−kw

)
.

By the way, since λ̂kw+1 ≤ λ ≤ λ̂kw by the definition of kw, we can evaluate as follows:

λ

m

m∑
i=1

β⊤
wiX

⊤
w

(
XwX

⊤
w + nλIn

)−1
Xwβwi

= λTr

((
Σ̂wx + λId

)−1

Σ̂wxΣwβ

)
=

d∑
i=1

λ

λ+ λ̂i
λ̂iσ̂

2
i

≳
kw∑
i=1

λ

λ+ λ̂i
λ̂iσ̂

2
i +

d∑
i=kw+1

λ̂iσ̂
2
i
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= λTr

(((
Σ̂ûx

)
kw,kw

+ λIkw

)−1 (
Σ̂ûx

)
kw,kw

(Σûβ)kw,kw

)

+Tr

((
Σ̂ûx

)
−kw,−kw

(Σûβ)−kw,−kw

)
.

Combining these two inequalities, we have

B

L4
≲σx

λ

m

m∑
i=1

β⊤
wiX

⊤
w

(
XwX

⊤
w + nλIn

)−1
Xwβwi. (A.4)

For the variance term (A.2), since λ > 0 and λ̂kw+1 ≤ λ, we can evaluate as

V

L2tσ2
=

kw
n

+
1

n

Tr

(
(Σûx)−kw,−kw

(
Σ̂ûx

)
−kw,−kw

)
(
λ+ 1

nTr
(
(Σûx)−kw,−kw

))2
≤ kw

n
+

λ

nλ2
Tr ((Σûx)−kw,−kw)

=
kw
n

+
1

nλ
Tr ((Σûx)−kw,−kw) .

In the same way as the bias, we can evaluate the variance as follows:

σ′2

n
Tr

(
Σ̂wx

(
Σ̂wx + λId

)−1
)

=
σ′2

n

d∑
i=1

λ̂i

λ̂i + λ

≳
kwσ

′2

n
+

σ′2

n

d∑
i=kw+1

λ̂i

λ̂i + λ

≥ kwσ
′2

n
+

σ′2

nλ

d∑
i=kw+1

λ̂i

=
kwσ

′2

n
+

σ′2

nλ
Tr

((
Σ̂ûx

)
−kw,−kw

)
.

By Lemma 11, it holds that with probability at least 1− 2e−c3t,

Tr

((
Σ̂ûx

)
−kw,−kw

)
≥
(
1− t

n
σ2
x

)
Tr
(
(Σûx)−kw,−kw

)
.

Combining these three inequalities, if tσ2 ≲ σ′2, we have

V

L2tσ2
≲σx

σ′2

n
Tr

(
Σ̂wx

(
Σ̂wx + λId

)−1
)
. (A.5)

Let Ū ∈ Rn×n be eigenvectors of XwX
⊤
w . From Lemma 1 and Lemma 13, for any t ∈ (0, n) it

holds that with probability at least 1− (log 2)(1+σ2
x)σ

2 max∥β∗i∥2
Σx

nδ2 − 2e−c4t − 2e−c5n,

R(W )

=
1

m

m∑
i=1

min
β∈Rl

1

n

∥∥∥y(i) −Xwβ
∥∥∥2 + λ∥β∥2 + σ′2

n
Tr

(
Σ̂wx

(
Σ̂wx + λId

)−1
)

=
λ

m

m∑
i=1

y(i)⊤ (XwX
⊤
w + nλIn

)−1
y(i) +

σ′2

n
Tr

(
Σ̂wx

(
Σ̂wx + λId

)−1
)

=
λ

m

m∑
i=1

β⊤
∗iX

⊤ (XwX
⊤
w + nλIn

)−1
Xβ∗i +

2λ

m

m∑
i=1

ϵ(i)
⊤ (

XwX
⊤
w + nλIn

)−1
Xβ∗i

14
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+
λ

m

m∑
i=1

ϵ(i)
⊤ (

XwX
⊤
w + nλIn

)−1
ϵ(i) +

σ′2

n
Tr

(
Σ̂wx

(
Σ̂wx + λId

)−1
)

=
λ

m

m∑
i=1

β⊤
∗iX

⊤ (XwX
⊤
w + nλIn

)−1
Xβ∗i +

2λ

m

m∑
i=1

ϵ(i)
⊤ (

XwX
⊤
w + nλIn

)−1
Xβ∗i

+
λ

nm

m∑
i=1

ϵ(i)
⊤ (

Σ̂wx + λIn

)−1

ϵ(i) +
σ′2

n
Tr

(
Σ̂wx

(
Σ̂wx + λId

)−1
)

=
λ

m

m∑
i=1

β⊤
∗iX

⊤ (XwX
⊤
w + nλIn

)−1
Xβ∗i +

2λ

m

m∑
i=1

ϵ(i)
⊤ (

XwX
⊤
w + nλIn

)−1
Xβ∗i

+
1

nm

m∑
i=1

d∑
j=1

λ

λ+ λ̂j
ϵ(i)

⊤
Ū⊤
j Ūjϵ

(i) +
σ′2

n
Tr

(
Σ̂wx

(
Σ̂wx + λId

)−1
)

≥ λ

m

m∑
i=1

β⊤
∗iX

⊤ (XwX
⊤
w + nλIn

)−1
Xβ∗i +

2λ

m

m∑
i=1

ϵ(i)
⊤ (

XwX
⊤
w + nλIn

)−1
Xβ∗i

+
1

nm

m∑
i=1

d∑
j=kw+1

λ

λ+ λ̂j
ϵ(i)

⊤
Ū⊤
j Ūjϵ

(i) +
σ′2

n
Tr

(
Σ̂wx

(
Σ̂wx + λId

)−1
)

≳
λ

m

m∑
i=1

β⊤
∗iX

⊤ (XwX
⊤
w + nλIn

)−1
Xβ∗i +

2λ

m

m∑
i=1

ϵ(i)
⊤ (

XwX
⊤
w + nλIn

)−1
Xβ∗i

+
1

nm

m∑
i=1

d∑
j=kw+1

ϵ(i)
⊤
Ū⊤
j Ūjϵ

(i) +
σ′2

n
Tr

(
Σ̂wx

(
Σ̂wx + λId

)−1
)

≳
λ

m

m∑
i=1

β⊤
∗iX

⊤ (XwX
⊤
w + nλIn

)−1
Xβ∗i +

2λ

m

m∑
i=1

ϵ(i)
⊤ (

XwX
⊤
w + nλIn

)−1
Xβ∗i

+σ2 +
σ′2

n
Tr

(
Σ̂wx

(
Σ̂wx + λId

)−1
)

≥ λ

m

m∑
i=1

β⊤
∗iX

⊤ (XwX
⊤
w + nλIn

)−1
Xβ∗i +

σ′2

n
Tr

(
Σ̂wx

(
Σ̂wx + λId

)−1
)

+σ2 − 2δ.

Therefore, if tσ2 ≲ σ′2, combining with A.4 and A.5 we have

B

L4
+

V

L2
≲σx max{R(W )− σ2, δ}.

