
Published as a conference paper at ICLR 2024

WHEN DO PROMPTING AND PREFIX-TUNING WORK?
A THEORY OF CAPABILITIES AND LIMITATIONS

Aleksandar Petrov, Philip H.S. Torr & Adel Bibi
Department of Engineering Science
University of Oxford
Oxford, United Kingdom
{aleksandar.petrov,philip.torr,adel.bibi}@eng.ox.ac.uk

ABSTRACT

Context-based fine-tuning methods, including prompting, in-context learning, soft
prompting (also known as prompt tuning), and prefix-tuning, have gained popu-
larity due to their ability to often match the performance of full fine-tuning with a
fraction of the parameters. Despite their empirical successes, there is little theoret-
ical understanding of how these techniques influence the internal computation of
the model and their expressiveness limitations. We show that despite the contin-
uous embedding space being more expressive than the discrete token space, soft-
prompting and prefix-tuning are potentially less expressive than full fine-tuning,
even with the same number of learnable parameters. Concretely, context-based
fine-tuning cannot change the relative attention pattern over the content and can
only bias the outputs of an attention layer in a fixed direction. This suggests that
while techniques like prompting, in-context learning, soft prompting, and prefix-
tuning can effectively elicit skills present in the pretrained model, they may not be
able to learn novel tasks that require new attention patterns.

1 INTRODUCTION

Language model advances are largely driven by larger models and more training data (Kaplan et al.,
2020; Rae et al., 2021). Training cutting-edge models is out of reach for most academic researchers,
small enterprises, and individuals, and it has become common to instead fine-tune open-source pre-
trained models (Devlin et al., 2019; Min et al., 2021). Yet, due to escalating computational demands,
even fine-tuning of the larger models has become prohibitively expensive (Lialin et al., 2023).

As a result, there is an acute need for more efficient fine-tuning methods, either by sparsely modi-
fying the parameters of the model or modifying its input context. Examples of the first type include
adapter modules which introduce a few trainable layers to modify the behaviour of the frozen pre-
trained network (Rebuffi et al., 2017; Houlsby et al., 2019; Hu et al., 2023). One can also use
low-rank updates, which also results in a reduced number of trainable parameters (Hu et al., 2021).

Context-based fine-tuning has been motivated by the success of few-shot and zero-shot learning
(Wei et al., 2021; Kojima et al., 2022). The most popular context-based approach is prompting,
where generation is conditioned on either human-crafted or automatically optimized tokens (Shin
et al., 2020; Liu et al., 2023). In-context learning —prompting via providing input-label examples—
is another widely used technique (Brown et al., 2020). Given the challenges of discrete optimization
over tokens, there is a growing interest in methods that optimize real-valued embeddings (Lester
et al., 2021). It is widely believed that these soft prompts offer greater expressiveness due to the
expansive nature of continuous space. Furthermore, beyond only optimizing input embeddings, one
can optimize the inputs of every attention layer (Li and Liang, 2021). This technique, prefix-tuning,
has proven to be very successful and competitive to full fine-tuning (Liu et al., 2022).

While context-based fine-tuning approaches have witnessed impressive empirical successes and
widespread adoption, we have little theoretical understanding of how they work. In this work, we
analyse the influence of prompts and prefixes on the internal computations of a pretrained model
and delineate their limitations. Specifically, we address the following questions:

1

Published as a conference paper at ICLR 2024

1. Soft prompting and prefix-tuning are motivated by the embedding space being larger than
the token space. However, can a transformer utilize the additional capacity? We show that
with a careful choice of transformer weights, controlling a single embedding can generate any
of the V N completions of N tokens, while controlling a token can produce only V completions,
with V being the vocabulary size. Thus, a transformer can indeed exploit the embedding space.

2. Since prefix-tuning is more expressive than prompting, is it as expressive as full fine-tuning?
Despite the expressiveness of continuous space, prefix-tuning has structural limitations. A prefix
cannot change the relative attention over the content tokens and can only bias the output of
the attention block in a constant direction. In contrast, full fine-tuning can learn new attention
patterns and arbitrarily modify attention block outputs, making it strictly more powerful.

3. If context-based fine-tuning methods suffer from such structural limitations, how come they
have high empirical performance? We show that the prefix-induced bias can steer the model
towards a pretraining task. Prefix-tuning can also combine skills picked up during pretraining to
solve some new tasks similar to pretraining tasks. However, it may not learn a completely new
task. This is not simply because of the small number of learnable parameters: fine-tuning the
same number of parameters can be sufficient to learn the novel task. Hence, context-based fine-
tuning can elicit or combine pretrained model skills but cannot learn completely new behaviors.

