
1 Pruning Surrogate Model Experts1

The number of experts in optimization with expert advice can potentially grow exceedingly large due to the inclusion of2

either higher order interactions or a large number of variables or increase in dimensionality. In this section, we consider3

a strategy for pruning experts in an adaptive fashion.4

We consider a setting where we start the algorithm with the set of all experts. We assume that the true function is sparse5

in the space of experts. Therefore, we consider a pruning strategy where such experts are deemed ’irrelevant’ based on a6

condition, removed and are no longer updated. Once such experts are pruned, they no longer contribute to the surrogate7

model. This pruning strategy leads to a low amortized computational complexity. Our adaptive pruning algorithm8

is given in Algorithm 1. Let {ψi(·)} be the set of experts and let f(x) be the true black-box function. The method9

keeps track of an empirical estimate of the metric: E[ψi(x)sigmoid(f(x))] for every i and deletes a sub-optimal one10

at time t, if it is by at least
√
2t log(2t

2d/δ) smaller than the optimal expert, i.e. the best expert according to the latter11

metric. This is a single parameter pruning strategy and depends on δ which is data-independent but could only depend12

on sparsity and dimensionality of the problem. We justify our pruning strategy for the abridged one-hot encoded13

Fourier representation by showing that our metric for pruning is large for the significant experts on average under the14

assumption of uniform distribution for sampling points x.15

A direct approach to this problem would be to track the weights of an expert (αr,I or αI,J depending on the factorization16

we have chosen) and use a threshold to prune the experts. This method requires us to tune the thresholds and is highly17

data-dependent. To circumvent this problem, we take inspiration from an old technique called timid pruning [1].18

Consider a binary classification problem where every expert ψi(x) predicts on a random point x ∈ X . Under a given19

distribution D over (x, y), suppose pi indicates the probability that ψi(x) predicts the label y correctly. The observed20

optimal expert at any time t is defined as the one which has made the fewest mistakes until time t. In particular,21

we consider a pruning strategy that removes an expert if it has made at least
√
2t log(2t

2d/δ) more mistakes than the22

observed optimal until time t. Then with high probability (1− δ), the optimal expert will not be removed according to23

Hoeffding bounds.24

In our problem the function is real-valued and hence the above cannot be directly applied. The key idea is to consider a25

metric that is a thresholded version of f(x) making it binary-valued. We use the following property about Boolean26

polynomials:27

Theorem 1.1. [3] Suppose p(x) : {−1, 1}n → R is a Boolean polynomial where p(x) =
∑
S∈F αS

∏
i∈S xi where28

F is the family of subsets of [n]. Let PTF(p(x)) = sign(p(x)) where sign(·) is the sign function. Let γS be the Fourier29

coefficient of the monomial
∏
i∈S xi in PTF(p(x)). Then, we have

∑
S∈F |γS | ≥ 1.30

The above theorem says that, the polynomial threshold function "amplifies" the coefficients of the weights that are31

nonzero in the original polynomial such that their `1 norm is at least 1 irrespective of what
∑
S |αS | is. Let ψS(x)32

denote the monomials of f(x) that are present in Abridged one-hot encoded Fourier representation. Then, under33

the uniform distribution on {−1, 1}n, we have: |γS | = |E[PTF(f(x))ψS(x)]|. From the above and Theorem 1.1, we34

have that our metric for pruning over the family of monomials F that are non-zero in f(x) is at least one. Therefore,35 ∑
S∈F |γS | =

∑
S∈F |E[PTF(f(x))ψS(x)]| ≥ 1.36

Moreover, in order to promote exploration in our pruning model, instead of PTF(f(x)), we consider a coin flip (with37

choices in {−1, 1}) with a probability of tossing +1 being equal to sigmoid(f(x)).38

We point out the advantages of the proposed pruning strategy. This strategy has much less data dependence (because of39

the amplification due to thresholding) and is dependent on δ which only depends on problem dimensions (sparsity and40

dimension). Finally, this approach is independent of the surrogate model.41



Algorithm 1 Pruning Surrogate Model Experts

1: Input: probability of error δ
2: t = 0
3: ∀i ∈ [d] : ati = 0
4: Dt = [d]
5: repeat
6: θ =

√
2t log(2t

2d/δ)
7: j = argmaxi∈Dt |ati|
8: for i ∈ Dt do
9: c ∼ Bernoulli(sigmoid(f(xt)))

10: at+1
i = ati + c · ψi(xt)

11: if |at+1
i | < |a

t+1
j | − θ then

12: Dt ← Dt \ {i}
13: end if
14: end for
15: t← t+ 1
16: until Stopping Criteria
17: return Dt

Description of Algorithm 1: Let Dt denote the set of indices for incumbent experts at any given time step t. At the42

start of the algorithm, all the experts are active, i.e. Dt = [d]. We also maintain a vector at of size d in order to keep43

track of the current cumulative measures for the experts at any time step t, where ati denotes the cumulative measure for44

expert ψi at time t. For any incumbent expert ψi, we first draw a random sample c ∼ Bernoulli(sigmoid(f(xt))),45

and then update the cumulative measure ati with the value of the instantaneous measure c · ψi(xt). Intuitively, this46

cumulative measure corresponds to t times the empirical version of E[sigmoid(f(xt)) · ψi(xt)], and is an indicator of47

the number of correct predictions made by expert ψi until time t.48

At any time step t, we first compute the threshold θ =
√

2t log(2t
2d/δ) and find the optimal expert ψj as the expert with49

the maximum cumulative measure (in absolute value), i.e. ∀i ∈ Dt : |atj | ≥ |ati|. We then compare the absolute value50

of the cumulative measure ati with that of the current optimal expert atj ; if it is smaller that the latter by at least θ, we51

remove the expert from the pool of the incumbent experts. For ECO-G, we use a heuristic extension of this measure,52

where we replace c · ψi(xt) (which is used in pruning ECO-F) with c · sign(ψi(x)).53

