
Sparse Autoencoders Match Supervised Features for Model Steering on the IOI
Task

Aleksandar Makelov 1

Abstract
Sparse autoencoders (SAEs) have attracted atten-
tion as a way towards unsupervised disentangling
of hidden LLM activations into meaningful fea-
tures. However, evaluations of SAE architectures
and training algorithms have so far been indi-
rect due to the difficulty – both conceptual and
technical – of obtaining ‘ground truth’ features
to compare against. To overcome this, recent
work (Makelov et al., 2024) has proposed a suite
of SAE evaluations that compare SAE features
against feature dictionaries learned with super-
vision for a specific model capability. However,
the evaluations were implemented in a mostly ex-
ploratory way, and did not optimize for eliciting
best SAE performance across different SAE vari-
ants.

In this work, we improve upon this by running
a systematic and thorough study of using SAEs
for steering on the IOI task, comparing several
recently proposed SAE variants: ‘vanilla’ SAEs
(Bricken et al., 2023), gated SAEs (Rajamanoha-
ran et al., 2024) and topK SAEs (Gao et al., 2024).
We find that, even by employing a simple and
cheap heuristic for choosing good SAEs for edit-
ing, we are able to greatly improve upon the re-
sults of prior work, and demonstrate that SAE
features are able to perform on par with super-
vised feature dictionaries. Further, we find that
topK SAEs and gated SAEs generally outperform
other variants on this test, and topK SAEs can
almost match supervised features in terms of edit
quality.

1. Introduction and Related Work
The linear representation hypothesis (Mikolov et al., 2013;
Grand et al., 2018; Li et al., 2021; Abdou et al., 2021; Nanda
et al., 2023) is a central organizing principle of mechanistic

1Independent. Correspondence to: Aleksandar Makelov <alek-
sandar.makelov@gmail.com>.

interpretability research. One version of this hypothesis is
that LLM activations can be decomposed into sparse linear
combinations of features from a large, shared feature dic-
tionary. Recently, a series of works has proposed applying
the (unsupervised) sparse autoencoder (SAE) framework
to find such dictionaries (Olshausen & Field, 1997; Faruqui
et al., 2015; Goh, 2016; Arora et al., 2018; Yun et al., 2021;
Cunningham et al., 2023; Bricken et al., 2023; Rajamanoha-
ran et al., 2024; Templeton et al., 2024).

While initial results are promising, they rely on qualitative
and/or indirect evaluation of the learned features such as
proxies for the ‘true’ features, non-trivial assumptions about
SAE learning or success in toy models (Elhage et al., 2022;
Bricken et al., 2023; Sharkey et al., 2023). As a step to-
wards more objective SAE evaluations, recently Makelov
et al. (2024) proposed to use sparse feature dictionaries
learned with supervision in the context of a given model
capability (specifically, the IOI task (Wang et al., 2023)) as
a ‘skyline’ for achievable SAE performance w.r.t. this capa-
bility. They developed several evaluations that (1) confirm
the supervised features provide a high-quality decomposi-
tion of model computations w.r.t the capability and (2) use
these supervised features to contextualize SAE results, for
SAEs trained on distributions of either capability-specific
or internet text.

In this paper, we focus on, and methodologically improve
upon, one of the evaluations proposed by Makelov et al.
(2024): sparse controllability. It evaluates the degree to
which we can add/remove a small number of SAE features
in order to change the intermediate ‘variables’ represented
by the supervised dictionaries developed by Makelov et al.
(2024) for the IOI task1. Our main contributions are:

• Most importantly, we sweep over hyperparameters to
find, for each location in the IOI circuit, the best SAE
within each variant for editing that location. This al-
lows us to probe the limits of SAEs for controlling the
model, and reveals that some SAE variants, such as
topK SAEs (Gao et al., 2024), can perform on par with

1While not explicitly recognized by the authors, the sparse
control evaluation is essentially a comparison between SAEs and a
special case of another popular approach for LLM control, steering
vectors (Rimsky et al., 2023; Zou et al., 2023).

1

Sparse Autoencoders Match Supervised Features for Model Steering on the IOI Task

supervised features for control in the IOI task.

• We improve upon the SAE training methodology of
Makelov et al. (2024) by comparing several SAE vari-
ants and using various training tactics suggested in the
literature.

• We investigate the correlation between various proxy
metrics of SAE quality used in the literature (such as
loss recovered and `0 loss) and success in controlling
the model. We also evaluate the similarity of the fea-
tures learned by the best SAEs for editing across the
three variants to the supervised dictionaries.

