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1 Pruning Surrogate Model Experts

The number of experts in optimization with expert advice can potentially grow exceedingly large due to the inclusion of
either higher order interactions or a large number of variables or increase in dimensionality. In this section, we consider
a strategy for pruning experts in an adaptive fashion.

We consider a setting where we start the algorithm with the set of all experts. We assume that the true function is sparse
in the space of experts. Therefore, we consider a pruning strategy where such experts are deemed ’irrelevant’ based on a
condition, removed and are no longer updated. Once such experts are pruned, they no longer contribute to the surrogate
model. This pruning strategy leads to a low amortized computational complexity. Our adaptive pruning algorithm
is given in Algorithm Let {¢;(-)} be the set of experts and let f(x) be the true black-box function. The method
keeps track of an empirical estimate of the metric: E[¢;(z)sigmoid(f(x))] for every i and deletes a sub-optimal one
at time ¢, if it is by at least /2t log(2t*d/s) smaller than the optimal expert, i.e. the best expert according to the latter
metric. This is a single parameter pruning strategy and depends on § which is data-independent but could only depend
on sparsity and dimensionality of the problem. We justify our pruning strategy for the abridged one-hot encoded
Fourier representation by showing that our metric for pruning is large for the significant experts on average under the
assumption of uniform distribution for sampling points x.

A direct approach to this problem would be to track the weights of an expert (. 7 or az, 7 depending on the factorization
we have chosen) and use a threshold to prune the experts. This method requires us to tune the thresholds and is highly
data-dependent. To circumvent this problem, we take inspiration from an old technique called timid pruning [1]].
Consider a binary classification problem where every expert ¢; (x) predicts on a random point z € X'. Under a given
distribution D over (x, y), suppose p; indicates the probability that ¢, (x) predicts the label y correctly. The observed
optimal expert at any time ¢ is defined as the one which has made the fewest mistakes until time ¢. In particular,
we consider a pruning strategy that removes an expert if it has made at least /2t log(2t”d/5s) more mistakes than the
observed optimal until time ¢. Then with high probability (1 — §), the optimal expert will not be removed according to
Hoeffding bounds.

In our problem the function is real-valued and hence the above cannot be directly applied. The key idea is to consider a
metric that is a thresholded version of f(x) making it binary-valued. We use the following property about Boolean
polynomials:

Theorem 1.1. /3] Suppose p(x) : {—1,1}" — R is a Boolean polynomial where p(x) = » g as [ [;cg ©i where
F is the family of subsets of [n]. Let PTF(p(x)) = sign(p(x)) where sign(-) is the sign function. Let g be the Fourier

coefficient of the monomial [ [, g x; in PTF (p(x)). Then, we have ) ¢ »|vs| > 1.

The above theorem says that, the polynomial threshold function "amplifies" the coefficients of the weights that are
nonzero in the original polynomial such that their /; norm is at least 1 irrespective of what ) _ ¢|ag| is. Let ¢g(x)
denote the monomials of f(z) that are present in Abridged one-hot encoded Fourier representation. Then, under
the uniform distribution on {—1, 1}", we have: |ys| = |E[PTF(f(x))¢s(z)]|. From the above and Theorem|I.1] we
have that our metric for pruning over the family of monomials F that are non-zero in f(x) is at least one. Therefore,

Yserlsl = 2 ser[EPTE(f(2))s(2)]| = 1.

Moreover, in order to promote exploration in our pruning model, instead of PTF(f(z)), we consider a coin flip (with
choices in {—1, 1}) with a probability of tossing +1 being equal to sigmoid(f(z)).

We point out the advantages of the proposed pruning strategy. This strategy has much less data dependence (because of
the amplification due to thresholding) and is dependent on § which only depends on problem dimensions (sparsity and
dimension). Finally, this approach is independent of the surrogate model.
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Algorithm 1 Pruning Surrogate Model Experts

—

Input: probability of error §

2:t=0

33 Vie[d:al =0

4: Dt = [d}

5: repeat

6: 0 =/2tlog(2t"d/s)

7. j = argmax;ep, |a!]

8 for: e D;do

9: ¢ ~ Bernoulli(sigmoid(f(z:)))
10: al™ =al 4+ c-i(ay)

11: if [af " < |a’™"| — 0 then
12: Dt — Dt \ {Z}

13: end if

14:  end for

15: t—t+1

16: until Stopping Criteria
17: return D;

Description of Algorithm[I} Let D, denote the set of indices for incumbent experts at any given time step ¢. At the
start of the algorithm, all the experts are active, i.e. D; = [d]. We also maintain a vector a® of size d in order to keep
track of the current cumulative measures for the experts at any time step ¢, where a} denotes the cumulative measure for
expert 1; at time ¢. For any incumbent expert 1;, we first draw a random sample ¢ ~ Bernoulli(sigmoid(f(x:))),
and then update the cumulative measure a! with the value of the instantaneous measure c - 1;(x;). Intuitively, this
cumulative measure corresponds to ¢ times the empirical version of E[sigmoid(f(x¢)) - 1;(«¢)], and is an indicator of
the number of correct predictions made by expert v; until time ¢.

