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SUPPLEMENTARY MATERIAL

CONVERGENCE IS NOT ENOUGH: AVERAGE-CASE PER-
FORMANCE OF NO-REGRET LEARNING DYNAMICS

A MISSING PROOFS AND MATERIALS: SECTION 3

A finite potential game, Γ, defined as in section 2, is called perfectly-regular if all its restrictions are
regular, i.e., if all its restrictions have only regular Nash equilibria (cf. Definition 3.1). We will write
RΓ to denote the set of all restrictions of Γ as defined in section 2. We start by showing that the class
of perfectly-regular potential games (PRPG) is well-defined, since restrictions of potential games are
also potential games. Let us also recall the formal definition of regular Nash equilibria:

Definition 2.1 (Regular Nash equilibria (Harsanyi, 1973; Swenson et al., 2020)). A Nash equilbrium,
x∗ ∈ NE(Γ), is called regular if it is (i) quasi-strict, i.e., if for each player k ∈ N , x∗k assigns positive
probability to all best responses of player k against x∗−kall best responses of each player k ∈ N to
x∗−k are contained in x∗k, and (ii) second-order non-degenerate, i.e., if the Hessian, H(x∗), taken
with respect to supp(x∗) is non-singular.

Lemma A.1. A restriction of a potential game is also a potential game.

Proof. Let Γ′ a restriction of a potential game Γ and potential function Φ : A → R. Take Φ′ : A′ →
R to be the restriction of Φ to A′ ⊆ A. Then for all k ∈ N , and s, s′ ∈ A′ we have that:

u′k(s)− u′k(s
′
k, s−k) = uk(s)− uk(s

′
k, s−k) = Φ(s)− Φ(s′k, s−k) = Φ′(s)− Φ′(s′k, s−k),

where the second equality follows from the definition of potential games (cf. section 2). Hence, Φ′ is
a potential function, and therefore Γ′ a potential game.

Using the recent results of Swenson et al. (2020), it is not difficult to show that perfectly-regular
potential games are generic, and have a finite number of restricted equilibria. These are the statements
of Lemma A.2 and Lemma A.3, respectively.

Lemma A.2. Almost all finite potential games are perfectly-regular.

Proof. Let RPG, and PRPG denote the sets of regular potential, and perfectly-regular potential games,
respectively. Let also Γ be a random finite potential game. Since Γ is finite, there exist 2m distinct
restrictions of Γ, where m :=

∑
k∈N |Ak|. Then, by Lemma A.1, we have that any restriction Γ′

of Γ is also a random finite potential game, and therefore Pr(Γ′ ∈ RPG) = 1, with respect to the
Lebesgue measure Swenson et al. (2020). It follows that:

Pr(Γ ∈ PRPG) = 1− Pr(Γ /∈ PRPG)

= 1− Pr(
⋃

Γ′∈RΓ

Γ′ /∈ RPG)

≥ 1−
∑

Γ′∈RΓ

Pr(Γ′ /∈ RPG)

= 1,

where the last equality follows from the fact that |RΓ| is finite.

Lemma A.3. Every perfectly-regular finite potential game has a finite number of restricted equilibria.

Proof. Let Γ be a perfectly-regular finite potential game, and let Γ′ be one of its restrictions. By
the definition of a perfectly-regular potential game, we have that Γ′ is a regular potential game.
Furthermore, since Γ is finite and A′

k ⊆ Ak for all k ∈ N , it follows that Γ′ is finite. But then Γ′ is a
finite regular potential game and as such it has a finite number of Nash equilibria, i.e., NE(Γ′) <∞
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Swenson et al. (2020). Finally, since each restricted equilibrium is a Nash equilibrium of a restrictions
of Γ, it follows that there exist at most:∑

Γ′∈RΓ

|NE(Γ′)| ≤ 2m max
Γ′∈RΓ

|NE(Γ′)| <∞

restricted equilibria of Γ. Therefore, the number of restricted equilibria of Γ is finite.

We, now, consider the q-replicator dynamics of a finite potential game Γ, given by the dynamical
system of equations in equation QRD:

ẋkak = xqkak

(
uk(ak, x−k)−

∑
aj∈Ak

xqkajuk(aj , x−k)∑
aj∈Ak

xqkaj

)
, for all k ∈ N , ak ∈ Ak

Our goal for the remainder of this section is to prove that for any interior initial condition x(0) ∈ X
the dynamics in equation QRD converge pointwise to a Nash equilibrium of a given perfectly-regular
finite potential game.5 The proof proceeds in two parts: First, we prove that the dynamics converge to
a restricted equilibrium of the game for any initial condition. Second, we prove that for any interior
initial condition, the dynamics are bound to deviate from any rest-point that is not a Nash equilibrium,
and therefore, they have to converge to a Nash equilibrium.

Let us begin by proving the first of the two claims. Recall that the ω-limit set of a sequence
(x(t))t≥0 ⊆ X , that is generated by the QRD, is defined as:

ω(x(t)) :=
⋂
t≥0

cl{x(t′) | t′ > t}

where clS denotes the closure of a set S.
Lemma A.4. Given a perfectly-regular finite potential game Γ, every ω-limit set, with respect to the
q-replicator dynamics, is a singleton {x∗}, where x∗ ∈ X is a rest-point of the dynamics. Specifically,
x∗ is a Nash equilibrium, if q = 0, or a restricted equilibrium, if q > 0. Furthermore, the set
Q(X ) :=

⋃
x0∈X {x∗ ∈ X | limt→∞ x(t) = x∗, x(0) = x0}, i.e., the set of all limit points, is finite.