Finally, we need to check cond
(
Akw

(
XW⊤Û , λ

))
= Θ(1). Since

1

n
µmax

(
XwÛ

⊤
−kw Û−kwX

⊤
w

)
= µmax

(
Σ̂ûx

)
=

1

n
Smax

(
XwÛ

⊤
−kw

)2
≤ λ,

we have

cond
(
Akw

(
XW⊤Û , λ

))
≤

nλ+ nµmax

(
XwÛ

⊤
−kw Û−kwX

⊤
w

)
nλ

≤ nλ+ nλ

nλ
≤ 2 (= L).

Therefore, it holds

B + V ≲σx
max{R(W )− σ2, δ}.

In the later part of this section, we show some lemmas needed to prove Theorem 1.
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Lemma 1. In the setting of Theorem 1, there exists a constant c > 0 which only depends on σx such

that with probability at least 1− (log 2)(1+σ2
x)σ

2 max∥β∗i∥2
Σx

nδ2 − 2e−cn,

λ

m

m∑
i=1

ϵ(i)
⊤ (

XwX
⊤
w + nλIn

)−1
Xβ∗i < δ.

Proof. For any i, ϵ(i)
⊤ (

XwX
⊤
w + nλIn

)−1
Xβ∗i is mean 0 and variance

Var
[
ϵ
(1)
1

] ∥∥∥(XwX
⊤
w + nλIn

)−1
Xβ∗i

∥∥∥2 random variable. We define index I (W,λ) as fol-
lows:

I (W,λ) = argmin
i

∣∣∣ϵ(i)⊤ (XwX
⊤
w + nλIn

)−1
Xβ∗i

∣∣∣ .
Since ϵ

(i)
j are sub-gaussian with the sub-gaussian norm at most σ, Var

[
ϵ
(i)
j

]
≤ (log 2)σ2. By

Chebyshev’s inequality, we obtain

Pr

(∣∣∣∣(ϵI(W,λ))⊤ (XwX
⊤
w + nλIn

)−1
Xβ∗I(W,λ)

∣∣∣∣ < δ

)

> 1−
Var

[
ϵ
(1)
1

] ∥∥∥(XwX
⊤
w + nλIn

)−1
Xβ∗I(W,λ)

∥∥∥2
δ2

> 1−
Var

[
ϵ
(1)
1

] ∥∥Xβ∗I(W,λ)
∥∥2

n2λ2δ2

> 1−
(log 2)σ2

∥∥Xβ∗I(W,λ)
∥∥2

n2λ2δ2
.

From Lemma 11, there exists a constant c such that it holds with probability at least 1− 2e−cn,

Pr

(
1

n
∥Xβ∗I(W,λ)∥2 <

(
1 + σ2

x

)
max
i

∥β∗i∥2Σx

)
> Pr

(
1

n
∥Xβ∗I(W,λ)∥2 <

(
1 +

t

n
σ2
x

)∥∥β∗I(W,λ)
∥∥2
Σx

)
≥ 1− 2e−ct.

Combining these inequalities, it holds that with probability at least 1− 2e−cn,

Pr

(∣∣∣∣(ϵI(W,λ))⊤ (XwX
⊤
w + nλIn

)−1
Xβ∗I(W,λ)

∣∣∣∣ < δ

)

> 1−
(
1 + σ2

x

) (log 2)σ2max
i

∥β∗i∥2Σx

nλ2δ2
.

Notice that the right hand side doesn’t depend on the choice of i and W . Therefore, it holds that

with probability at least 1−
(
1 + σ2

x

) (log 2)σ2max
i

∥β∗i∥2
Σx

nλ2δ2 − 2e−ct,

λ

m

m∑
i=1

ϵ(i)
⊤ (

XwX
⊤
w + nλIn

)−1
Xβ∗i < λ

(
ϵI(W,λ)

)⊤ (
XwX

⊤
w + nλIn

)−1
Xβ∗I(W,λ) < λδ.

Finally, changing δ → λδ gives the result.

Lemma 2. Let x1, . . . , xn be i.i.d. centered random vectors in Rl with covariance matrix Σ, X =
(x1, . . . , xn) ∈ Rn×l and Σ̂ = 1

nX
⊤X . If xi is sub-Gaussian with ∥xi∥ψ2

≤ σx, then for any
β1, . . . , βm ∈ Rl and λ > 0, there exist constants c, C which only depend on σx such that it holds
with probability at least 1− 2e−cn,(

3

2
+ C

√
l

n

)−1
λ

m

m∑
i=1

β⊤
∗i (Σ + λId)

−1
Σβ∗i
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≤ λ

m

m∑
i=1

β⊤
∗i

(
Σ̂ + λId

)−1

Σ̂β∗i

≤

(
3

2
+ C

√
l

n

)
λ

m

m∑
i=1

β⊤
∗i (Σ + λId)

−1
Σβ∗i

Proof. For a positive semidefinite matrix A ∈ Rl×l, we define
Ri(β,A) := ∥βi − β∥2A + λ∥β∥2,

β̂i(A) := (A+ λIl)
−1

Aβi.

By Lemma 12, there exist constants c, C which only depends on σx such that with probability at
least 1− 2e−cn for any i = 1, . . . ,m, it holds

β⊤
∗i (Σ + λId)

−1
Σβ∗i

= min
β∈Rl

Ri(β,Σ)

= Ri

(
β̂i(Σ),Σ

)
≤ Ri

(
β̂i(Σ̂),Σ

)
= λβ⊤

i

(
Σ̂ + λIl

)−1

Σ̂βi + λ2β⊤
i

(
Σ̂ + λIl

)−1

Σ
(
Σ̂ + λIl

)−1

βi

−λ2β⊤
i

(
Σ̂ + λIl

)−2

Σ̂βi

= Ri

(
β̂i(Σ̂), Σ̂

)
+ λ2β⊤

i

(
Σ̂ + λIl

)−1 (
Σ− Σ̂

)(
Σ̂ + λIl

)−1

βi

= min
β∈Rl

Ri(β, Σ̂) + λ2β⊤
i

(
Σ̂ + λIl

)−1 (
Σ− Σ̂

)(
Σ̂ + λIl

)−1

βi

≤ min
β∈Rl

Ri(β, Σ̂) +

(
1

2
+ C

√
l

n

)
λ2β⊤

i

(
Σ̂ + λIl

)−1

Σ̂
(
Σ̂ + λIl

)−1

βi.

Applying the Sherman-Morrison-Woodbury formula yields(
Σ̂ + λIl

)−1

Σ̂
1
2 = λ−1Σ̂

1
2 − λ−2Σ̂

1
2

(
λ−1Σ̂ + Il

)−1

Σ̂

= λ−1Σ̂
1
2 − λ−1Σ̂

1
2

(
λ−1Σ̂ + Il

)−1 (
λ−1Σ̂ + Il − Il

)
= Σ̂

1
2

(
Σ̂ + λIl

)−1

.

Therefore, it holds

min
β∈Rl

Ri(β,Σ) ≤ min
β∈Rl

Ri(β, Σ̂) +

(
1

2
+ C

√
l

n

)
λ2β⊤

i

(
Σ̂ + λIl

)−1

Σ̂
(
Σ̂ + λIl

)−1

βi

= min
β∈Rl

Ri(β, Σ̂) +

(
1

2
+ C

√
l

n

)
λ2β⊤

i Σ̂
1
2

(
Σ̂ + λIl

)−2

Σ̂
1
2 βi

≤ min
β∈Rl

Ri(β, Σ̂) +

(
1

2
+ C

√
l

n

)
λβ⊤

i Σ̂
1
2

(
Σ̂ + λIl

)−1

Σ̂
1
2 βi

=

(
3

2
+ C

√
l

n

)
min
β∈Rl

Ri(β, Σ̂).