2 BACKGROUND

2.1 THE TRANSFORMER ARCHITECTURE

We outline a simplified decoder-only transformer architecture (Vaswani et al., 2017). Assume that
the model has vocabulary size V (also referred to as number of tokens). The input is a sequence
(x1, . . . ,xp), xi∈{1, . . . , V }, ∀i. Each token is mapped to a de-dimensional vector that is the xi-
th column of an embedding matrix E∈Rde×V . The attention mechanism is position-invariant, so
typically position encodings are added. For a model with maximum input length N (context size), we
use a one-hot position encoding eN (i) concatenated with the embedding. Therefore, the embedding
for the i-th position provided to the first attention block would be xi = [E⊤

:,xi
, e⊤N (i)]⊤.

A transformer consists of alternating attention blocks which operate across the whole sequence
and Multi-Layer Perceptrons (MLPs) that operate on each individual element. Each attention
block consists of H heads. Each head h is parameterized by query, key, and value matrices
W h

Q,W
h
K∈Rk×din ,W h

V ∈ Rdout×din .1 The attention matrix Ah∈Rp×p for head h then has elements

Ah
ij =

exp
(
T/

√
k(W h

Qxi)
⊤(W h

Kxj)
)

∑p
r=1 exp

(
T/

√
k(W h

Qxi)⊤(W h
Kxr)

) , (1)

where p ≤ N is the current length of the input and T > 0 is an inverse temperature parameter.2
Equation (1) is the softmax function, hence with high enough T , it will result in approximately
one-hot encoding of the maximum j. The output of the attention block A with H heads is then
(t1, . . . , tp), where each position i is the sum of the attention-weighted values across all heads:

A[(W 1
Q, . . . ,W

H
Q), (W 1

K , . . . ,WH
K), (W 1

V , . . . ,W
H
V)](x1, . . . ,xp) = (t1, . . . , tp),

ti =
∑H

h=1

∑p
j=1 A

h
ijW

h
V xj . (2)

A transformer then applies an MLP to each output of an attention block before passing them to
next attention block. We will consider linear layers L[M , b](x)=Mx+b and ReLU-activated linear
layers L̂[M , b](x)=ReLU(Mx+b). When we compose attention blocks and linear or softmax
layers, we will implicitly assume that the linear layer is applied to all positions of the sequence.
Furthermore, we will use the then operator # for left-to-right function composition. Therefore, a
transformer model predicting confidences over the vocabulary can, for example, be represented as:

(y1, . . . ,yp) =
(
A1 # L̂1,1 # L1,2 # A2 # L̂2,1 # L2,2 # softmax

)([
E:,x1

eN (1)

]
, . . . ,

[
E:,xp

eN (p)

])
, (3)

1For the first block, din must be de +N but may be different for the deeper blocks.
2A causal model has Aij = 0 for j > i. This does not affect our results so we will skip the masking step.

2

Published as a conference paper at ICLR 2024

where the output dimension of the last layer has to be V . The next token for a deterministic trans-
former is selected to be the last element’s largest logit: xp+1 = argmaxu∈1,...,V yp,u. Given an
input (x1, . . . ,xp), the model then autoregressively extends this sequence one token at a time, fol-
lowing Equation (3) either until the sequence reaches a length N or until a special termination token.

A transformer has no separation between the system prompt S, user provided input X and
the autoregressively response Y. Thus, a sequence conditional on user input is denoted as
(S1, ...,SnS

,X1, ...,XnX
,Y1, ...,YnY

) and one without user input as (S1, ...,SnS
,Y1, ...,YnY

).

2.2 CONTEXT-BASED FINE-TUNING OF A PRETRAINED MODEL

We now define prompting, soft prompting and prefix-tuning with the previously introduced notation.

Prompting. The most frequently used content-based fine-tuning approach is prompting: prefix-
ing the input (X1, ...,XnX

) with a token sequence S ∈ {1, ..., V }nS to guide the model response:
(S1, ...,SnS

,X1, ...,XnX
). This is how most people interact with language models such as ChatGPT.