2. Preliminaries
Vanilla SAEs. We begin by describing ‘vanilla’ SAEs, fol-
lowing Bricken et al. (2023). A ‘vanilla SAE’ for the pur-
poses of this paper is an unsupervised model which learns
to reconstruct activations a ∈ Rn as a weighted sum of
m features with non-negative weights. Specifically, the
autoencoder computes a hidden representation

f = ReLU (Wenc (a− bdec) + benc)

and a reconstruction

â =Wdecf + bdec =

m∑
j=1

fj(Wdec):,j + bdec (1)

where Wenc ∈ Rm×n, Wdec ∈ Rn×m,bdec ∈ Rn,benc ∈
Rm are learned parameters. The rows of Wenc are the en-
coder directions, and the columns of Wdec are the decoder
directions. The decoder directions are constrained to have
unit norm: ‖(Wdec):,i‖2 = 1. The training objective over

examples {a(k)}k is
∑
k

(∥∥a(k) − â(k)
∥∥2
2
+ λ

∥∥f (k)∥∥
1

)
where λ is the `1 regularization coefficient.

Gated SAEs. Proposed recently by Rajamanoharan et al.
(2024), gated SAEs replace the encoder part of an SAE
with two parallel paths: one determines which features to
activate, and the other computes the magnitudes of these
features. This is done in order to avoid the shrinkage of
reconstructions inherent to the `1 regularization in vanilla
SAEs; we refer the reader to Rajamanoharan et al. (2024)
for more details on the architecture and loss function.

topK SAEs. Proposed recently by Gao et al. (2024), topK
SAEs replace the `1 regularization in vanilla SAEs with
a topK activation function: f = TopK (Wenc(a− bdec)),
where TopK zeroes out all but the k highest entries of its
input; the reconstruction and loss are then computed as for
vanilla SAEs.

The promise of topK SAEs is that they can overcome the
shrinkage problem by dropping the `1 penalty, and at the

same time be easy to tune, because the sparsity is directly
controlled by the hyperparameter k.

The IOI task, and activation editing with supervised fea-
ture dictionaries. The IOI task (Wang et al., 2023) is a sim-
ple ‘algorithmic’ language task, where an LLM is prompted
with sentences of the form ‘When Mary and John went to the
store, John gave a book to’ (with the intended completion in
this case being ‘ Mary’). Wang et al. (2023) discovered that
the model uses a circuit of attention heads to solve this task,
with several classes of heads performing specific subtasks
of the overall algorithm (Appendix Figure 4). See Appendix
A for more details on the IOI task and the precise dataset
we use for it.

We refer to the repeated name (John) as S (the subject) and
the non-repeated name (Mary) as IO (the indirect object).
For each choice of the IO and S names, there are two pat-
terns the sentence can have: one where the IO name comes
first (we call these ‘ABB examples’), and one where it comes
second (we call these ‘BAB examples’). We refer to this
binary attribute as the Pos attribute (short for position). We
will think of IO, S and Pos as the ‘prompt attributes’ in
the IOI task: functions which take a prompt p as input, and
output the value of the corresponding attribute of p.

It is shown in Makelov et al. (2024) that the activation a(p)
of a prompt p at a given site (e.g., output of some attention
head) in the IOI circuit can be well-approximated using a
supervised feature dictionary which has features {aIO=v},
{aPos=v} and {aS=v}, one for each possible value2 v of each
of the three prompt attributes IO, Pos and S, so that

a(p) ≈ a+ vIO=IO(p) + vPos=Pos(p) + vS=S(p)

where a = Ep′∼D [a(p′)] is the expected activation over the
entire IOI distribution. Specifically, a good choice for the
supervised dictionaries is to simply take the average acti-
vation over the training set for each value of each attribute
(and subtract the mean activation):

vIO=v = Ep∼D [a(p)|IO (p) = v]− a.

They further show that ‘activation arithmetic’ (Mikolov
et al., 2013) can be used to edit the model’s internal repre-
sentations of individual attributes by adding or removing
features from the supervised dictionaries. For example,
to change the model’s internal representation of IO from
‘Mary’ to ‘Alice’, we can form the edited activation

aedited = a− vIO=Mary + vIO=Alice.

2In the IOI dataset used in this work, there are 216 possible
values for each of IO and S, and 2 possible values for Pos.

2

Sparse Autoencoders Match Supervised Features for Model Steering on the IOI Task

0.0 0.2 0.4 0.6 0.8 1.0
Edit Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Ed
it

M
ag

ni
tu

de
 (W

ei
gh

t R
em

ov
ed

)
Interpretation-agnostic edits

0.0 0.2 0.4 0.6 0.8 1.0
Edit Accuracy

Interpretation-aware edits

SAE Variant & Edit Method
Vanilla (Interpretation-aware)
Gated (Interpretation-aware)
Topk (Interpretation-aware)
Supervised
Edit Attribute and Location
IO in (B)NM out
Pos in (B)NM qk
Pos in (B)NM q
Pos in S-I out
Pos in S-I v
Pos in Ind+DT out

Figure 1. Main results from our study, showing the trade-offs between edit accuracy and edit magnitude (better is down and to the right).
Left: results in the interpretation-agnostic editing regime. Right: results in the interpretation-aware editing regime. Each color represents
an SAE variant, and each shape a cross-section of the IOI circuit (see Appendix A for more details on cross-sections). See Section 3.2 for
more details on the two editing regimes.