Taking the average over i = 1, . . . ,m gives

1

m

m∑
i=1

min
β∈Rl

∥βi − β∥2Σ + λ∥β∥2 ≤

(
3

2
+ C

√
l

n

)
1

m

m∑
i=1

min
β∈Rl

∥βi − β∥2
Σ̂
+ λ∥β∥2.
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In the same way as above discussion, we obtain

1

m

m∑
i=1

min
β∈Rl

∥βi − β∥2
Σ̂
+ λ∥β∥2 ≤

(
3

2
+ C

√
l

n

)
1

m

m∑
i=1

min
β∈Rl

∥βi − β∥2Σ + λ∥β∥2.

Combining these two inequalities gives the result.

Lemma 3. Let x1, . . . , xn be i.i.d. centered random vectors in Rd with covariance matrix Σ, X =

(x1, . . . , xn) ∈ Rn×m and Σ̂ = 1
nX

⊤X . If xi is sub-Gaussian with ∥xi∥ψ2
≤ σx, µk

(
Σ̂k,k

)
≥ λ

and µ1

(
Σ̂−k,−k

)
≤ λ, then there exists constant c which only depend on σx such that it holds with

probability at least 1− 4e−cn,

λ+
1

n
Tr (Σ−k,−k) ≲ λ ≲ µk (Σk,k) .

Proof. Since µ1

(
Σ̂−k,−k

)
≲ λ, from Lemma 11 there exists constant c1 which only depend on σx,

such that it holds with probability at least 1− 2e−c1n,

λ+
1

n
Tr (Σ−k,−k) ≤ λ+

1

n

(
1 + σ2

x

)
Tr
(
Σ̂−k,−k

)
≤ λ+

1

n
(n− k)

(
1 + σ2

x

)
λ

≲ λ.

Since µk

(
Σ̂k,k

)
≥ λ, by Lemma 12 there exists constants c2, C which only depend on σx, such

that it holds that with probability at least 1− 2e−c2n,

µk (Σk,k) ≳

(
3

2
+ C

√
k

n

)
µk (Σk,k) ≥ µk (Σk,k) ≥ λ.

Combining these two ineualities, we obtain

λ+
1

n
Tr (Σ−k,−k) ≲ λ ≲ µk (Σk,k) .

B PROOF OF THEOREM 2

Proof. From Lemma 4, for W = diag (w)V ⊤ (V is eigenvectors of Σβ) such that (w)i =
√
nλσi

σ′ ,
there exits a constant c which only depends on σx such that, with probability at least 1 − 2e−cn it
holds,

1

m

m∑
i=1

min
β∈Rl

1

n

∥∥∥y(i) −XW⊤β
∥∥∥2 + λ∥β∥2 + σ′2

n
Tr

(
Σ̂wx

(
Σ̂wx + λId

)−1
)

=
λ

m

m∑
i=1

y(i)⊤ (XwX
⊤
w + nλIn

)−1
y(i) +

σ′2

n
Tr

(
Σ̂wx

(
Σ̂wx + λId

)−1
)

=
λ

m

m∑
i=1

β⊤
∗iX

⊤ (XwX
⊤
w + nλIn

)−1
Xβ∗i +

2λ

m

m∑
i=1

ϵ(i)
⊤ (

XwX
⊤
w + nλIn

)−1
Xβ∗i

+
λ

m

m∑
i=1

ϵ(i)
⊤ (

XwX
⊤
w + nλIn

)−1
ϵ(i) +

σ′2

n
Tr
(
Xw

(
XwX

⊤
w + λIn

)−1
X⊤
w

)
≤ λ

m

m∑
i=1

β⊤
∗iX

⊤ (XwX
⊤
w + nλIn

)−1
Xβ∗i +

2λ

m

m∑
i=1

ϵ(i)
⊤ (

XwX
⊤
w + nλIn

)−1
Xβ∗i
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+
1

nm

m∑
i=1

ϵ(i)
⊤
ϵ(i) +

σ′2

n
Tr
(
Xw

(
XwX

⊤
w + λIn

)−1
X⊤
w

)
≲

λ

m

m∑
i=1

β⊤
wiX

⊤
w

(
XwX

⊤
w + nλIn

)−1
Xwβwi +

σ′2

n
Tr
(
X⊤
w

(
XwX

⊤
w + λIn

)−1
Xw

)
+ σ2

=
2σ′2

n
Tr
(
X⊤
w

(
XwX

⊤
w + nλIn

)−1
Xw

)
+ σ2. (B.1)

We write the eigenvectors of WΣxW
⊤ corresponding to µi

(
WΣxW

⊤) as uβ,i and define Uβ :=

(uβ,1, . . . , uβ,d) and Λxβ := diag
(
µ1

(
WΣxW

⊤) , . . . , µd (WΣxW
⊤)). Then, we can evaluate

(B.1) as follows:

Tr
(
X⊤
w

(
XwX

⊤
w + nλIn

)−1
Xw

)
= Tr

(
(XwUβ)

⊤
(
XwUβ (XwUβ)

⊤
+ nλIn

)−1

XwUβ

)
≲ Tr

(
(XwUβ)

⊤
k

(
XwUβ (XwUβ)

⊤
+ nλIn

)−1

(XwUβ)k

)
+Tr

(
(XwUβ)

⊤
−k

(
XwUβ (XwUβ)

⊤
+ nλIn

)−1

(XwUβ)−k

)
.

For the first term, by Lemma 5,

Tr

(
(XwUβ)

⊤
k

(
XwUβ (XwUβ)

⊤
+ nλIn

)−1

(XwUβ)k

)
≤ 2Tr

(
(XwUβ)

⊤
k

(
(XwUβ)k (XwUβ)

⊤
k + nλIn

)−1

(XwUβ)k

)
.

For the second term, we have

Tr

(
(XwUβ)

⊤
−k

(
XwUβ (XwUβ)

⊤
+ nλIn

)−1

(XwUβ)−k

)
≤ 1

nλ
Tr
(
(XwUβ)

⊤
−k (XwUβ)−k

)
.

From Lemma 11 it holds that with probability at least 1− 2e−c2n,

Tr
(
(XwUβ)−k (XwUβ)

⊤
−k

)
≤
(
1 + σ2

x

) nλ
σ′2

d∑
i=k+1

µi

(
Σ

1
2

βΣxΣ
1
2

β

)
.

Furthermore,

Tr

(
(XwUβ)

⊤
k

(
(XwUβ)k (XwUβ)

⊤
k + nλIn

)−1

(XwUβ)k

)
≤ k.

Combining these bounds yields

2σ′2

n
Tr
(
X⊤
w

(
XwX

⊤
w + nλIn

)−1
Xw

)
≲

4kσ′2

n
+ 2

(
1 + σ2

x

) d∑
i=k+1

µi

(
Σ

1
2

βΣxΣ
1
2

β

)

≲
kσ′2

n
+

d∑
i=k+1

µi

(
Σ

1
2

βΣxΣ
1
2

β

)
. (B.2)

Selecting k in (B.2) such that µk+1

(
Σ

1
2

βΣxΣ
1
2

β

)
≤ σ′2

n ≤ µk

(
Σ

1
2

βΣxΣ
1
2

β

)
gives the result.