Soft prompting. Soft prompting replaces the embeddings of the system input E:,Si with learned
vectors si ∈ Rde called virtual tokens (Hambardzumyan et al., 2021; Lester et al., 2021; Qin and
Eisner, 2021). Hence, the input in Equation (3) is modified to be:([

s1
eN (1)

]
, . . . ,

[
snS

eN (nS)

]
,

[
E:,X1

eN (nS + 1)

]
, . . . ,

[
E:,XnX

eN (nS + nX)

])
(4)

with si chosen to maximize the likelihood of a target response Y =(Y1, ...,YnY
), i.e.,

argmaxs1,...,snS
∈Rde

∑nY

j=1 log ynS+nX+j,Yj
, where ynS+nX+j are autoregressively generated.

Prefix-tuning. Prefix-tuning applies soft prompting across the depth of the model (Li and Liang,
2021; Liu et al., 2022). The first nS positions for all attention blocks are learnable parameters,
replacing the input (xl

1, . . . ,x
l
nX

) for layer l with (sl1, . . . , s
l
nS

,xl
1, . . . ,x

l
nX

), where all sli constitute
the prefix. Hence, prefix-tuning can be formulated as argmax{s1

i ,...,s
L
i }nS

i=1

∑nY

j=1 log ynS+nX+j,Yj
.

Prefix-tuning has been successful at fine-tuning models (Vu et al., 2022; Wu and Shi, 2022; Choi
and Lee, 2023; Ouyang et al., 2023; Bai et al., 2023), leading to calls for language models provided
as a service (La Malfa et al., 2023) to allow providing prefixes instead of prompts (Sun et al., 2022).

Any token-based prompt (S1, ...,SnS
) has a corresponding soft prompt (si=E:,Si) but the reverse

does not hold. Similarly, every soft prompt (s1, ..., snS
) can be represented as a prefix by setting

the deeper prefixes to be the values that the model would compute at these positions (sli=(A1 #
... # Ll−1,−1)([s

⊤
1 , e

⊤
N (1)]⊤, ..., [s⊤l , e

⊤
N (l)]⊤)). The reverse also does not hold: there are prefixes

that cannot be represented as a soft prompt. A hierarchy emerges: prompting < soft prompting <
prefix-tuning, with prefix-tuning the most powerful of the three. Hence, we focus on examining its
performance relative to full fine-tuning but our findings also apply to prompting and soft prompting.

3 SOFT PROMPTING HAS MORE CAPACITY THAN PROMPTING

The success of soft prompting (and prefix-tuning) is commonly attributed to the larger capacity of
the continuous embeddings compared to the finite tokens. Yet, increased capacity is beneficial only
if the model can utilize it. We show this is indeed the case by constructing a transformer generating
exponentially more completions by varying a single virtual token than by varying a hard token.

Consider unconditional generation (representing a function with no inputs) with a single system
token: (Y1, ...,YN)=f(S1)=fS1

. For a deterministic autoregressive function, there are a total of V
functions in this family, hence the upper bound on the number of outputs of length N that one can
generate by varying the first token S1 is V : the first token fully determines the rest of the sequence.
Generally, if one varies the first NS tokens, there are at most V NS unique outputs. What if instead of
the token S1 we vary a single virtual token s1: (Y1, ...,YN)=f(s1)=fs1

? This family of functions
is indexed by a real vector and hence is infinite: in principle, one could generate all V N possible

3

Published as a conference paper at ICLR 2024

output sequences by only controlling s1.3 Still, a transformer may not be able to represent a function
that achieves that in practice, i.e., it is not obvious if there is a surjective map from {fs1

: s1 ∈ Rde}
to {1, ..., V }N . We show that, in fact, there is a transformer f for which such a surjective map exists:
Theorem 1 (Exponential unconditional generation capacity of a single virtual token). For any
V,N>0, there exists a transformer with vocabulary size V , context size N , embedding size de=N ,
one attention layer with two heads and a three-layer MLP such that it generates any token sequence
(Y1, ...,YN)∈{1, ..., V }N when conditioned on the single virtual token s1= ((Y1−1)/V , ..., (YN−1)/V).

However, conditional generation is more interesting: given a user input (X1, ...,XnX
), we want to

generate a target response (Y1, ...,YnY
). Even in the simple case of one system token, the user

provides one token and the model generates one token in response (Y1=f(S1,X1)=fS1
(X1)), we

cannot control response of the model to any user input with the system token. There are V V maps
from X1 to Y1, but S1 can take on only V values: |{fS1

: S1 ∈ 1, ..., V }| = V < V V . Hence,
tokens cannot be used to specify an arbitrary map from user input to model output. However, a
single virtual token can specify any of the V V maps, i.e., there exists a transformer fs1

(X2) for
which there is a surjective map from {fs1 : s1 ∈ Rde} to {1, ..., V }{1,...,V }.
Theorem 2 (Conditional generation capacity for a single virtual token (nX=nY =1)). For any V >0,
there exists a transformer with vocabulary size V , context size N=2, embedding size de=V , one at-
tention layer with two heads and a three-layer MLP that reproduces any map m:[1, ..., V]→[1, ..., V]
from a user input token to a model response token when conditioned on a single virtual token
s1=(m(1)/V , ...,m(V)/V). That is, by selecting s1 we control the model response to any user input.