3. Methods
3.1. SAE Training Methodology

The most important changes we make compared to the train-
ing methodology of Makelov et al. (2024) are various train-
ing tactics suggested in the literature, such as resampling
dead neurons followed by a warmup of the learning rate
(for vanilla and gated SAEs only), and a cooldown of the
learning rate at the end of training. Details are given in
Appendix C.

3.2. Sparse Controllability Evaluation

We faithfully follow the methodology of Makelov et al.
(2024) for the sparse controllability evaluation. Specifically,
we edit the IO and Pos attributes in cross-sections of the
IOI circuit3. We use both the interpretation-agnostic and
interpretation-aware editing methods (described in more
detail in section 5.1. of Makelov et al. (2024)), as explained
below. Furthermore, to do edits, we restrict ourselves to only
subtracting a single SAE feature from the original activation,
and adding a single SAE feature from the counterfactual
activation. This is a fair comparison, since it matches the
expressive power of the supervised dictionaries, which have
exactly one feature per attribute. This is a departure from
the methodology of Makelov et al. (2024), who varied the
number of exchanged features beyond one. We focus on this
regime because we found that, when we pick good SAEs,
this is sufficient to achieve good results.

3We chose not to edit S, as it was shown in Makelov et al.
(2024) that that the effect of ground-truth edits to S is very small,
making evaluation noisy.

Counterfactual prompts. Suppose we’re given an original
activation as we want to edit, and a counterfactual activation
at that was computed using a prompt capturing the edit we
want to make. For example, suppose the original prompt is
‘When Mary and John went to the store, John gave a book
to’, and we want to change the IO attribute from ‘Mary’ to
‘Alice’. Then the counterfactual prompt would be ‘When
Alice and John went to the store, John gave a book to’.

Suppose our SAE has a dictionary of decoder vectors
{uj}mj=1, and the original and counterfactual activations
as,at have reconstructions respectively

âs =
∑
i∈S

αiui + bdec, ât =
∑
i∈T

βiui + bdec

for S, T ⊂ {1, . . . ,m} and αi, βi > 0.

Choosing the features for an edit. To obtain a fair compar-
ison between SAEs and supervised dictionaries, we subtract
a single feature active for the original activation as, and
add a single feature active for the counterfactual activation
at. The question is how to pick these features, which we
describe next.

Interpretation-agnostic editing. The goal of this method
is to measure the usefulness of a sparse feature dictionary
for editing independent of any human interpretation of the
features; this aims to achieve a more unbiased and objective
assessment, and is motivated at length in Makelov et al.
(2024). Here, we cast the editing problem as a combina-
torial optimization over features to subtract/add in feature

3

Sparse Autoencoders Match Supervised Features for Model Steering on the IOI Task

arithmetic. Specifically, consider the optimization problem

min
i∈S,j∈T

‖(as − αiui + βjuj)− at‖2

In words, this problem asks for a feature to remove (i)
from the original activation and a feature to add (j) from
the counterfactual one to bring it as close as possible to
the counterfactual activation, where the features to add are
taken directly from the counterfactual one. We solve the
problem by greedily (w.r.t. the objective) picking the first
of the two features to exchange, and then the other.

Interpretation-aware editing. The goal of this method is to
measure the usefulness of a sparse feature dictionary for edit-
ing from a human-interpretable perspective. Specifically,
we look at the features active in the sparse reconstructions of
as and at, and remove/add features based on their F1 score
w.r.t. the value of the attribute being edited. See Appendix
B for more details on how the F1 score is computed and
some of the subtleties of this method.

On the differences between the two editing regimes. It is
important to understand how the two editing regimes dif-
fer. The interpretation-agnostic regime is more unrestricted,
because it allows more flexibility in the choice of which fea-
tures to add/remove per a pair of original and counterfactual
activations. By contrast, the interpretation-aware regime
requires going over the active features in a pre-determined
order that is uniform over the dataset, as given by decreasing
F1 score for the original value of the attribute being edited
(when choosing the feature to subtract) and the counterfac-
tual value (when choosing the feature to add). This makes
the interpretation-aware regime more constrained, but also
more approachable and useful from a human perspective.

Evaluation metrics. Both of these methods are evaluated
along two main axes (same as in Makelov et al. (2024)),
explained below.

Edit accuracy. This metric measures agreement of next-
token predictions against a ‘ground-truth’ edit. Specifically,
given an edit (e.g., change the IO attribute), accuracy is the
fraction of prompts for which performing the edit leads to
the same next-token prediction as when we instead replace
activations by the activations of counterfactual prompts cor-
responding to the edit.