In the later part of this section, we show lemmas required for Theorem 2.
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Lemma 4. Suppose ϵ(i) are centered vectors whose components are independent and have sub-
Gaussian norm at most σ. Then there exists a constant c which only depends on σ such that it holds
with probability at least 1− 2e−ct

1

nm

m∑
i=1

∥∥∥ϵ(i)∥∥∥2 ≤
(
1 +

t

n
σ2

)
(log 2)σ2.

Proof. Let define I as I := argmax
i

1
n

∥∥ϵ(i)∥∥2. From Lemma 11, there exists a constant c which only

depends on σ such that it holds with probability at least 1− 2e−ct

1

nm

m∑
i=1

∥∥∥ϵ(i)∥∥∥2 ≤ 1

n

∥∥∥ϵ(I)∥∥∥2 ≤
(
1 +

t

n
σ2

)
Var
[
ϵ(I)
]
≤
(
1 +

t

n
σ2

)
(log 2)σ2.

Lemma 5. For any matrix X ∈ Rn×d, it holds that
Tr
(
Xk

(
XX⊤ + nλIn

)
X⊤
k

)
≤ 2Tr

(
Xk

(
XkX

⊤
k + nλIn

)
X⊤
k

)
.

Proof. We define Ak (λ,X) := XkX
⊤
k + nλIn. First we show the identity below:

X⊤
k Ad (λ,X)

−1
+X⊤

k Ak (λ,X)
−1

X−kX
⊤
−kAd (λ,X)

−1
= X⊤

k Ak (λ,X)
−1

.

Indeed,
X⊤
k Ad (λ,X)

−1
+X⊤

k Ak (λ,X)
−1

X−kX
⊤
−kAd (λ,X)

−1

= X⊤
k

(
X−kX

⊤
−k +Ak (λ,X)

)−1
+Xk⊤Ak (λ,X)

−1
X−kX

⊤
−k
(
X−kX

⊤
−k +Ak (λ,X)

)−1

= X⊤
k Ak (λ,X)

−1 (
X−kX

⊤
−k +Ak (λ,X)

) (
X−kX

⊤
−k +Ak (λ,X)

)−1

= X⊤
k Ak (λ,X)

−1
.

Thus, multiplying the identity by Xk from the right, we obtain

Tr
(
X⊤
k Ak (λ,X)

−1
Xk

)
= Tr

(
X⊤
k Ad (λ,X)

−1
Xk

)
+Tr

(
X⊤
k Ak (λ,X)

−1
X−kX

⊤
−kAd (λ,X)

−1
Xk

)
.

Since, XkX
⊤
k Ak (λ,X)

−1 and XX⊤Ad (λ,X)
−1 are positive semidefinite, we have

Tr
(
X⊤
k Ak (λ,X)

−1
X−kX

⊤
−kAd (λ,X)

−1
Xk

)
= Tr

(
X⊤
k Ak (λ,X)

−1
XX⊤Ad (λ,X)

−1
Xk

)
−Tr

(
X⊤
k Ak (λ,X)

−1
XkX

⊤
k Ad (λ,X)

−1
Xk

)
≥ −Tr

(
X⊤
k Ak (λ,X)

−1
XkX

⊤
k Ad (λ,X)

−1
Xk

)
.

X⊤
k Ak (λ,X)

−1
Xk and X⊤

k Ad (λ,X)
−1

Xk are positive semidefinite. Therefore, it holds

−Tr
(
X⊤
k Ak (λ,X)

−1
XkX

⊤
k A0 (λ,X)

−1
Xk

)
≥ −µ1

(
X⊤
k Ad (λ,X)

−1
Xk

)
Tr
(
X⊤
k Ak (λ,X)

−1
Xk

)
.

Since A0 (λ,X)
− 1

2 X−kX
⊤
−kA0 (λ,X)

− 1
2 is positive semidefinite, we obtain

1 ≥ µ1

(
Ad (λ,X)

− 1
2 XX⊤Ad (λ,X)

− 1
2

)
= µ1

(
Ad (λ,X)

− 1
2 XkX

⊤
k Ad (λ,X)

− 1
2 +Ad (λ,X)

− 1
2 X−kX

⊤
−kAd (λ,X)

− 1
2

)
≥ µ1

(
Ad (λ,X)

− 1
2 XkX

⊤
k Ad (λ,X)

− 1
2

)
= µ1

(
X⊤
k Ad (λ,X)

−1
Xk

)
.

Combining these gives the result.
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C PROOF OF PROPOSITION 1

Proof. From Bayes’ theorem, we obtain

Eβ∗∼N (0,Σβ)

[
EY∼N(Xβ∗,σ2I)

[
∥β∗ − β̂∥2Σx

]]
=

∫
∥β∗ − β̂∥2Σx

p(β∗)p(y|β∗, X)dβ∗dy

=

∫
∥β∗ − β̂∥2Σx

p(β∗|X, y)p(y|X)dβ∗dy.

Therefore, it holds

argmin
β:estimator

Eβ∗∼N (0,Σβ)

[
EY∼N(Xβ∗,σ2I)

[
∥β∗ − β̂∥2Σx

]]
= argmin

β:estimator

∫
∥β − β∗∥2Σx

p(β∗|X, y)dβ∗

= argmin
β:estimator

∫ (
β⊤Σxβ − 2β⊤Σxβ∗ + β⊤

∗ Σxβ∗
)
p(β∗|X, y)dβ∗

= argmin
β:estimator

(
β −

∫
β∗p(β∗|X, y)dβ∗

)⊤

Σx

(
β −

∫
β∗p(β∗|X, y)dβ∗

)
=

∫
β∗p(β∗|X, y)dβ∗.

Since β∗ ∼ N (0,Σβ), ϵ ∼ N
(
0, σ2

)
by assumption, it holds

p(β∗|x, y)

∝ exp

(
− 1

2σ2
∥y −Xβ∗∥2

)
exp

(
−1

2
β⊤
∗ Σ−1

β β∗

)
= exp

(
− 1

2σ2

(
∥y∥2 − 2y⊤Xβ∗ + β⊤

∗

(
X⊤X + σ2Σ−1

β

)
β∗

))
∝ exp

(
1

2σ̃2

∥∥∥∥β∗ −
(
X⊤X + σ2Σ−1

β

)−1

X⊤y

∥∥∥∥2
X⊤X+σ2Σ−1

β

)
.

In conclusion, we obtain∫
β∗p(β∗|x, y)dβ∗ =

(
X⊤X + σ2Σ−1

β

)−1

X⊤y.