Proof. Let Γ be a perfectly-regular finite potential game. Since Γ is a potential game, by the result of
Mertikopoulos & Sandholm (2018), we have that every ω-limit set consists entirely of rest-points
of the dynamics. In particular, these are Nash equilibria of Γ, if q = 0, or restricted equilibria of
Γ, if q > 0. However, since Γ is perfectly-regular—it suffices for it to be regular for the case of
q = 0—it follows by Lemma A.3 that every ω-limit set is a finite set. Consider now, the ω-limit set
of an orbit (x(t))t≥0 of the dynamics for some arbitrary initial condition x(0) = x0. Since x(t) is
continuous, the ω limit set ω(x(t)) is the decreasing intersection of compact, connected sets and,
therefore, it is connected. Since the ω-limit set is finite, the above implies that, in fact it has to be a
singleton {x∗}, where x∗ is a Nash equilibrium if q = 0 Mertikopoulos & Sandholm (2018), or a
restricted equilibrium if q > 0, respectively. Finally, from the above, we have that the set of all limit
points, Q(X ) is a subset of the restricted equilibria of Γ; therefore, since Γ is a perfectly-regular finite
potential game, we have, by Lemma A.3, that the set of restricted equilibria of Γ and, consequently,
Q(X ) are finite.

To prove Theorem 3.2 (restated bellow, for completeness), it suffices to exclude convergence to
restricted equilibria that are not NE of the original game, Γ. To establish that, we will show that as
the QRD approach a limit point x∗k, the probability xkak of non-optimally performing actions must
go to zero. Thus, all actions in suppx∗k must be a best response against x∗−k for all agents k ∈ N
which implies that x∗k is a NE of Γ.
Theorem 3.2 (pointwise convergence of QRD to NE in PRPGs). Given any perfectly-regular
potential game (PRPG), Γ, and any interior initial condition x(0) ∈ intX , the q-replicator dynamics,
defined as in equation QRD, converge pointwise to a Nash equilibrium x∗ of Γ for any parameter
q ≥ 0. Furthermore, the set Q(intX ) :=

⋃
x0∈intX {x∗ ∈ X | limt→∞ x(t) = x∗, x(0) = x0}, i.e.,

the set of all limit points of interior initial conditions, is finite.
5Recall that the interior of the set X , intX is the set of all joint choice distributions x ∈ X with full support,

i.e., xkak > 0 for all ak ∈ Ak and for all k ∈ N ; all points of X that are not in the interior, are called boundary
points.
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Proof. If q = 0, the statement follows directly from Lemma A.4. So we only need to consider
the q-Replicator Dynamics for q > 0. Let Γ be a perfectly-regular finite potential game, and let
(x(t))t≥0 be a trajectory of the q-replicator dynamics with initial condition x(0) = x0 ∈ intX . Since
q > 0, we know that the support of x(t) remains constant for all t ∈ R Mertikopoulos & Sandholm
(2018). Thus, since x(0) ∈ intX , it follows that x(t) remains in the interior of X for all t ≥ 0, i.e.,
xkak(t) > 0 for all k ∈ N and for all ak ∈ Ak. Furthermore, by Lemma A.4, we have that the limit
limt→∞ x(t) exists and is a rest-point of the dynamics, say x∗.

Assume that x∗ is not a Nash equilibrium, i.e., that x∗ fails to satisfy equation 1. That implies that
there exists a player k ∈ N and an action ak ∈ Ak with x∗kak = 0, i.e., ak is not in the support of
x∗k, but it satisfies uk(ak, x∗−k) > uk(x

∗). Note, that since ẋ∗kak = 0 for all ak ∈ Ak, we know from
equation QRD that:

uk(ak, x
∗
−k) =

∑
aj∈Ak

(x∗kaj )
quk(aj , x

∗
−k)∑

aj∈Ak
(x∗kaj )

q
, (7)

for all ak ∈ supp(x∗k), and thus:

uk(ak, x
∗
−k) > uk(x

∗) =
∑
aj∈Ak

x∗kajuk(aj , x
∗
−k) =

∑
aj∈Ak

(x∗kaj )
quk(aj , x

∗
−k)∑

aj∈Ak
(x∗kaj )

q
, (8)

where the last equality follows directly from equation equation 7 and the fact that x∗k is in the simplex,
i.e.,

∑
ak∈Ak

x∗kak = 1. Fix ϵ > 0, and consider the set:

Bϵ :=

{
x ∈ X | uk(ak, x−k) >

∑
aj∈Ak

xqkajuk(aj , x−k)∑
aj∈Ak

xqkaj
+ ϵ

}
.

By continuity, Bϵ is open and by equation equation 8, it contains x∗—given ϵ small enough. Since
x(t) converges to x∗ as t → ∞, there exists a time tϵ ≥ 0 such that x(t) ∈ Bϵ for all t > tϵ.
Therefore, for each t > tϵ we have that:

ẋkak(t) = (xkak(t))
q

(
uk(ak, x−k)−

∑
aj∈Ak

(xkaj (t))
quk(aj , x−k)∑

aj∈Ak
(xkaj (t))

q

)
> ϵ(xkak(t))

q > 0,

where the last inequality follows because x(t) ∈ intX for all t ≥ 0. Finally, by integrating with
respect to time, we have that for all t > tϵ:

xkak(t) =

∫ t

t′=tϵ

ẋkak(t
′) dt+ xkak(tϵ) > xkak(tϵ) > 0.

Therefore, by the continuity of x(t), we have that:

x∗kak = lim
t→∞

xkak(t) ≥ xkak(tϵ) > 0,

which is a contradiction to our assumption that x∗kak = 0, which is a direct consequence of x∗ not
being a NE of the game; thus, x∗ has to be a Nash equilibrium of Γ.

B ADDITIONAL VISUALIZATIONS AND MISSING PROOFS: SECTION 4

B.1 VISUALIZATIONS: INVARIANT FUNCTIONS AND SEPARATING MANIFOLDS

In this part, we provide systematic, and essentially exhaustive, visualizations of the stable manifolds
(separatrices) in the Γw,β class.