At any time step ¢, we first compute the threshold § = /2t log(2t*d/s) and find the optimal expert t; as the expert with

the maximum cumulative measure (in absolute value), i.e. Vi € D, : |a§-\ > |al|. We then compare the absolute value

of the cumulative measure a! with that of the current optimal expert aé; if it is smaller that the latter by at least 6, we
remove the expert from the pool of the incumbent experts. For ECO-G, we use a heuristic extension of this measure,

where we replace ¢ - ¥;(2¢) (which is used in pruning ECO-F) with ¢ - sign(w;(x)).

2 Experiments

Contamination Control Problem: To showcase the capability of pruning to capture higher order interactions, we
consider a Boolean problem with known third degree interactions: the contamination problem from [5, 4} 2]]. Since
k = 2, ECO reduces to COMEX [2], where the performance of its vanilla third degree model has been already shown
to outperform baselines and match COMBO (at a far lower computational cost albeit with higher number of time steps)
for the latter problem. Here, we show that we can further save up on the computational cost of COMEX via pruning
experts, and yet obtain a performance very close to that of the vanilla version with the entire experts included.

We start the algorithm with a pool of the entire experts up to degree three monomials, and compare the performance of
the algorithm equipped with pruning with those of vanilla second (COMEX-2) and third (COMEX-3) degree models.
From Figure[I] we observe that overall the pruning-based algorithm follows the third degree model very closely. As
shown in the zoomed-in version of the curves from ¢ = 1000 to ¢ = 4000, the pruned version is even able to beat the
vanilla degree three model until time step 2500, but is eventually slightly outperformed by the latter model. In particular,
the pruning method reduces the number of experts from 1562 to 509 (on average), thereby leading to a & 25% saving
in amortized computation time until time step 4000. The average computation times for each model are given in Table
[1] Notably, continuing this run further up to 6000 steps would lead to a sparse representation of merely 50 monomial
experts via the pruning strategy while maintaining a small margin with the vanilla third degree model.

RNA Optimization Problem: We further consider the performance of pruning in the RNA optimization problem over
sequences of both small (n = 30) and moderate (n = 60) lengths, where the latter demonstrates the advantage of using
pruning in problems with larger numbers of variables. At n = 30 and over 4000 time steps, ECO-F on average reduces
the number of experts from 4006 to 913 (averaged over 20 runs), while managing a saving of ~ 10% in computation
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Figure 1: Effect of pruning on the contamination control problem.

Table 1: Average computation time per step (in Seconds) in contamination problem.

n COMEX-2 COMEX-3 PRUNED COMEX-3
21 0.02 0.17 0.13

tim Similarly, ECO-G reduces the number of experts from 8011 to 2736 with a computation time saving of ~ 14%.
Atn = 60 and over 4000 time steps, we observe a similar trend where ECO-F and ECO-G reduce the number of experts
from 16111 and 32221 to 5193 and 8869, while offering a competitive performance with the vanilla counterparts.
Average computation times for the RNA problem with both n = 30 and n = 60 are summarized in Table

Both ECO-F and ECO-G maintained a large gap with RS and SA at n = 60 (n = 30), which only managed to reach
—29.9 (—18.7) and —58.9 (—23.8) over 4000 steps, respectively. The latter baselines were dropped from the plots
in order to avoid clutter. We point out that COMBO was only able to produce ~ 200 (= 500) samples in the RNA
problem with n = 60 (n = 30) within a 24 hour time budget, leading to a poor final average performance of —43.57
(—28.4). As mentioned earlier, the high computational complexity of COMBO (as is the case for any BO algorithm in
general) prohibits its use for problems with larger numbers of variables.

Discussion on Pruning Parameter: The value of the parameter 6 determines how aggressively the surrogate model
experts are pruned via Algorithm [T} If the value of this parameter is too small, it would take a large number of steps in
order for the algorithm to prune a sufficient number of experts. On the other hand, if § is too large, the algorithm would
remove too many experts early on before ensuring that such experts are insignificant. This leads to a trade-off between
the speed-up rendered by pruning and the performance of the pruning strategy. Nevertheless, due to the logarithmic
(as well as square root) dependence of the pruning threshold on 4, the behavior of the algorithm is fairly stable with
respect to small to moderate variations in this parameter. We also point out that experimentally, the higher the number
of variables n (and thereby experts), a smaller value for the parameter § is required. Table [3|presents a summary of the
number of remaining experts upon pruning after 4000 time steps as well as the values used for the parameter ¢ in each
case.

'We believe that optimizing the implementation aspects of the code would further boost the improvement in computation times.
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Figure 2: Effect of pruning on the RNA sequence optimization problem with n = 30.
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Figure 3: Effect of pruning on the RNA sequence optimization problem with n = 60.

Table 2: Average computation time per step (in Seconds) for the RNA problem with pruning.

n ECO-F PRUNED ECO-F ECO-G PRUNED ECO-G

30 1.97 1.81 5.85 5.04
60 7.8 7.0 24.7 21.5




Table 3: The number of remaining experts. The value of the parameter § used in pruning experts is reported within
parentheses.

n ECO-F PRUNED ECO-F (§) ECO-G PRUNED ECO-G (6)

30 4006 913 (107%) 8011 2736 (1071)
60 16111 5193 (10~%) 32221 8869 (10™2)
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