D PROOF OF THEOREM 3

Proof. For training data (xi, yi)
n
i=1 ∈ Rd × R, X = (x1, . . . , xn)

⊤ and
y(β∗, ϵ) = (y1, . . . , yn)

⊤ such that y(β∗, ϵ) = Xβ∗ + ϵ, we define β̂(W,β∗, ϵ) =

W⊤ (WX⊤XW⊤ + nλId
)−1

WX⊤y(β∗, ϵ). It holds that

1

m

m∑
i=1

Ex,ϵi
[(

x⊤β∗i − x⊤W⊤β̂i (W )
)2]

= Ex∼N (0,Σx),ϵ∼N (0,σ̃2),β∗∼N (0,Σβ)

[(
x⊤β∗ − x⊤W⊤β̂ (W,β∗, ϵ)

)2]
≥ min

β:estimator
Ex∼N (0,Σx),ϵ∼N (0,σ̃2),β∗∼N (0,Σβ)

[(
x⊤β∗ − x⊤β

)2]
= Ropt(X, σ̃). (D.1)
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From Proposition 1, for WB =
√
nλ
σ̃ Σ

1
2

β , we can write Bayes estimator as

βBayes(β∗, ϵ) =
(
X⊤X + σ̃2Σ−1

β

)−1

X⊤y(β∗, ϵ)

= W⊤
B

(
WBX

⊤XW⊤
B + nλId

)−1
WBX

⊤y(β∗, ϵ).

Therefore for Σx,B = nλ
σ̃2 Σ

1
2

βΣxΣ
1
2

β and Σ̂x,B = nλ
σ̃2 Σ

1
2

β Σ̂xΣ
1
2

β , we can write the right hand side of
(D.1) as

Ropt(X, σ̃) = Ex∼N (0,Σx),ϵ∼N (0,σ̃2),β∗∼N (0,Σβ)

[(
x⊤β∗ − x⊤βBayes(β∗, ϵ)

)2]
= BBayes + VBayes,

where,

BBayes := Tr

(((
nΣ̂x,B + nλId

)−1

nΣ̂x,B − Id

)2

Σx,B

)
,

VBayes = Eϵ
[∥∥∥WBX

⊤ (XW⊤
BWBX

⊤ + nλIn
)−1

ϵ
∥∥∥2
Σx,B

]
.

For k in Assumption 3, we define ρk such that nλ
σ2 µk+1

(
Σ

1
2

βΣxΣ
1
2

β

)
ρk =(

λ+ λ
σ2

∑d
i=k+1 µi

(
Σ

1
2

βΣxΣ
1
2

β

))
. For the variance term, from Assumption 2 and Lemma

7, there exists some absolute constant c such that for any t which satisfies c < t < n and
k + 2σ2 +

√
ktσ2 < n/2, it holds that with probability at least 1− 20e−t/c,

VBayes = Eϵ
[∥∥∥WBX

⊤ (XW⊤
BWBX

⊤ + nλIn
)−1

ϵ
∥∥∥2
Σx,B

]

≥ σ̃2

cn

d∑
i=1

min

1,

n2λ2

σ̃4 µi

(
Σ

1
2

βΣxΣ
1
2

β

)2
σ4
x
n2λ2

σ̃4 µk+1

(
Σ

1
2

βΣxΣ
1
2

β

)2
(ρk + 2)

2


≳

σ̃2

cn

d∑
i=1

min

1,

n2λ2

σ̃4 µi

(
Σ

1
2

βΣxΣ
1
2

β

)2
σ4
x
n2λ2

σ̃4 µk+1

(
Σ

1
2

βΣxΣ
1
2

β

)2
ρ2k


=

σ̃2

cn

d∑
i=1

min

1,
µi

(
Σ

1
2

βΣxΣ
1
2

β

)2
σ4
xµk+1

(
Σ

1
2

βΣxΣ
1
2

β

)2
ρ2k


≥ σ̃2

cn

d∑
i=1

µi

(
Σ

1
2

βΣxΣ
1
2

β

)2
µi

(
Σ

1
2

βΣxΣ
1
2

β

)2
+ σ4

xµk+1

(
Σ

1
2

βΣxΣ
1
2

β

)2
ρ2k

≳
σ̃2

cn

d∑
i=1

µi

(
Σ

1
2

βΣxΣ
1
2

β

)2
(
µi

(
Σ

1
2

βΣxΣ
1
2

β

)
+ σ2

xµk+1

(
Σ

1
2

βΣxΣ
1
2

β

)
ρk

)2
≳

σ̃2

cn

d∑
i=1

µi

(
Σ

1
2

βΣxΣ
1
2

β

)2
(
µi

(
Σ

1
2

βΣxΣ
1
2

β

)
+ µk+1

(
Σ

1
2

βΣxΣ
1
2

β

)
ρk

)2 .
In the last inequality, we use Assumption 2. For the bias term, we define eigenvectors uB,1, . . . , uB,d
corresponding to µ1

(
WBΣxW

⊤
B

)
, . . . , µ1

(
WBΣxW

⊤
B

)
and UB = (uB,1, . . . , uB,d). First,

for any j > K, we need to evaluate the smallest eigenvalue of A−j
(
XW⊤

B UB , λ
)

=
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(XW⊤
B UB)j−1(XW⊤

B UB)
⊤
j−1+(XW⊤

B UB)−j(XW⊤
B UB)

⊤
−j+nλIn in order to apply Proposition

6. From Assumption 3, we have

nλ+
nλ

σ̃2

d∑
i=k+1

µi

(
Σ

1
2

βΣxΣ
1
2

β

)
≤ 2nλ ≤ 2µn

(
A−j

(
XW⊤

B UB , λ
))

.

Therefore, since W−⊤
B ΣβW

−1
B = σ̃2

nλId, from Lemma 6 there exists some absolute constant c′ such
that for any t which satisfies t < n

2σ2
x

, it holds that with probability at least 1− 4e−t/c
′
,

BBayes := Tr

(((
nΣ̂x,B + nλId

)−1

nΣ̂x,B − Id

)2

Σx,B

)

≥ 1

2

d∑
i=1

µi

(
Σ

1
2

βΣxΣ
1
2

β

)
1 +

µi

(
Σ

1
2
β ΣxΣ

1
2
β

)
2µk+1

(
Σ

1
2
β ΣxΣ

1
2
β

)
ρk

2

≳
d∑
i=1

(
µk+1

(
Σ

1
2

βΣxΣ
1
2

β

)
ρk

)2
µi

(
Σ

1
2

βΣxΣ
1
2

β

)
(
µk+1

(
Σ

1
2

βΣxΣ
1
2

β

)
ρk + µi

(
Σ

1
2

βΣxΣ
1
2

β

))2
≳

d∑
i=1

σ̃2
(
µk+1

(
Σ

1
2

βΣxΣ
1
2

β

)
ρk

)2
µi

(
Σ

1
2

βΣxΣ
1
2

β

)
(
µk+1

(
Σ

1
2

βΣxΣ
1
2

β

)
ρk + µi

(
Σ

1
2

βΣxΣ
1
2

β

))2 .
In the last inequality, we use Assumption 2. Combining these two bounds yields

BBayes + VBayes

≳
d∑
i=1

µi

(
Σ

1
2

βΣxΣ
1
2

β

)
σ̃2

n

n
(
µk+1

(
Σ

1
2

βΣxΣ
1
2

β

)
ρk

)2
+ µi

(
Σ

1
2

βΣxΣ
1
2

β

)
(
µk+1

(
Σ

1
2

βΣxΣ
1
2

β

)
ρk + µi

(
Σ

1
2

βΣxΣ
1
2

β

))2
=

d∑
i=1

µi

(
Σ

1
2

βΣxΣ
1
2

β

)
σ̃2

(
nµk+1

(
Σ

1
2

βΣxΣ
1
2

β

)
ρk

)2
+ nµi

(
Σ

1
2

βΣxΣ
1
2

β

)
(
nµk+1

(
Σ

1
2

βΣxΣ
1
2

β

)
ρk + nµi

(
Σ

1
2

βΣxΣ
1
2

β

))2 . (D.2)