Different payoff- and risk-dominant NE in Γw,β . The main differences in the class Γw,β occur
between games in which the payoff- and risk-dominant equilibria coincide and games in which they
differ. Recall that Figure 2 shows the invariant function in a Γw,β instance, where w = 2 and β = 0,
i.e., in which the payoff- and risk- dominant equilibria coincide. In Figure 6, we provide an instance
in which the payoff- and risk-dominant equilibria differ. Similar to Figure 3, Figure 7 depicts the
separating manifolds (stable manifolds or separatrices) of the regions of attractions of the two pure
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Figure 6: The invariant function, Ψq(x, y), for all x, y ∈ [0, 1]2 in the game Γw,β for w = 2, β = −4,
and the same values of q as in Figure 2: q = 0 (gradient descent dynamics), q = 1 (standard replicator
dynamics), q = 2 (log-barrier dynamics), and q = 20. The invariant function again becomes very
steep at the boundary as q increases, taking both arbitrarily large negative (dark) and positive (light)
values in the vicinity of the NE.

Figure 7: The stable manifolds, Ψq,Stable(x, y) = 0, (solid blue lines) for the same values of q and
instance of Γw,β as in Figure 6, in which the payoff-dominant NE is at the bottom-left corner and
the risk-dominant NE is at the upper-right corner. For all q, the separatrix goes through the mixed
NE at the intersection of the x∗ (dashed red) and y∗ (dashed black) coordinates. All panels also
include the unstable manifold defined by x− y = 0 (dashed blue line). The region of attraction of the
payoff-dominant NE is now smaller for all q, because this NE is not risk-dominant, cf. Theorem 4.4.

NE. These are precisely the zero-level sets of the invariant functions shown in Figure 6. As we can
see, in this case, the region of attraction of the payoff-dominant equilibrium, w is smaller than the
region of the, now, risk-dominant equilibrium, 1. Intuitively, when a NE becomes risk-dominated,
its region of attraction shrinks, even if this NE is payoff-dominant. This is because, for a mixed
choice of distributions, the risk-dominant NE yields a higher utility and is that more “attractive” for
the dynamics. This trade-off between high reward at a certain state (e.g., w,w) and high risk if that
state is not reached (e.g., β, 0, with β < 0), also explains why socially optimal, but otherwise risky,
outcomes, e.g., the adoption of revolutionizing technology or a social norm that challenges the status
quo, are never reached in real-life situations.

Stable manifolds for all q ≥ 0. In a similar vein to Figure 4, we next depict the separatrices,
stacked for all values of q ∈ [0, 10], for different parameterizations of the Γw,β class (Figure 8. In
all panels of Figure 8, parameter w is equal to 2. We obtain qualitatively equivalent plots for any
w > 1 and β small enough. The main takeaways from the (essentially exhaustive) visualizations
in the panels of Figure 8 are that (i) the region of attraction of the risk-dominant equilibrium is
larger for all q ≥ 0 regardless of whether this equilibrium is payoff-dominant or not, (ii) the region
of attraction of the payoff-dominant equilibrium may become arbitrarily small as this equilibrium
becomes arbitrarily risky. In particular, observation (ii), suggests that in this case, it is hopeless to
bound any static or average performance measure. This became more transparent with the APoA
analysis in the previous Section of the Appendix (cf. Theorem 4.6 in the main paper). We conclude
this part with some visualizations of the stable and unstable manifolds in a 2 × 2 non-symmetric
PRPG.

Non-symmetric PRPGs. Consider the identical-interest PRPG, IDw,β , with identical payoff func-
tions uw,β,1(s1, s2) = uw,β,2(s1, s2) = Aw,β,s1,s2 , where the payoff matrix Aw,β ∈ R2×2 is given
by:

Aw,β =

(
1 0
β w

)
, β ≤ 1 ≤ w.
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Figure 8: Stable manifolds (separatrices) for all different values of q ∈ [0, 10] (from blue to brown)
in different parameterizations of the Γw,β game for w = 2 and varying β. In all panels, the manifolds
for q = 0, q = 1, and q = 2 are shown in shades of black for reference. The region of attraction of
the payoff-dominant equilibrium (bottom-left corner) shrinks as q increases when this equilibrium
is also risk-dominant (α > 0.5) and increases with q when this equilibrium is not risk-dominant
(α < 0.5). In fact, as β decreases, the payoff-dominant becomes increasingly more “risky” and its
region of attraction becomes arbitrarily small.

The game IDw,β has the same pure NE as the games Γw,β , namely x = y = 0, with payoff w, and
x = y = 1, with payoffs 1 for both players, but now the mixed NE is not symmetric and it is given
by:

x∗ =
w − β

w + 1− β
and y∗ =

w

w + 1− β
.

In Figure 9, we visualize the stable and unstable manifolds (unlike the panels in Figure 8, where we
only visualized the stable manifolds, since in that case, the unstable manifolds were always equal to
the diagonal, x = y) for all values of q ∈ [0, 10] in an instance of IDw,β with w = 2 and β = −2. In
this case, the separating (stable) manifolds do not increase (decrease) monotonically with q as it is
evident from the overlapping (equally) colored regions. Thus, one will require a different approach to
estimate whether the size of the regions of attraction of the payoff-dominant equilibrium follow a
certain monotonicity pattern, which again may change depending on whether this equilibrium is also
risk-dominant or not. In the context of the current paper, Figure 9 highlights that (i) the geometry
of the regions of attraction is highly complex under different algorithms (parametrizations of QRD)
even for low-dimensional, identical interest games, and (ii) given this complexity, the findings in the
class Γw,β become even more surprising and intriguing. Extending the current analysis to further
classes of games and developing potentially novel tools to address the geometry of these classes
constitute straightforward, yet far-reaching, directions for future research.