Edit magnitude. This metric measures the ‘damage’ to the
representation done by the edit. It is important to measure
this, because editing would be trivial if one can simply
remove all features from the reconstruction, and add back
all features from the counterfactual activation. Specifically,
given a reconstruction of the original activation

âs =
∑
i∈S

αiui + bdec,

we measure the magnitude of editing out the feature αiui

via the weight of the feature, defined as

weight (i) =
αiu

>
i (âs − bdec)

‖âs − bdec‖22
.

The weight measures the contribution of the feature to the
reconstruction, and the weights of all active features sum
to 1:

∑
i∈S weight (i) = 1. While technically weights can

be negative or greater than 1, it was observed in Makelov
et al. (2024) that this rarely happens in practice. Finally,
note that we only report the weight of the feature removed
during the edit; in general, the weight of the feature added
shows simliar trends.

Choosing SAEs to use for editing. In a major departure
from the methodology of Makelov et al. (2024), we do not
pick the SAEs to use for editing each circuit location in an
ad-hoc way based on the `0 and logit difference recovered
metrics. Instead, we directly choose SAEs best for editing.

How do we determine which of several SAEs for a circuit
location is best for editing? Ideally, we would perform edits
using each SAE, and evaluate similarity of the final model
output to the output when activation patching counterfactual
activations at the same attention head. Due to time con-
straints, we instead used geometric measures to evaluate
how close to the target counterfactual activation at a given
edited activation aedited is. Specifically, we simply pick the
SAE that minimizes the distance ‖at − aedited‖2. We also
experimented with using the attribution vector∇at

Loss to
weight the distance between at and aedited, but found that
this did not change results substantially.

We choose the available SAEs for each variant as follows.
First, we take the last-epoch SAEs from each training run
(we also tried optimizing the checkpoint epoch, but found
this not to change results substantially), and then:

• for vanilla and gated SAEs (which use the `1 penalty),
for each given location in the IOI circuit (e.g., the out-
put of a given attention head), and for each attribute
we wish to edit (IO and Pos), we pick the best `1 co-
efficient out of the four values λ ∈ (0.5, 1.0, 2.5, 5.0)
according to the above distance metric.

• for topK SAEs, where sparsity is hard-coded by the
hyperparameter k, we directly pick the SAE where
k = 3 for each location in the IOI circuit. This puts
topK SAEs at a relative disadvantage, because we
use our high-level understanding of the task and the su-
pervised dictionaries for it to set k = 3 always (instead
of optimizing over k across the four values we used
k ∈ (3, 6, 12, 24) for each circuit location). Still, we
found that topK SAEs achieve very competitive (and
almost always superior) results despite this limitation.

As mentioned, we always report results using the last epoch

4

Sparse Autoencoders Match Supervised Features for Model Steering on the IOI Task

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Rank Correlation w/ Edit Success Proxy

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Co
un

t
0 Loss

Attribute
Pos
IO

0.4 0.2 0.0 0.2 0.4 0.6 0.8
Rank Correlation w/ Edit Success Proxy

0

2

4

6

8

10

12

14

Co
un

t

Logitdiff Recovered
Attribute

Pos
IO

Figure 2. Distributions of rank correlations between our proxy for edit success (distance of the edited activation from the counterfactual
activation) and two proxy metrics for SAE quality: `0 loss, i.e. the average number of active features per example (left) and the recovered
fraction of the logit difference (right). Each datapoint represents a combination of a circuit location and a choice of `1 regularization.
This plot only shows results for gated SAEs.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Cosine Similarity Value

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

Mean-Max Cosine Similarity (IO)
variant

gated
vanilla
topk

0.0 0.2 0.4 0.6 0.8
Cosine Similarity Value

0

1

2

3

4

De
ns

ity
Mean-Max Cosine Similarity (Pos)

variant
gated
vanilla
topk

Figure 3. Distributions of the mean-max cosine similarity between the features in the best SAEs for editing across the three variants
(vanilla, gated, topK) for the interpretation-agnostic editing regime. Here the datapoints are locations in the IOI circuit (smoothed with a
kernel density estimate; values above 1 are artifacts of the smoothing).

of training for each SAE. We also tried optimizing over
epochs, but found this not to improve results substantially.

4. Results
4.1. Main Editing Results

The main results of our study are shown in Figure 1. We find
that, thanks to our careful choice of SAEs at each circuit
node, we are able to greatly outperform the editing results
from the original work Makelov et al. (2024):

• Remarkably, we find that SAE features are able to
perform on par with supervised features for control
in the IOI task, an important result for the field of
interpretability.