By assumption 2 and 3, nµk+1

(
Σ

1
2

βΣxΣ
1
2

β

)
ρk = σ̃2 +

∑d
i=k+1 µi

(
Σ

1
2

βΣxΣ
1
2

β

)
≤ 2σ̃2, and (D.2)

is a decreasing function as long as nµk+1

(
Σ

1
2

βΣxΣ
1
2

β

)
ρk ≤ 2σ̃2 ≤ 1. Therefore, we have

BBayes + VBayes ≳
d∑
i=1

µi

(
Σ

1
2

βΣxΣ
1
2

β

)
σ̃2

(
nµk+1

(
Σ

1
2

βΣxΣ
1
2

β

)
ρk

)2
+ nµi

(
Σ

1
2

βΣxΣ
1
2

β

)
(
nµk+1

(
Σ

1
2

βΣxΣ
1
2

β

)
ρk + nµi

(
Σ

1
2

βΣxΣ
1
2

β

))2
≥

d∑
i=1

µi

(
Σ

1
2

βΣxΣ
1
2

β

)
σ̃2

2σ̃2 + nµi

(
Σ

1
2

βΣxΣ
1
2

β

)
(
2σ̃2 + nµi

(
Σ

1
2

βΣxΣ
1
2

β

))2
=

d∑
i=1

µi

(
Σ

1
2

βΣxΣ
1
2

β

)
σ̃2

2σ̃2 + nµi

(
Σ

1
2

βΣxΣ
1
2

β

)
≳

d∑
i=1

min

{
σ̃2

n
, µi

(
Σ

1
2

βΣxΣ
1
2

β

)}
.
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In the later part of the section we show lemmas needed to prove Theorem 3.
Lemma 6 (Lower bound of bias term). Suppose that Σx and Σβ have the same eigenvectors, i.e.,
U = V and that it is known for some k, δ, L that for any j > k with probability at least 1 − δ,
µn (A−j (X,λ)) ≥ 1

L

(
nλ+

∑
i>k λi

)
. Then for some absolute constant c for any non-negative

t < n
2σ2

x
it holds that with probability at least 1− 2δ − 4e−t/c,

B := Tr
(
Σ

1
2

β

((
X⊤X + nλId

)−1
X⊤X − Id

)
Σx

((
X⊤X + nλId

)−1
X⊤X − Id

)
Σ

1
2

β

)
≥ 1

2

d∑
i=1

λiσ
2
i(

1 + λi

2Lλk+1ρk

)2 .
Proof. Let Xu := XU , Λ := E

[
U⊤xx⊤U

]
= U⊤ΣxU = diag (λ1, . . . , λd), Σ = U⊤ΣβU =

diag
(
σ2
1 , . . . , σ

2
d

)
. In the same way as Lemma 15 in (Tsigler and Bartlett, 2020) we can write the

bias term as

B = Tr
(
Σ

1
2

β

(
Id −X⊤ (XX⊤ + nλIn

)−1
X
)
Σx

(
Id −X⊤ (XX⊤ + nλIn

)−1
X
)
Σ

1
2

β

)
= Tr

(
Σ

1
2

(
Id −X⊤

u

(
XuX

⊤
u + nλIn

)−1
Xu

)
Λ
(
Id −X⊤

u

(
XuX

⊤
u + nλIn

)−1
Xu

)
Σ

1
2

)
.

=

d∑
i=1

((
Id −X⊤

u

(
XuX

⊤
u + nλIn

)−1
Xu

)
Λ
(
Id −X⊤

u

(
XuX

⊤
u + nλIn

)−1
Xu

))
i,i

σ2
i .

Λ is a diagonal matrix and so the same discussion as Lemma 15 in (Tsigler and Bartlett, 2020) gives
the result.

Lemma 7 (Lower bound of variance term). Suppose that components the rows of XU are inde-
pendent and Var

[
ϵ(i)
]
= σ2. Then for some absolute constant c, for any t, k such that t > c and

k + 2σ2
x +

√
ktσ2

x < n/2 it holds that with probability at least 1− 20e−t/c,

V :=
1

m

m∑
i=1

Eϵ(i)
[∥∥∥X⊤ (XX⊤ + λIn

)−1
ϵ(i)
∥∥∥2
Σx

]
≥ σ2

cn

d∑
i=1

min

{
1,

λ2
i

σ4
xλ

2
k+1 (ρk + 2)

2

}
.

Proof. The variance term can be written as

V =
1

m

m∑
i=1

Eϵ(i)
[∥∥∥X⊤ (XX⊤ + λIn

)−1
ϵ(i)
∥∥∥2
Σx

]
= Eϵ(1)

[∥∥∥X⊤ (XX⊤ + λIn
)−1

ϵ(1)
∥∥∥2
Σx

]
= Eϵ(1)

[∥∥∥∥(XU)
⊤
(
(XU) (XU)

⊤
+ λIn

)−1

ϵ(1)
∥∥∥∥2
U⊤ΣxU

]
.

Since E
[
U⊤xx⊤U

]
= U⊤ΣxU = diag (λ1, . . . , λd), the same discussion as Lemma 14 in (Tsigler

and Bartlett, 2020) gives the result.

E EVALUATION OF BIAS AND VARIANCE OF RIDGE REGRESSION IN
MULTIVARIATE LINEAR REGRESSION

In this section, for λ ∈ R and η ∈ Rn, we write β̂(λ, η) := X⊤ (X⊤ + nλIn
)−1

η.

Proposition 2. Suppose the condition number of Ak (X,λ) is at most L, then there exists (large)
constants cx, which only depends on σx such that for all t which satisfies

1. t ∈ (1, n/cx),

2.
√
k +

√
t ≤

√
n/cx,
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if k and λ satisfies 1
µ1(Σ−k,−k)

(
λ+ 1

nTr (Σ−k,−k)
)
= Ω

(
1
L

)
, then it holds that with probability at

least 1− 20e−t/cx ,

1

m

m∑
i=1

Ex
[(

x⊤β∗i − x⊤β̂(λ, yi)
)2]

≲ B + V,

B

L3 max
{
L,

Tr(Σ−k,−k)
nλ+Tr(Σ−k,−k)

} = Tr
(
(Σx)

−1
k,k(Σβ)−k,−k

)(
λ+

1

n
Tr ((Σx)−k,−k)

)2

+Tr ((Σx)−k,−k(Σβ)−k,−k) ,

V

tσ2L2
=

k

n
+

1

n

Tr
(
(Σx)

2
−k,−k

)
(
λ+ 1

nTr
(
(Σx)−k,−k

))2 .
Alternatively, if λ > 0 and it is also known that for some δ < 1 − 4−n/c

2
x with probability at least

1 − δ, the condition number of Ak (X,λ) is at most L, then it holds that with probability at least
1− 20e−t/cx − δ,

B

L4
= Tr

(
(Σx)

−1
k,k(Σβ)−k,−k

)(
λ+

1

n
Tr ((Σx)−k,−k)

)2

+Tr ((Σx)−k,−k(Σβ)−k,−k) ,

V

tσ2L2
=

k

n
+

1

n

Tr
(
(Σx)

2
−k,−k

)
(
λ+ 1

nTr
(
(Σx)−k,−k

))2 ,
nλ+Tr ((Σx)−k,−k)

nµ1 ((Σx)−k,−k)
≥ 1

cxL
.