B.2 MISSING MATERIALS AND PROOFS

We begin this section by showing that any 2 × 2 symmetric PRPGs is equivalent to a game
Γw,β as defined in subsection 4.2. The only non-generic games we are going to exclude fro
the reformulation are games that are dominance-solvable,and therefore, their analysis is trivial
and outside our scope. Recall that Γw,β is a 2 × 2 symmetric PRPG with payoff functions
uw,β,1(s1, s2) = uw,β,2(s2, s1) = Aw,β,s1,s2 , where the payoff matrix Aw,β ∈ R2×2 is given by:
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Figure 9: Stable and unstable manifolds for all q ∈
[0, 10] in an instance of the identical interest game
IDw,β with w = 2 and β = −2. The unique mixed
NE is not symmetric and lies at x∗ = 0.8, while
y∗ = 0.4. The main difference with the symmetric
games in Γw,β is that the regions of attraction of the
payoff-dominant equilibrium (bottom-left corner) are
not increasing (nor decreasing) in q anymore.

Aw,β =

(
1 0
β w

)
, β ≤ 1 ≤ w.

For this part, it is also instructive to consult
Pangallo et al. (2022), which provides a tax-
onomy of 2 × 2 games. Consider an arbi-
trary 2×2 symmetric PRPG with payoff with
payoff functions u1(s1, s2) = u2(s2, s1) =
Bs1,s2 , where the payoff matrix B ∈ R2×2

is given by:

B =

(
a c
b d

)
, (9)

and set without any loss of the generality d ≥
a ≥ b—that may always be done by possibly
re-indexing the agents’ actions. If c > d, then
the game is dominance-solvable (cf. Table
1 of Pangallo et al. (2022)) and as such the
dynamics of the game are trivial. Hence, we
may narrow our scope to payoff matrices that
satisfy d ≥ c. By our assumption that the
game is a PRPG, and hence there it contains
a finite number of Nash equilibria, we may
exclude games where the above inequalities
are not strict. All in all, we are going to
assume without any loss of the generality
that the following conditions hold:

d > a > b and d > c. (10)
Let also (x, 1− x) and (y, 1− y) with x, y ∈ [0, 1] denote the choice distributions of the two agents,
adopting the common notation for the statespace of game dynamics in 2× 2 games. Thus, by slightly
abusing notation, the choice distributions can be conveniently represented by single variables, x and
y for agents 1 and 2, respectively. Such games have three Nash equilibria: two pure at x = y = 1
and x = y = 0, with payoffs a and d, respectively, for both players, as well as one fully mixed at:

x∗ = y∗ =
d− c

a− b+ d− c
, (11)

with payoff (x∗)2a+ x∗(1− x∗)(b+ c) + (1− x∗)2d for both players. Recall that, by definition,
the Nash equilibrium x = y = 0 is always payoff-dominant—due to the possible re-indexing of the
actions—and it is risk-dominant if d− c > a− b.
Lemma B.1. Any 2×2 symmetric PRPG, Γ, with payoff functions u1(s1, s2) = u2(s2, s1) = Bs1,s2 ,
where the payoff matrix B ∈ R2×2 is as in equation 9, can be equivalently represented by a game
Γw,β . The game Γw,β has the same NE as the original game, retains the payoff- and risk-dominance
properties of its equilibrium points, and preserves the limiting behavior of any QRD.

Proof. We begin by presenting the equations of motion of the q-replicator dynamics as functions of
x and y. For the first agent that is:

ẋ = xq
(
u1(a1, y)−

xqu1(a1, y) + (1− x)qu1(a2, y)

xq + (1− x)q

)
=

xq(1− x)q

xq + (1− x)q
(u1(a1, y)− u1(a2, y))

=
xq(1− x)q

xq + (1− x)q
(ay + c(1− y)− by − d(1− y))

=
xq(1− x)q

xq + (1− x)q
[(a− b+ d− c)y − (d− c)]

=
xq(1− x)q

xq + (1− x)q
κ · (y − y∗),

(12)
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where κ := a− b+ d− c. Similarly, we may derive the equation of motions for the second agent
as ẏ = yq(1−y)q

yq+(1−y)q κ · (x− x∗). Here, (x∗, y∗) is the mixed Nash equilibrium of the game as given
in equation 11, and holds y∗ = x∗. Thus, apart from the variables x and y and the hyperparameter
q which is exogenously given, the q-replicator dynamics depend on the payoffs of the game Γ only
through κ and x∗ = d−b

κ . It follows that any transformation that preserves the value of x∗ and
scales κ by a constant may only scale ẋ and ẏ by the same constant; that is, may only affect the
convergence rate of the dyanmics, but not their limiting behavior. Starting from an arbitrary payoff
matrix B as given in equation 9 let us assume, without any loss of the generality, that the conditions
in equation 10 apply. Notice that, since by the aforementioned assumptions we have that d > c, we
may set some δ ∈ R such that 0 < a+ δ < d− c. Accordingly, we consider the following sequence
of transformations: (T1) Add δ to the first column, (T2) subtract c from the second column, and
(T3) divide by a+ δ. These lead to:

B =

(
a c
b d

)
(T1)−→

(
a+ δ c
b+ δ d

)
(T2)−→

(
a+ δ 0
b+ δ d− c

)
(T3)−→

(
1 0
b+δ
a+δ

d−c
a+δ

)
=: A d−c

a+δ ,
b+δ
a+δ

.

Notice thatA d−c
a+δ ,

b+δ
a+δ

is the payoff matrix of a parametric game Γw,β , where w := d−c
a+δ and β := b+δ

a+δ .