• Specifically, topK SAEs almost match supervised fea-
tures in the interpretation-agnostic editing regime, and
also in the interpretation-aware regime, except for
when editing the IO attribute (where they fail quite
catastrophically, but gated SAEs do not).

• We further observe that topK and gated SAEs are far
superior to vanilla SAEs, though gated SAEs fall a bit
behind topK SAEs.

4.2. Some Additional Investigations

We were further motivated by two natural questions.

How do the traditional proxy metrics of SAE quality (such as
loss recovered and `0 loss) correlate with success in control-
ling the model? We show rank correlation results for gated
SAEs in Figure 2. We observe very good correlation with

5

Sparse Autoencoders Match Supervised Features for Model Steering on the IOI Task

sparsity, and a moderate correlation with logit difference
recovery. Both plots are created using the interpretation-
agnostic editing regime.

How similar are the SAE features of the best SAEs to the
supervised features in a direct geometric sense? We can
measure this by evaluating the mean maximum cosine simi-
larity between the set of SAE features for our best chosen
SAEs, and the set of supervised features at each circuit lo-
cation. Results are in Figure 3. We find that the cosine
similarity is above chance (we work in 64 dimensions, so
the chance similarity is 1/8) for most variants and features,
but also not very high. Interestingly, cosine similarity seems
inversely correlated with edit success, which suggests that
the best SAEs for editing may use diverse features across
prompts.

5. Conclusion, Limitations, and Future Work
There are several possible improvements that would
strengthen the signficance of this work. First, it would be
interesting to investigate SAEs trained on the full pretrain-
ing distribution of GPT2-Small, and see how they compare
to the IOI-specific SAEs we considered here. Second, a
more direct evaluation when choosing which SAEs to use
for editing, based on model behavior instead of geometric
measures, would be an interesting addition. Finally, a much
more ambitious avenue would be to investigate the use of
SAEs for control in more complex tasks.

In conclusion, we have shown that SAEs can be used to con-
trol the model in the IOI task, and that some SAE variants
can perform on par with supervised features for this task,
which is an intriguing and perhaps unexpected success for
unsupervised interpretability methods. It is exciting to see if
these results can be extended to more natural and complex
tasks.

Acknowledgements
The author would like to thank Georg Lange and Neel Nanda
for valuable discussions informing the perspectives in the
closely related work Makelov et al. (2024). The work in
this paper was supported by the Long Term Future Fund.
Two open source libraries were used to support the ex-
periments for the paper: transformerlens (Nanda &
Bloom, 2022)4 and mandala (Makelov, 2024)5.

References
Abdou, M., Kulmizev, A., Hershcovich, D., Frank, S.,

Pavlick, E., and Søgaard, A. Can language models encode

4https://github.com/TransformerLensOrg/
TransformerLens

5https://github.com/amakelov/mandala

perceptual structure without grounding? a case study in
color. arXiv preprint arXiv:2109.06129, 2021.

Arora, S., Li, Y., Liang, Y., Ma, T., and Risteski, A. Linear
algebraic structure of word senses, with applications to
polysemy. Transactions of the Association for Computa-
tional Linguistics, 6:483–495, 2018.

Bricken, T., Templeton, A., Batson, J., Chen, B., Jermyn, A.,
Conerly, T., Turner, N., Anil, C., Denison, C., Askell, A.,
Lasenby, R., Wu, Y., Kravec, S., Schiefer, N., Maxwell,
T., Joseph, N., Hatfield-Dodds, Z., Tamkin, A., Nguyen,
K., McLean, B., Burke, J. E., Hume, T., Carter, S.,
Henighan, T., and Olah, C. Towards monosemanticity:
Decomposing language models with dictionary learning.
Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Conerly, T., Templeton, A., Bricken, T., Mar-
cus, J., and Henighan, T. Update on how we
train saes. Transformer Circuits Thread, 2024.
URL https://transformer-circuits.
pub/2024/april-update/index.html#
training-saes.

Cunningham, H., Ewart, A., Riggs, L., Huben, R., and
Sharkey, L. Sparse autoencoders find highly inter-
pretable features in language models. arXiv preprint
arXiv:2309.08600, 2023.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T.,
DasSarma, N., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Jones, A., Kernion, J., Lovitt, L.,
Ndousse, K., Amodei, D., Brown, T., Clark, J., Kaplan, J.,
McCandlish, S., and Olah, C. A mathematical framework
for transformer circuits. Transformer Circuits Thread,
2021. URL https://transformer-circuits.
pub/2021/framework/index.html.

Elhage, N., Hume, T., Olsson, C., Schiefer, N., Henighan,
T., Kravec, S., Hatfield-Dodds, Z., Lasenby, R., Drain,
D., Chen, C., et al. Toy models of superposition. arXiv
preprint arXiv:2209.10652, 2022.