2 Experiments54

Contamination Control Problem: To showcase the capability of pruning to capture higher order interactions, we55

consider a Boolean problem with known third degree interactions: the contamination problem from [5, 4, 2]. Since56

k = 2, ECO reduces to COMEX [2], where the performance of its vanilla third degree model has been already shown57

to outperform baselines and match COMBO (at a far lower computational cost albeit with higher number of time steps)58

for the latter problem. Here, we show that we can further save up on the computational cost of COMEX via pruning59

experts, and yet obtain a performance very close to that of the vanilla version with the entire experts included.60

We start the algorithm with a pool of the entire experts up to degree three monomials, and compare the performance of61

the algorithm equipped with pruning with those of vanilla second (COMEX-2) and third (COMEX-3) degree models.62

From Figure 1, we observe that overall the pruning-based algorithm follows the third degree model very closely. As63

shown in the zoomed-in version of the curves from t = 1000 to t = 4000, the pruned version is even able to beat the64

vanilla degree three model until time step 2500, but is eventually slightly outperformed by the latter model. In particular,65

the pruning method reduces the number of experts from 1562 to 509 (on average), thereby leading to a ≈ 25% saving66

in amortized computation time until time step 4000. The average computation times for each model are given in Table67

1. Notably, continuing this run further up to 6000 steps would lead to a sparse representation of merely 50 monomial68

experts via the pruning strategy while maintaining a small margin with the vanilla third degree model.69

RNA Optimization Problem: We further consider the performance of pruning in the RNA optimization problem over70

sequences of both small (n = 30) and moderate (n = 60) lengths, where the latter demonstrates the advantage of using71

pruning in problems with larger numbers of variables. At n = 30 and over 4000 time steps, ECO-F on average reduces72

the number of experts from 4006 to 913 (averaged over 20 runs), while managing a saving of ≈ 10% in computation73
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Figure 1: Effect of pruning on the contamination control problem.

Table 1: Average computation time per step (in Seconds) in contamination problem.

n COMEX-2 COMEX-3 PRUNED COMEX-3

21 0.02 0.17 0.13

time1. Similarly, ECO-G reduces the number of experts from 8011 to 2736 with a computation time saving of ≈ 14%.74

At n = 60 and over 4000 time steps, we observe a similar trend where ECO-F and ECO-G reduce the number of experts75

from 16111 and 32221 to 5193 and 8869, while offering a competitive performance with the vanilla counterparts.76

Average computation times for the RNA problem with both n = 30 and n = 60 are summarized in Table 277

Both ECO-F and ECO-G maintained a large gap with RS and SA at n = 60 (n = 30), which only managed to reach78

−29.9 (−18.7) and −58.9 (−23.8) over 4000 steps, respectively. The latter baselines were dropped from the plots79

in order to avoid clutter. We point out that COMBO was only able to produce ≈ 200 (≈ 500) samples in the RNA80

problem with n = 60 (n = 30) within a 24 hour time budget, leading to a poor final average performance of −43.5781

(−28.4). As mentioned earlier, the high computational complexity of COMBO (as is the case for any BO algorithm in82

general) prohibits its use for problems with larger numbers of variables.83

Discussion on Pruning Parameter: The value of the parameter δ determines how aggressively the surrogate model84

experts are pruned via Algorithm 1. If the value of this parameter is too small, it would take a large number of steps in85

order for the algorithm to prune a sufficient number of experts. On the other hand, if δ is too large, the algorithm would86

remove too many experts early on before ensuring that such experts are insignificant. This leads to a trade-off between87

the speed-up rendered by pruning and the performance of the pruning strategy. Nevertheless, due to the logarithmic88

(as well as square root) dependence of the pruning threshold on δ, the behavior of the algorithm is fairly stable with89

respect to small to moderate variations in this parameter. We also point out that experimentally, the higher the number90

of variables n (and thereby experts), a smaller value for the parameter δ is required. Table 3 presents a summary of the91

number of remaining experts upon pruning after 4000 time steps as well as the values used for the parameter δ in each92

case.93

1We believe that optimizing the implementation aspects of the code would further boost the improvement in computation times.
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Figure 2: Effect of pruning on the RNA sequence optimization problem with n = 30.
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Figure 3: Effect of pruning on the RNA sequence optimization problem with n = 60.

Table 2: Average computation time per step (in Seconds) for the RNA problem with pruning.

n ECO-F PRUNED ECO-F ECO-G PRUNED ECO-G

30 1.97 1.81 5.85 5.04
60 7.8 7.0 24.7 21.5



Table 3: The number of remaining experts. The value of the parameter δ used in pruning experts is reported within
parentheses.

n ECO-F PRUNED ECO-F (δ) ECO-G PRUNED ECO-G (δ)

30 4006 913 (10−3) 8011 2736 (10−1)
60 16111 5193 (10−8) 32221 8869 (10−3)
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