Observe, that (T1), (T2) and (T3) leave x∗ unaltered and only scale κ by a constant 1
a+δ ; that is, the

limiting behavior of the q-replicator dynamics is preserved. Furthermore, the risk-dominance of the
equilibrium points is preserved, because:

d− c > a− b if and only if
d− c

a+ δ
> 1− b+ δ

a+ δ

Finally, the payoff-dominance of the Nash equilibrium x = y = 0 is also preserved because, by the
definition of δ, we have that d−ca+δ > 1.

Next, we are going to construct the invariant functions of Γw,β with respect to the q-replicator
dynamics, which are given by Lemma 4.5 that we restate below for completeness. Recall that (α, α)
is defined to be the equilibrium point of the a game Γw,β ; that is, x∗ = y∗ = α.
Lemma 4.5 (Invariant functions of QRD in 2 × 2 symmetric PRPGs). Given a 2 × 2 symmetric
PRPG, Γw,β , whose agents evolve with respect to the q-replicator dynamics, the separable function
Ψq : (0, 1)

2 → R with Ψq(x, y) := ψq(x)− ψq(y), where ψq : (0, 1) → R is given by:

ψq(x) =


x2−q + (1− x)2−q − 1

2− q
+

1− αx1−q − (1− α)(1− x)1−q

1− q
, q ̸= 1, 2,

α ln(x) + (1− α) ln(1− x), q = 1,

ln(x) + ln(1− x) +
α

x
+

1− α

1− x
, q = 2,

(6)

remains constant along any trajectory {x(t), y(t)}t≥0 of the system. The function Ψq(x) is continuous
with respect to the parameter q at, both, q = 1 and q = 2, since limq→1 Ψq(x) = Ψ1(x) and
limq→2 Ψq(x) = Ψ2(x) for all x ∈ (0, 1).

Proof. To prove the statement, we will show that the time derivative of Ψq(x(t), y(t)) is equal to
zero. Let us begin by constructing the derivative of ψ(x). For q ̸= 1, 2 we have that:

ψ′
q(x) =

x

xq
− 1− x

(1− x)q
− α

xq
+

1− α

(1− x)q
=
x− α

xq
+

x− α

(1− x)q
=

(x− α)[(1− x)q + xq]

xq(1− x)q
.

Similarly, for q = 1 we have that:

ψ′
1(x) =

α

x
− 1− α

1− x
=

α− x

x(1− x)
,

and, for q = 2, we have that:

ψ′
2(x) =

1

x
− 1

1− x
− α

x2
+

1− α

(1− x)2
=

(x− α)[x2 + (1− x)2]

x2(1− x)2
.
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That is the derivative of ψ(x) has the general form:

ψ′
q(x) = λ · (x− α)[(1− x)q + xq]

xq(1− x)q
,

for all q ≥ 0, where λ ∈ {1,−1}. Notice, that the choice for λ is purely stylistic because the
invariance of a function is not affected by scalar transformations. Using equation 12 from the proof
of Lemma B.1 we have that:

Ψ̇q(x, y) =
∂Ψq(x, y)

∂x
ẋ− ∂Ψq(x, y)

∂y
ẏ

= ψ′
q(x)ẋ− ψ′

q(y)ẏ

= λ · κ · [(x− α)(y − α)− (y − α)(x− α)] = 0

Before we proceed with the proof of the main theorem of this section (Theorem 4.4), we need to
provide the formal definition of the stable and unstable manifolds of the mixed NE of Γw,β .

Definition B.2 (Stable and unstable manifolds of Γw,βunder QRD). Let Ψq : [0, 1]2 → R with
Ψq(x, y) = Ψq,Stable(x, y) · (x − y) for all x, y ∈ [0, 1] denote the invariant function of the q-
replicator dynamics for the 2× 2 symmetric PRPG, Γw,β . The unstable manifold of the mixed NE
(x, y) = (α, α) under the q-replicator dynamics is the curve MUnstable := {(x, y) ∈ (0, 1)2 | x =
y}; that is, the set of points for which limt→−∞ x(t) = limt→−∞ y(t) = α. Analogously, the stable
manifold of the mixed NE is the curve MStable := {(x, y) ∈ (0, 1)2 | Ψq,Stable(x, y) = 0}; that is,
the set of points for which limt→∞ x(t) = limt→∞ y(t) = α.

For the rest of this section, we are going need to have at hand a n explicit form of the stable manifold
MStable of the mixed NE of Γw,β with respect to the 0-replicator dynamics, or GD. In that regard,
we now going to construct that manifold. Recall that from equation 4.5 the invariant function of any
QRD in Γw,β is given by Ψ0(x, y) := ψ0(x)− ψ0(y) = 0, where:

ψ0(x) =
x2 + (1− x)2 − 1

2
+ 1− αx− (1− α)(1− x) = x2 − 2αx+ α.

Therefore, Ψ0(x, y) = x2 − 2αx+ α− y2 − 2αy + α = (x− y)(x+ y − 2α) = 0 and the stable
manifold (cf. subsection 4.2) satisfies Ψq,Stable(x, y) = x+ y − 2α = 0. In other words, the stable
manifold is the line segment:

MStable = {(x, y) ∈ (0, 1)2 | y = 2α− x}. (13)

Now, let us proceed with the proof of the main theorem.

Theorem 4.4 (Performance of QRD in symmetric 2× 2 PRPG). Given any 2× 2 symmetric PRPG,
which, without any loss of generality, can be represented as an instance Γw,β , it holds that

APMSW,intX (V0,Γw,β) ≥ APMSW,intX (V1,Γw,β) (5)

if and only if whenever the payoff-dominant equilibrium is also risk-dominant, with equality only
when if and only if α = 0.5, i.e., w = 1 − β, where V0, V1 are the equations of motion of the
0-replicator and 1-replicator dynamics, respectively equation QRD.