Proof.

1

m

m∑
i=1

Ex
[(

x⊤β∗i − x⊤X⊤ (XX⊤ + nλIn
)−1

yi

)2]

≤ 2

m

m∑
i=1

∥∥∥β∗i − β̂(λ,Xβ∗i)
∥∥∥2
Σx

+
2

m

m∑
i=1

∥∥∥X⊤ (XX⊤ + nλIn
)−1

ϵ(i)
∥∥∥2
Σx

.

The first term corresponds to the bias and the second term corresponds to that of the variance. From
Lemma 8 and Lemma 9, for all t > 1 it holds that with probability at least 1− 4e−c1t,

1

m

m∑
i=1

∥∥∥β∗i − β̂(λ, yi)
∥∥∥2
Σx

≲
µ1

(
Ak (X,λ)

−1
)2

µn

(
Ak (X,λ)

−1
)2 µ1

(
(Σx)

−1/2
k,k X⊤

k Xk(Σx)
−1/2
k,k

)
µk

(
(Σx)

−1/2
k,k X⊤

k Xk(Σx)
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The matrix Xk(Σx)
−1/2
k,k ∈ Rk×n has n i.i.d. columns with isotropic sub-gaussian distribution in

Rk. By theorem 5.39 in (Vershynin, 2012) there exist constants c′x, C
′
x (which only depends on σx)

such that for every t > 0 s.t.
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By Lemma 20 in (Tsigler and Bartlett, 2020) it holds that with probability at least 1− 6e−t/c3 ,∥∥X−k(Σx)−k,−kX
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Combining the above bounds gives that for some constant C ′
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Note that by Lemma 21 in (Tsigler and Bartlett, 2020) there exists a constant c4 such that with
probability at least 1− δ − 2e−c4t,
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Plugging that into (E.1) and (E.2) gives
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For the first assertion, we have 1
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Plugging this inequality and 1
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and, this gives the first assertion.
For the second assertion, when λ ≥ 0, recall that Lemma 21 in (Tsigler and Bartlett, 2020) also says
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Plugging it into (E.3) gives the upper bound of the bias in the second assertion. In addition, when
λ ≥ 0, it holds that
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and this gives the second assertion.
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Lemma 8 (Bias term). In the same setting as Proposition 2, it holds
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By the same discussion of chapter F.1 and F.2 in (Tsigler and Bartlett, 2020), we obtain the following
bound:
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Lemma 9 (Variance term). In the same setting as Proposition 2, for all t > 1 there exist constants
c, C such that with probability at least 1− 4e−ct,
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Proof. From Lemma 12 in (Tsigler and Bartlett, 2020), we obtain
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From Lemma 13, for all t > 1 it holds that with probability at least 1− 4e−ct,
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where we used µ1

(
Ak (X,λ)
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)

≥ µ1

(
A0 (X,λ)
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)

. Combining these two inequalities and
(E.4) gives the result.

For W ∈ Rd×d which corresponds to eigenvalues of Σx, we can obtain Corollary 1 by applying
Proposition 2 with X = XU .
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F EQUIVALENCE OF UPPER BOND AND LOWER BOUND

Proposition 3 (Tsigler and Bartlett (2020)). Let,
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G EQUIVALENCE OF PROPOSED MODEL AND NORMAL RIDGE REGRESSION

Proposition 4. Let B̃Norm =
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H EXAMPLES

H.1 PROOF OF EXAMPLE 1

Proof. In the vanilla ridge regression, for any k < n, the bias term can be lower bounded as follows:
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On the other hand, the obtained two-layer neural network achieves a predictive risk converging to
zero:
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{
n

ei log n
,
1

n

}
+

d∑
i=n+1

min

{
n

(i+ 1− n)ei log n
,
1

n

}

<

n∑
i=1

min

{
n

ei
,
1

n

}
+

d∑
i=n+1

min

{
n

ei
,
1

n

}

=

⌊2 logn⌋∑
i=1

1

n
+

d∑
i=⌈2 logn⌉

n

ei

≤ 2 log n

n
+

n

n2

1− e−d−1+⌈2 logn⌉

1− 1
e

≲
log n

n
.
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H.2 PROOF OF EXAMPLE 2

Proof. In the vanilla ridge regression, for any k < n, the bias term can be lower bounded as follows:

BNorm

L4
=

k∑
i=1

λiσ
2
i

ρ2kλ
2
k+1

λ2
i

+

d∑
i=k+1

λiσ
2
i

> λdσ
2
d

= ed−d

= 1.

Therefore, the bias term does not vanish as n goes to ∞. On the other hand, the obtained two-layer
neural network achieves a predictive risk converging to zero:

UNN =

d∑
i=1

min

{
λiσ

2
i ,

σ′2

n

}

=

d∑
i=1

min

{
ei−d,

1

n

}

=
1

ed

⌊d−logn⌋∑
i=1

ei +

d∑
i=⌈d−logn⌉

1

n

≤ 1

ed−1(e− 1)

(
ed

n
− 1

)
+

log n

n

≲
1

n
+

log n

n

≲
log n

n
.

H.3 PROOF OF EXAMPLE 3

Proof. In the vanilla ridge regression, it holds that

VNorm

L2t
=

k

n
σ2 +

σ2

n

d∑
i=k+1

λ2
i

ρ2kλ
2
k+1

>
σ2

nρ2kλ
2
k+1

d∑
i=n+1

λ2
i

=
σ2(d− n)

n3ρ2kλ
2
k+1

.

Therefore, ρ2kλ
2
k+1 = ω(σ

2(d−n)
n3 ) is necessary for the variance term go to zero. However, in that

situation, it holds that

BNorm

L4
=

k∑
i=1

λiσ
2
i

ρ2kλ
2
k+1

λ2
i

+

d∑
i=k+1

λiσ
2
i

= ρ2kλ
2
k+1

k∑
i=1

σ2
i

λi
+

d∑
i=k+1

λiσ
2
i

>
σ2(d− n)

n3

σ2
1

λ1

= 1− 1

n2
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≳ 1.

Therefore, the bias term doesn’t vanish. On the contrary, in obtained two-layer neural network, it
holds that

UNN =

d∑
i=1

min

{
λiσ

2
i ,

σ′2

n

}

=

n∑
i=1

min

{
i−3,

1

n

}
+

d∑
i=n+1

min

{
n−1i−2,

1

n

}

=

⌊n
1
3 ⌋∑

i=1

1

n
+

n∑
i=⌈n

1
3 ⌉

i−3 +

d∑
i=n+1

1

ni2

≤ n
1
3

n
+

∫ n

⌊n− 1
3 ⌋

x−3dx+
1

n

∫ d

n

x−2dx

= n− 2
3 +

1

2

(
⌊n 1

3 ⌋
)2

− 1

2
n−2 +

1

n2
− 1

nd

≲
3

2n
2
3

− 1

nd

≲ n− 2
3 .