Faruqui, M., Tsvetkov, Y., Yogatama, D., Dyer, C., and
Smith, N. A. Sparse overcomplete word vector repre-
sentations. In Annual Meeting of the Association for
Computational Linguistics, 2015. URL https://api.
semanticscholar.org/CorpusID:9397697.

Gao, L., la Tour, T. D., Tillman, H., Goh, G., Troll, R.,
Radford, A., Sutskever, I., Leike, J., and Wu, J. Scal-
ing and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

6

https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/amakelov/mandala
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://api.semanticscholar.org/CorpusID:9397697
https://api.semanticscholar.org/CorpusID:9397697

Sparse Autoencoders Match Supervised Features for Model Steering on the IOI Task

Goh, G. Decoding the representation of code in the
brain: an fmri study of code review and exper-
tise. 2016. URL https://gabgoh.github.io/
ThoughtVectors/.

Grand, G., Blank, I., Pereira, F., and Fedorenko, E. Seman-
tic projection: Recovering human knowledge of multi-
ple, distinct object features from word embeddings. arxiv.
arXiv preprint arXiv:1802.01241, 2018.

Li, B. Z., Nye, M., and Andreas, J. Implicit representations
of meaning in neural language models. arXiv preprint
arXiv:2106.00737, 2021.

Makelov, A. Mandala: Persistent & queriable memoization
for easy and powerful scientific data management. In
Proceedings of the 23rd Python in Science Conference,
2024. To appear.

Makelov, A., Lange, G., and Nanda, N. Towards principled
evaluations of sparse autoencoders for interpretability and
control. arXiv preprint arXiv:2405.08366, 2024.

McGrath, T., Rahtz, M., Kramar, J., Mikulik, V., and Legg,
S. The hydra effect: Emergent self-repair in language
model computations. arXiv preprint arXiv:2307.15771,
2023.

Mikolov, T., tau Yih, W., and Zweig, G. Linguistic reg-
ularities in continuous space word representations. In
North American Chapter of the Association for Com-
putational Linguistics, 2013. URL https://api.
semanticscholar.org/CorpusID:7478738.

Nanda, N. and Bloom, J. Transformerlens.
https://github.com/neelnanda-io/
TransformerLens, 2022.

Nanda, N., Lee, A., and Wattenberg, M. Emergent linear rep-
resentations in world models of self-supervised sequence
models. arXiv preprint arXiv:2309.00941, 2023.

Olshausen, B. A. and Field, D. J. Sparse coding with an over-
complete basis set: A strategy employed by v1? Vision
Research, 37:3311–3325, 1997. URL https://api.
semanticscholar.org/CorpusID:14208692.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., Das-
Sarma, N., Henighan, T., Mann, B., Askell, A., Bai,
Y., Chen, A., Conerly, T., Drain, D., Ganguli, D.,
Hatfield-Dodds, Z., Hernandez, D., Johnston, S., Jones,
A., Kernion, J., Lovitt, L., Ndousse, K., Amodei, D.,
Brown, T., Clark, J., Kaplan, J., McCandlish, S., and
Olah, C. In-context learning and induction heads.
Transformer Circuits Thread, 2022. URL https:
//transformer-circuits.pub/2022/
in-context-learning-and-induction-heads/
index.html.

Rajamanoharan, S., Conmy, A., Smith, L., Lieberum, T.,
Varma, V., Kramár, J., Shah, R., and Nanda, N. Improving
dictionary learning with gated sparse autoencoders. arXiv
preprint arXiv:2404.16014, 2024.

Rimsky, N., Gabrieli, N., Schulz, J., Tong, M., Hubinger,
E., and Turner, A. M. Steering llama 2 via contrastive
activation addition. arXiv preprint arXiv:2312.06681,
2023.

Sharkey, L., Braun, D., and Millidge, B. Taking
the temperature of transformer circuits. 2023.
URL https://www.alignmentforum.
org/posts/z6QQJbtpkEAX3Aojj/
interim-research-report-taking-features-out-of-superposition.

Templeton, A., Conerly, T., Marcus, J., Lindsey, J., Bricken,
T., Chen, B., Pearce, A., Citro, C., Ameisen, E., Jones,
A., Cunningham, H., Turner, N. L., McDougall, C.,
MacDiarmid, M., Freeman, C. D., Sumers, T. R.,
Rees, E., Batson, J., Jermyn, A., Carter, S., Olah,
C., and Henighan, T. Scaling monosemanticity: Ex-
tracting interpretable features from claude 3 sonnet.
Transformer Circuits Thread, 2024. URL https:
//transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Wang, K. R., Variengien, A., Conmy, A., Shlegeris, B., and
Steinhardt, J. Interpretability in the wild: a circuit for indi-
rect object identification in GPT-2 small. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=NpsVSN6o4ul.