Proof. Let us first recall that, by equation equation 13 and Definition B.2, the stable and unstable
manifolds of gradient descent (GD) is given by the lines y = 2α− x and y = x, respectively, where
α = w

w+1−β , while the stable and unstable manifolds of the standard replicator dynamics are given
as solutions to:

Ψ1(x, y) = ψ1(x)− ψ1(y) = α ln

(
x

y

)
+ (1− α) ln

(
1− x

1− y

)
= 0,

where the line y = x corresponds to a solution. We are going to to prove that the single remaining
solution of the previous equation, although it cannot be expressed explicitly, satisfies y ≤ 2α− x, if
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α > 1
2 , y ≥ 2α− x, if α < 1

2 (with equality in both cases only if x = α), and y = 2α− x otherwise;
hence, the statements of Theorem 4.4 follow naturally.

It is not difficult to show that ψ′
1(x) =

α−x
x(1−x) (cf. proof of Lemma 4.5), and ψ′′

1 (x) = −x2−2αx+α
x2(1−x)2 <

0. Therefore, ψ1 is a strictly concave function with maximum at x = α. To proceed, it will be
useful to define the implicit function y : (0, 1) → (0, 1) such that y(α) = α, and ∀x ∈ (0, 1) \ {α}:
y(x) ̸= α, and ψ1(y(x)) = ψ1(x). By applying the Intermediate Value Theorem (IVT) on ψ1 in
the intervals (0, α), and (α, 1), we can verify that y is a well-defined bijective function. Note that
y = y(x) has to correspond to the remaining solution of Ψ1(x, y).

Without any loss of the generality, let us consider the case of α > 1
2 . Since ψ′

1 is strictly decreasing
in (0, 1) (ψ′′

1 < 0), we have that ψ′
1(x) > 0 for all x ∈ (0, α), and ψ′

1(x) < 0 for all x ∈ (α, 1).
We begin by proving that for all x ∈ (0, 1 − α) it holds that |ψ′

1(α − x)| < |ψ′
1(α + x)|, i.e.,

ψ′
1(α− x) < −ψ′

1(α+ x). Specifically, we have the following series of equivalences:

ψ′
1(α− x) < −ψ′

1(α+ x) ⇐⇒ x

(α− x)(1− α+ x)
<

x

(α− x)(1− α− x)

⇐⇒ x(α− x)(1− α− x) < x(α− x)(1− α+ x)

⇐⇒ 2x2(1− 2α) < 0

⇐⇒ α >
1

2
,

which holds by assumption. Next, by taking advantage of the above, we can prove that, for all
x ∈ (0, 1− α), it holds ψ1(α− x) > ψ1(α+ x); that is:

ψ1(α− x) =

∫ α−x

0

ψ′
1(t) dt

=

∫ α

0

ψ′
1(t) dt+

∫ α

α−x
−ψ′

1(t) dt

>

∫ α

0

ψ′
1(t) dt+

∫ α+x

α

ψ′
1(t) dt

= ψ1(α+ x)

Furthermore, since ψ1 is monotonically decreasing in (α, 1) (ψ′
1 < 0 in (α, 1)), we have that, for

all x ∈ (0, 1 − α), and for all t ∈ [α + x, 1), it holds ψ1(α − x) > ψ1(t). However, by the IVT,
we have that there exists t∗ ∈ (α, 1) such that ψ1(α − x) = ψ1(t

∗). Therefore, it must hold that
t∗ ∈ (α, α + x). Then, since y is a bijective, we have that y(α − x) = t∗ < α + x, i.e., for all
x ∈ (2α − 1, α) we have that y(x) < 2α − x. Similarly, we have that y(α + x) < α − x, i.e., for
all x ∈ (α, 1), it holds that y(x) < 2α− x. Finally, notice that for all x ∈ (0, 2α− 1), we trivially
have that 2α− x > 1 > y(x); therefore, for all x ∈ (0, 1) \ {α}: y(x) < 2α− x. We remark that
the case of α < 1

2 follows identical arguments, while the case α = 1
2 is trivial.

Technically, a direct implication of the proof of Theorem 4.4 is provided in Lemma B.3 which may
be of independent interest. Recall from the proof of Theorem 4.4 that the solutions to Ψ1(x, y) = 0
are the functions y = x and y : (0, 1) → (0, 1) such that y(α) = α, and for all x ∈ (0, 1) \ {α} it
holds that y(x) ̸= α, and ψ1(y(x)) = ψ1(x).

Lemma B.3 (Curvature of the stable manifold of RD). Consider the 1-replicator dynamics (RD)
in the parametric game Γw,β . The stable manifold, MStable of RD in Γw,β is given by the curve
y = y(x). If the payoff-dominant equilibrium, x = y = 0, is also risk-dominant, then y is strictly
concave. Conversely, if the non-payoff dominant equilibrium, x = y = 1, is risk-dominant, then y is
strictly convex. Otherwise, y(x) = 1− x.

Proof. By differentiating both sides of the implicit function ψ1(y(x)) = ψ1(x) with respect to x,
we get that ψ′

1(y(x))y
′(x) = ψ′

1(x), i.e., y′(x) =
ψ′

1(x)
ψ′

1(y(x))
. Notice that, since y is bijective, ψ′

1

is monotonic (ψ′′
1 < 0), and ψ′

1(y(α)) = ψ′
1(α) = 0, the above equality is well-defined for all
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x ∈ (0, 1) \ {α}. Hence, we have that:

y′′ =
ψ′′
1 (x)[ψ

′
1(y)]

2 − ψ′
1(x)ψ

′′
1 (y)y

′

[ψ′
1(y)]

2

=
ψ′′
1 (x)[ψ

′
1(y)]

2 − [ψ′
1(x)]

2ψ′′
1 (y)

[ψ′
1(y)]