H.4 PROOF OF EXAMPLE 4

Proof. For the vanilla ridge regression, if k < n
2
3 , it holds

BNorm

L4
=

k∑
i=1

λiσ̃
2
i

ρ2kλ
2
k+1

λ2
i

+

d∑
i=k+1

λiσ̃
2
i

≥ λ
n

2
3
σ2

n
2
3

= 1.

On the other hand, if n
2
3 ≤ k, it holds

BNorm

L4
=

k∑
i=1

λiσ
2
i

ρ2kλ
2
k+1

λ2
i

+

d∑
i=k+1

λiσ
2
i

=

n
2
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λiσ
2
i

ρ2kλ
2
k+1

λ2
i

+

k∑
i=n

2
3 +1

λiσ
2
i

ρ2kλ
2
k+1

λ2
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+

d∑
i=k+1

λiσ
2
i

>

n
2
3∑

i=1

λiσ
2
i

ρ2kλ
2
k+1

λ2
i

= ρ2kλ
2
k+1

n
2
3∑

i=1

σ2
i

λi

= ρ2kλ
2
k+1n

3
2

n
2
3∑

i=1

i

≥
ρ2kλ

2
k+1

2
n

5
2 .
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ρ2kλ
2
k+1 = o

(
n− 5

2

)
is necessary for bias term to vanish. However, in this situation, it holds

VNorm
L2t

=
k

n
σ2 +

σ2

n

d∑
i=k+1

λ2
i

ρ2kλ
2
k+1

> n
3
2

d∑
i=n+1

i−2

> n
3
2

∫ d

n

x−2dx

= n
3
2

(
1

n
− 1

d

)
.

In the obtained two-layer neural network, it holds

UNN =

d∑
i=1

min

{
λiσ

2
i ,

σ′2

n

}

=

n
2
3∑

i=1

min

{
n

3
2 i−1,

1

n

}
+

d∑
i=n

2
3

min

{
i−2,

1

n

}

<
n

2
3

n
+

∫ d

n
2
3

x−2dx

= n− 1
3 + n− 2

3 − 1

d

≲
1

n1/3
− 1

d

< n− 1
3 .

I AUXILIARY LEMMAS

Lemma 10. Suppose Z ∈ Rd is a matrix with independent isotropic sub-gaussian rows with
∥Z∥ψ2

≤ σ. Consider Σ ∈ Rd×d is a positive semidefinite matrix. Then it holds that∥∥∥(ZΣ)k,k Σ
−1
k,k

∥∥∥
ψ2

≤ σ and
∥∥∥(ZΣ)−k,−k Σ

−1
−k,−k

∥∥∥
ψ2

≤ σ.

Proof.

sup
∥sk∥=1

⟨sk, (ZΣ)k,k Σ
−1
k,k⟩ = sup

∥sk∥=1

〈(
sk
0

)
, ZΣ

(
Σ−1
k,k 0
0 0

)〉
= sup

∥sk∥=1

〈(
sk
0

)
, Z

(
Ik 0
0 0

)〉
= sup

∥sk∥=1

〈(
sk
0

)
,

(
Zk
0

)〉
= sup

∥sk∥=1

〈(
sk
0

)
, Z

〉
≤ sup

∥s∥=1

⟨s, Z⟩ .

Therefore, it holds
∥∥∥(ZΣ)k,k Σ

−1
k,k

∥∥∥
ψ2

≤ σ. We can show the second assertion, in the same way as

the first assertion.
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Lemma 11. Suppose Z ∈ Rn×d is a matrix with independent isotropic sub-gaussian rows with
∥Z∥ψ2

≤ σ. Consider Σ ∈ Rd×d is a positive semidefinite matrix. Then for some absolute constant
c for any t ∈ (0, n) and 0 < k < d, it holds that with probability at least 1− 2e−ct,(

n− tσ2
)
Tr (Σ−k,−k) ≤

n∑
i=1

∥∥∥∥(Σ1/2Z⊤
i

)
−k

∥∥∥∥2 ≤
(
n+ tσ2

)
Tr (Σ−k,−k) .

Proof. Let eigenvectors of Σ−k,−k as U−k ∈ Rd×d. Then,∣∣∣∣∣
n∑
i=1

∥∥∥∥(Σ1/2Z⊤
i

)
−k

∥∥∥∥2 − Tr (Σ−k,−k)

∣∣∣∣∣ =
∣∣∣∣∣
n∑
i=1

∥∥∥∥U⊤
−k

(
Σ1/2Z⊤

i

)
−k

∥∥∥∥2 − d∑
i=1

µi (Σ)

∣∣∣∣∣ .
From Lemma 10, it holds that

∥∥∥(ZΣ)−k,−k Σ
−1
−k,−k

∥∥∥
ψ2

≤ σ. Therefore, applying Lemma 17 in

(Tsigler and Bartlett, 2020) gives the result.

Lemma 12. Let x1, . . . , xn be i.i.d. centered random vectors in Rl with covariance matrix Σ. If
x is sub-Gaussian with ∥x∥ψ2

≤ σx, then there exist constants C and c which only depends on σx
such that it holds that with probability at least 1− 2 exp(−ct2),(

1− C

√
l

n
− t

)
Σ ⩽ Σ̂ ⩽

(
1 + C

√
l

n
+ t

)
Σ.

Proof. By Theorem 5.39 in (Vershynin, 2012), there exist C ′ and c′ which only depends on σx such
that it holds that with probability at least 1− 2e−c

′t2 ,

∥Il − Σ− 1
2 Σ̂Σ−⊤

2 ∥op ≤ 2C

√
l

n
+ 2t,

∴ −

(
2C ′
√

l

n
+ 2t

)
Il ⩽ Il − Σ− 1

2 Σ̂Σ−⊤
2 ⩽

(
2C ′
√

l

n
+ 2t

)
Il,

∴

(
1− 2C ′

√
l

n
− 2t

)
Σ ⩽ Σ̂ ⩽

(
2C ′
√

l

n
− 2t

)
Σ.

Lemma 13. Suppose A ∈ Rn×n is a positive semidefinite matrix and ϵ(i) (i = 1, . . . ,m) are
centered vectors whose components are independent and have sub-gaussian norm at most σ. Then
for some constants c, C, for any t > 1 it holds that with probability at least 1− 2e−t/c,

1

m

m∑
i=1

ϵ(i)
⊤
Aϵ(i) ≤ Cσ2tTr (A) .

Proof. From Lemma 18 in Tsigler and Bartlett (2020) for any i there exists constants Cϵ, ci it holds
that with probability at least 1− 2e−t/ci ,

ϵ(i)
⊤
Aϵ(i) ≤ Cϵσ

2tTr (A) .

Notice that Cϵ doesn’t depend on the choice of i. Let c := min
i

ci and J := argmax
i

ϵ(i)
⊤
Aϵ(i), and

we have

Pr
(
ϵ(J)

⊤
Aϵ(J) ≤ Cϵσ

2tTr (A)
)

> 1− 2e−t/cJ

> 1− 2e−t/c.

Therefore it holds that with probability at least 1− 2e−t/c,

1

m

m∑
i=1

ϵ(i)
⊤
Aϵ(i) ≤

(
ϵ(J)

)⊤
Aϵ(J) ≤ Cϵσ

2tTr (A) .
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