Yun, Z., Chen, Y., Olshausen, B. A., and Le-
Cun, Y. Transformer visualization via dictionary
learning: contextualized embedding as a linear su-
perposition of transformer factors. In Workshop
on Knowledge Extraction and Integration for Deep
Learning Architectures; Deep Learning Inside Out,
2021. URL https://api.semanticscholar.
org/CorpusID:232417301.

Zou, A., Phan, L., Chen, S., Campbell, J., Guo, P., Ren, R.,
Pan, A., Yin, X., Mazeika, M., Dombrowski, A.-K., et al.
Representation engineering: A top-down approach to ai
transparency. arXiv preprint arXiv:2310.01405, 2023.

7

https://gabgoh.github.io/ThoughtVectors/
https://gabgoh.github.io/ThoughtVectors/
https://api.semanticscholar.org/CorpusID:7478738
https://api.semanticscholar.org/CorpusID:7478738
https://github.com/neelnanda-io/TransformerLens
https://github.com/neelnanda-io/TransformerLens
https://api.semanticscholar.org/CorpusID:14208692
https://api.semanticscholar.org/CorpusID:14208692
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://api.semanticscholar.org/CorpusID:232417301
https://api.semanticscholar.org/CorpusID:232417301

Sparse Autoencoders Match Supervised Features for Model Steering on the IOI Task

IO

S2

END

When
Mary

and
S1 John

went

the
store

,

John
gave

a
drink

to

S1+1 Previous Token Heads
2.2 4.11

Duplicate Token Heads
0.1 3.0 (0.10)

Induction Heads
5.5 6.9 (5.8 5.9)

S-Inhibition Heads
7.3 7.9 8.6 8.10

Backup Name Mover Heads
9.0 9.7 10.1 10.2 10.6 10.10 11.2 11.9

Name Mover Heads
9.9 9.6 10.0

Negative Name Mover Heads
10.7 11.10

to

Class of Heads
Layer.Head

Key / Value

OutputQuery

Legend

Figure 4. A reproduction of Figure 2 from Wang et al. (2023), showing the internal structure of the IOI circuit. Original caption: The input
tokens on the left are passed into the residual stream. Attention heads move information between residual streams: the query and output
arrows show which residual streams they write to, and the key/value arrows show which residual streams they read from.

A. Additional Details on the IOI Task
A.1. Dataset, Model and Evaluation Details for the IOI Task

We use GPT2-Small for the IOI task, with a dataset that spans 216 single-token names, 144 single-token objects and 75
single-token places, which are split 1 : 1 across a training and test set. Every example in the data distribution includes (i) an
initial clause introducing the indirect object (IO, here ‘Mary’) and the subject (S, here ‘John’), and (ii) a main clause that
refers to the subject a second time. Beyond that, the dataset varies in the two names, the initial clause content, and the main
clause content. Specifically, use three templates as shown below:

Then, [] and [] had a long and really crazy argument. Afterwards, [] said to
Then, [] and [] had lots of fun at the [place]. Afterwards, [] gave a [object] to

Then, [] and [] were working at the [place]. [] decided to give a [object] to

and we use the first two in training and the last in the test set. Thus, the test set relies on unseen templates, names, objects
and places. We used fewer templates than the IOI paper (Wang et al., 2023) in order to simplify tokenization (so that the
token positions of our names always align), but our results also hold with shifted templates like in the IOI paper.

On the test partition of this dataset, GPT2-Small achieves an accuracy of ≈ 91%. The average difference of logits between
the correct and incorrect name is ≈ 3.3, and the logit of the correct name is greater than that of the incorrect name in ≈ 99%
of examples. Note that, while the logit difference is closely related to the model’s correctness, it being > 0 does not imply
that the model makes the correct prediction, because there could be a third token with a greater logit than both names.

A.2. Additional details on the IOI circuit

Circuit structure. To refer to individual token positions within the sentence, we use the notation of Wang et al. (2023): IO
denotes the position of the IO name, S1 and S2 denote respectively the positions of the first and second occurrences of the S
name (with S1+1 being the token position after S1), and END denotes the last token in the sentence (at the word ‘to’).

Wang et al. (2023) suggest the model uses the algorithm ‘Find the two names in the sentence, detect the repeated name, and
predict the non-repeated name’ to do this task. Specifically, they discover several classes of heads in the model, each of
which performs a specific subtask of this overall algorithm. A simplified version of the circuit involves the following three
classes of heads and proceeds as follows:

• Duplicate token heads: these heads detect the repeated name in the sentence (the S name) and output information

8

Sparse Autoencoders Match Supervised Features for Model Steering on the IOI Task

about both its position and identity to the residual stream6

• S-Inhibition heads: these heads read the identity and position of the S name from the residual stream, and output a
signal to the effect of ‘do not attend to this position / this token identity’ to the residual stream

• Name Mover heads: these are heads that attend to names in the sentence. Because the signal from the S-Inhibition
heads effectively removes the S name from the attention of these heads, they read the identity of the IO name from the
input prompt, and copy it to the last token position in the residual stream.