3

=
y3(1− y)3α(1− α)(x− y)(y + x− 2α)

(α− y)3x2(1− x)2y2(1− y)2
,

where the dependency of y to x is implied for compactness. Hence, we have that y′′(x) < 0 if and
only if (x−y)(y+x−2α)

α−y < 0. However, by the Intermediate Value Theorem (IVT) applied on ψ1 in
(0, α), and (α, 1), and the definition of y, it follows, trivially, that x ≤ y if, and only if, α ≤ y,
with equality in both inequalities only if x = α. Therefore, x−yα−y > 0, ∀x ∈ (0, 1) \ {α}; hence
y′′(x) < 0 if, and only if, y+x− 2α < 0, which by the proof of Theorem 4.4 is equivalent to α > 1

2 .
This concludes the proof for the first statement. The second statement follows in a similar manner by
requesting y′′(x) > 0, while the last statement is trivial.

Application: APoA in 2× 2 PRPGs. We conclude this section by providing the proof of Theo-
rem 4.6, which we restate below for convenience. Recall that from this point forward, we focus on
symmetric 2× 2 PRPGs such that payoff- and risk-dominant equilibria coincide, as in such settings,
one can prove particularly strong, tight bounds on ApoA. This showcases the practical importance of
Theorem 4.4 and the invariant function approach.
Theorem 4.6. The APoA of GD dynamics in all 2× 2 symmetric PRPGs, Γw,β , is bounded by 2, i.e.,
APoA(V0,Γw,β) ≤ 2. Furthermore, this bound is tight.

Proof. Let Γw,β be a 2× 2 symmetric PRPG, where the payoff-dominant equilibrium, x = y = 0, is
also risk-dominant, i.e., β > 1−w, or equivalently α > 0.5, where x∗ = y∗ = α is the mixed NE of
Γw,β . Recall that, by equation 13, the stable manifold of the mixed NE of Γw,β with respect to GD is
the line segment:

ℓ : y = 2α− x for x ∈ (max{0, 2α− 1},min{2α, 1}).
Since α > 0.5, we have that 2α − 1 ≥ 0 and 2α ≥ 1; therefore, the extreme points of ℓ are
(0, 2α) and (2α, 0). That implies the the RoA of (1, 1) is the triangle with extreme points at (1, 1),
(2α − 1, 1), and (1, 2α − 1). Since that is a right triangle, with both its base and its height equal
to 2(1 − α), the Lebesque measure of RoA(0, 0) is µ(RoA(1, 1)) = 2(1 − α)2; subsequently,
µ(RoA(0, )) = 1− µ(RoA(1, 1)) = 1− 2(1− α)2. We may calculate the APoA of GD in Γw,β as
a function of w and β. Specifically, when α > 0.5, i.e., β < 1− w, we have that:

APoA(w, β) := APoA(GD,Γw,β)

=
maxx,y∈[0,1] SW(x, y)

APMSW,[0,1]2(GD,Γw,β)

=
SW(0, 0)

SW(0, 0) · µ(RoA(0, 0)) + SW(1, 1) · µ(RoA(1, 1))

=
w

wµ(RoA(0, 0)) + µ(RoA(1, 1))

=
w

w[1− 2(1− α)2] + 2(1− α)2

=
w

w

[
1− 2

(
1−β

w+1−β

)2]
+ 2

(
1−β

w+1−β

)2
=

w(w + 1− β)2

w(w + 1− β)2 − 2(w − 1)(1− β)2
.

We may, now, perform a first-order analysis in APoA(w, β); that is, for all β ≥ 1− w, we have that:

∂APoA(w, β)

∂β
=

−4w2(w − 1)(w + 1− β)(1− β)

[w(w + 1− β)2 − 2(w − 1)(1− β)2]2
≤ 0.
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From the above, it follows that APoA(w, β) ≤ APoA(w, 1− w); that is:

APoA(w, β) ≤ 4w3

4w3 − 2(w − 1)w2
=

2w3

w3 + w2
< 2,

where the last inequality follows by letting w → ∞. Notice that this bound is tight. It is not difficult
to see that if α < 0.5, APoA(w, β) is unbounded.

C NUMERICAL EXPERIMENTS BEYOND 2× 2 PRPGS

In this part, we present results from simulations of the q-replicator dynamics in PRPGs of higher
dimensions, i.e., beyond the 2×2 setting. The purpose of the current simulations is twofold. First, we
want to test whether the theoretical prediction of Theorem 4.4 extends to larger 2-agent, symmetric
games (games in which each of the 2 agents has more than two actions), i.e., whether gradient
descent dynamics have better/worse average performance than the standard replicator dynamics
when payoff-dominance and risk-dominance coincide/differ. Second, we want to test the theoretical
prediction of Theorem 4.6, i.e., whether the Average Price of Anarchy (APoA) remains bounded by
2 (or if not, whether it changes according to some pattern that depends on the size of the input) in
larger 2-agent, symmetric PRPGs in which payoff-dominance and risk-dominance coincide.

Recall that Theorem 3.2, i.e., pointwise convergence of QRD to NEs, holds for arbitrary PRPGs
which means that such experiments are possible (and meaningful) in the first place. However, the
game-theoretic interpretation of the results may not be as straightforward in larger dimensions as it
was in the 2×2 case. The reason is that the notion of risk-dominance does not admit a straightforward
rigorous generalization to arbitrary games. However, in the most natural class of games in which
equilibrium selection is typically studied, risk-dominance can still be defined in an intuitive way
Leonardos & Piliouras (2022). This is the class of diagonal games and their perturbations. A 2-agent,
symmetric, diagonal game can be described by a payoff matrix, U , that has non-zero (and in our case,
non-negative) elements only on the diagonal, i.e., it is of the form,

U =


u1 0 . . . 0
0 u2 . . . 0
...

...
. . .

...
0 0 . . . un

 := diag(u1, u2, . . . , un)

with 0 < u1 < u2 < · · · < un. In these games, un is the payoff of the payoff-dominant equilibrium
for each player. Any failure to coordinate at a pure equilibrium (point on the diagonal) results in a
payoff of zero. Thus, all (pure) equilibria are in a sense equally risky.

C.1 EXPERIMENTAL SETUP

We run experiments in random 2-agent, symmetric diagonal PRPGs (D-PRPGs) of dimensions
n = 2, 3, . . . , 20 (size of each agent’s action space). In each game, the payoffs u1, u2, . . . , un are
selected (pseudo-)randomly and satisfy the following properties: (i) the lowest diagonal payoff, u1,
is at least as large as some predefined positive constant (set equal to 1e− 12 for the experiments),
(ii) the highest (diagonal) payoff, un, is equal to the dimension, n, of the game, i.e., un = 2, 3, . . .
and 20 respectively, and (iii) u2, . . . , un−1 are in ascending order strictly between u1 and un with
randomly selected distances between them. For each dimension, we sample 100 random games and
run the gradient descent and standard replicator dynamics for 1000 initial conditions till convergence.

C.2 NUMERICAL RESULTS

The outputs of the simulations of the above experiments are summarized in Figure 10. Four instances,
for n = 3, 5, 10 and 20 are described for reference in Table 1.

These outputs provide indications for the following:

1. The gradient descent dynamics (continue to) outperform the replicator dynamics in all diagonal
games in terms of average performance. The result holds not only for the aggregate average
metrics reported in Figure 10 and Table 1, but also for each individual game that was sampled.
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Figure 10: Numerical results regarding the APoA metric of replicator dynamics (RD) and gradient
descent (RD) in diagonal PRPGs of dimensions n = 2, 3, . . . , 20. The left panel shows the APoA
of each dynamic together with its standard deviation over 100 randomly sampled games at each
dimension. The panel on the right shows their difference (solid line enveloped by the standard
deviation shaded region) and the difference of the maximum APoA of the dynamics observed over
all the 100 sampled games at each dimension. The GD dynamics throughout outperform the RD
dynamics suggesting that an extension of Theorem 4.4 may be possible to larger dimensional D-
PRPGs.

APoA ± std Maximum APoA

RD GD RD GD

n = 3 1.159 ± 0.052 1.122 ± 0.041 1.234 1.190
n = 5 1.191 ± 0.057 1.135 ± 0.040 1.300 1.223
n = 10 1.216 ± 0.049 1.131 ± 0.030 1.377 1.202
n = 20 1.205 ± 0.036 1.112 ± 0.022 1.284 1.215

Table 1: Numerical results regarding the APoA metric of replicator dynamics (RD) and gradient
descent (GD) in diagonal PRPGs of dimension n = 3, 5, 10 and 20. The second column reports the
average APoA and its standard deviation over 100 random diagonal games for each dimension and
the last column reports the maximum APoA observed in all these instances. Note that the reported
maximum APoA should only be interpreted as a rough indication of the actual maximum APoA
(i.e., of the maximum APoA in the whole population of games of a specific dimension). Accurately
estimating the latter requires a larger sample of games (currently equal to 100 for each dimension).

This provides evidence that the result of Theorem 4.4 may extend to larger dimensions, at least in
the case of diagonal games.

2. The APoA never exceeded the theoretical bound of 2 (and in fact, it was much lower than that as the
Maximum APoA column suggests) in all sampled games. This indicates that the theoretical bound
of 2 for the gradient descent dynamics (cf. Theorem 4.6) possibly extends to larger dimensions as
well. Moreover, this bound still holds numerically for the replicator dynamics (as was the case
when n = 2).

Summing up, the experiments in the diagonal games provide preliminary evidence that the theoretical
results of Theorem 4.4 and Theorem 4.6 that were established in the case of 2× 2 games, seem to
scale well also in larger dimensions. These results provide a promising starting point for the analysis
of average performance measures for both larger classes of games (including arbitrary PRPGs of
larger dimensions) and larger classes of dynamics (with arbitrary regularizers) and, intriguingly,
suggest that our rigorous guarantees in low-dimensional games may admit similar counterparts even
in higher/arbitrary dimensional games, at least of certain structure.

24



Under review as a conference paper at ICLR 2023

On Risk-dominance in Higher Dimensions In diagonal games (D-PRPGs), it is straightforward
to make an equilibrium more risky. This is achieved simply by replacing the zero entries in the
corresponding line of matrix U by some negative number, e.g.,

Urisky,n =


u1 0 . . . 0
0 u2 . . . 0
...

...
. . .

...
−10 −10 . . . un

 := diag(u1, u2, . . . , un; riskn = −10)

In this case, the payoff-dominant equilibrium with payoff un to each player becomes more risky,
since a failure to coordinate on it results to a negative payoff of −10 for the agent who selected the
corresponding action. Proceeding in a similar fashion, one may replace the zero entries with an
(arbitrarily large) negative element in all lines of the matrix except for the first one. In analogy to
the Urisky,n notation, we will denote such games by Urisky := diag(u1, u2, . . . , un; risk = −r), where
r > 0 is the risk constant (equal to −10 in the example above). In this way, all equilibria become
more risky except for the payoff-dominated one, i.e., the equilibrium with payoffs u1 to each agent
which corresponds to the action profile in which every agent selects their first action.6

Concerning our experiments, the outcome of Figure 10 (see also Table 1) is reversed in games of the
form Urisk, i.e., in games in which the payoff superior equilibria were more risky (not reported here).

6An alternative interesting approach to generalize the notion of risk-dominance in arbitrary games is via
pairwise comparisons of actions as proposed by Honda (2012).
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