In reality, the circuit is more nuanced, with several other classes of heads participating: previous token heads, induction
heads (Olsson et al., 2022), backup name mover heads, and negative name mover heads. In particular, the circuit exhibits
backup behavior (McGrath et al., 2023) which poses challenges for interpretability methods that intervene only on single
model components at a time. We refer the reader to Figure 4 for a schematic of the full circuit, and to Wang et al. (2023) for
a more complete discussion.

B. Precision, recall, and the F1-score.
Given a set of examples S used for evaluation, a learned feature f active on a subset F ⊂ S of examples, and a binary
attribute of a prompt which is true for the subset A ⊂ S, we define recall(F,A) = |A ∩ F | / |A| and precision(F,A) =
|A ∩ F | / |F |. Following Bricken et al. (2023), we consider a feature meaningful for a given property if it has both high
recall and high precision for that property, and we combine them into a single number using the F-score:

F1(F,A) =
2 precision(F,A) recall(F,A)

precision(F,A) + recall(F,A)
.

An F1-score of α guarantees that both precision and recall are at least α
2−α . For example, when α = 0.8 (the value we use in

most evaluations), both precision and recall are at least 0.8/1.2 ≈ 0.67. Requiring a sufficiently high F1 value is important
in order to avoid labeling a trivial feature as meaningful for attributes where |A| is large, because then a feature active for all
examples can have a high F1-score.

The F1 score has some limitations in the context of our work:

• it does not take into account the magnitude of the feature activations; for instance, a feature that is active for all
examples in S but only has high activation values on the examples in A may have a low F1 score, even though it is in
some sense highly informative for the attribute A.

• it is a very conservative metric, in that it requires both high precision and high recall to be high. For example, a feature
with precision 0.5 but recall 0.02 will have an F1 score of ∼ 0.04, heavily skewed towards the lower of the two metrics,
even though it is in some sense informative for the attribute A.

We hope to address these limitations in future work.

C. SAE training methodology
All SAEs are trained on the same IOI training set as in Makelov et al. (2024), consisting of 2 × 104 examples (see
also Appendix A.1 for details on the dataset). Due to time constraints, we did not train sufficiently many SAEs on
OPENWEBTEXT to be able to make a meaningful comparison.

Training schedule. We improve upon the ‘bare-bones’ SAE training methodology of Makelov et al. (2024) by incorporating
several training tactics from recent literature. For all SAE variants considered, we used the same (small) learning rate of
3× 10−4, trained for 2000 epochs in total, and applied resampling followed by a learning rate warmup over 100 epochs
(roughly following Rajamanoharan et al. (2024)) at epochs 501 and 1001. Our resampling methodology closely follows that
of Bricken et al. (2023). In addition, we decay the learning rate linearly to zero over the last 25% of training (following
Conerly et al. (2024)). For topK SAEs, we initialize the encoder to the transpose of the decoder, as suggested by Gao et al.

6We follow the conventions of Elhage et al. (2021) when describing internals of transformer models. The residual stream at layer k is
the sum of the output of all layers up to k − 1, and is the input into layer k.

9

Sparse Autoencoders Match Supervised Features for Model Steering on the IOI Task

(2024); however, we do not use the auxiliary loss term suggested in section 2.4 (‘Preventing dead latents’) from that work
(which is the only difference of this paper from the implementation of Gao et al. (2024)).

We checkpoint all models at 14 epochs: (1, 2, 4, 8, 16, 32, 64, 128, 500, 750, 1000, 1250, 1500, 2000). This checkpoint
schedule is chosen to ensure that we have a dense enough sampling of the early stages of training, while also capturing the
state of the model right before resampling, and after the learning rate warmup that is done post-resampling is sufficiently in
the past.

Preprocessing. We normalize all IOI circuit activations prior to passing them through our SAEs, following the scaling
methodology in Conerly et al. (2024), so that they on average have `2 norm of

√
dhead. This helps us share hyperparameters

across sites of the circuit, and reduces the range of hyperparameters to search over.

Hyperparameters. We sweep over values λ ∈ (0.5, 1.0, 2.5, 5.0) for the `1 regularization penalty for vanilla and gated
SAEs, and over values k ∈ (3, 6, 12, 24) for topK SAEs. This is a reasonable range: we found that the highest value of λ
leads to about 3-4 active features per example on average; the supervised dictionaries have 3. Conversely, the lowest value
of λ lead to very good `2 loss and recover close to 100% of the logit difference, but have too many (about 20-30) active
features per example on average. The range for k is chosen to include values equal and close to our expectation for the ‘true’
number of necessary features (3), while still allowing significantly more features to be active.

10