Theorem 2 builds on Theorem 1 by showing that soft prompting is also more expressive for govern-
ing the conditional behavior of a transformer model. This also holds for longer responses nY > 1
by increasing the length of the soft prompt, or longer user inputs nX > 1, by increasing the depth
of the model. We provide proofs in Appendix A, as well as working Python implementations.

This section showed that soft prompting, and by implication, prefix-tuning, possess greater expres-
siveness than prompting. As we can fully determine the map from user input to model response
using virtual tokens, our findings may appear to suggest that soft prompting is as powerful as full
fine-tuning. However, this is not at all the case. There are structural constraints on the capabilities
of soft prompting and prefix-tuning; they cannot facilitate the learning of an entirely new task. The
following section elucidates this discrepancy and reconciles these seemingly contradictory results.

4 PREFIX-TUNING CAN ONLY BIAS THE OUTPUT OF AN ATTENTION HEAD

We just saw that soft prompting and prefix-tuning can fully control the conditional behavior of
a transformer. However, that assumed a specific design for the network weights. Given a fixed
pretrained model, as opposed to a manually crafted one, can prefix-tuning be considered equally
powerful to full fine-tuning? In this section, we show that, for an arbitrary pretrained model, a prefix
S cannot change the relative attention over the content X,Y and can only bias the attention block
outputs in a subspace of rank nS , the prefix length, making it less powerful than full fine-tuning.

While full fine-tuning can alter the attention pattern of an attention head, prefix-tuning cannot.
Recall the attention Aij position i gives to position j for a trained transformer (Equation (1)):

Aij =
exp

(
T/

√
k x⊤

i W
⊤
QWKxj

)
∑p

r=1 exp
(
T/

√
k x⊤

i W
⊤
QWKxr

) =
exp

(
T/

√
k x⊤

i Hxj

)∑p
r=1 exp

(
T/

√
k x⊤

i Hxr

) , (5)

where W⊤
QWK=H. Full fine-tuning can enact arbitrary changes to WQ and WK and hence, assum-

ing the input does not change (e.g., at the first attention layer), we get the following attention:

Aft
ij =

exp
(
T/

√
k x⊤

i Hxj + T/
√
k x⊤

i ∆Hxj

)∑p
r=1 exp

(
T/

√
k x⊤

i Hxr + T/
√
k x⊤

i ∆Hxr

) ,
3For example, LLaMA-7B (Touvron et al., 2023) has 24 426 unique completions when prompted with each

of its 32 000 tokens and we found a non-exhaustive set of 46 812 unique 10-token-long sequences by controlling
the first virtual token. Hence, in practice, one can generate more outputs by soft prompting than by prompting.

4

Published as a conference paper at ICLR 2024

where the changes to WQ and WK are folded into ∆H . It is clear that by varying ∆H full fine-
tuning can change the attention patterns arbitrarily. However, let us see how is attention affected by
the presence of a prefix. For now, assume we have a prefix of length one (s1) at position 0.

Apt
i0=

exp(T/√k x⊤
i Hs1)

exp
(

T√
k

x⊤
i Hs1

)
+

p∑
r=1

exp
(

T√
k

x⊤
i Hxr

) , Apt
ij=

exp(T/√k x⊤
i Hxj)

exp
(

T√
k

x⊤
i Hs1

)
+

p∑
r=1

exp
(

T√
k

x⊤
i Hxr

) for j≥1.

The numerator of Apt
ij is the same as in Equation (5), i.e., the prefix does not affect it. It only adds the

term exp(T/
√
k x⊤

i Hs1) to the denominator. Therefore, the attention position i gives to the content
positions j≥1 is simply scaled down by the attention it now gives to the prefix. If tomato attends the
most to salad in a particular context, no prefix can change that. This becomes evident by rewriting
Apt

ij as the attention of the pretrained model scaled by the attention “stolen” by the prefix:

Apt
ij = Aij

∑p
r=1A

pt
ir = Aij(1−Apt

i0). (6)

Hence, prefix-tuning cannot affect the relative attention patterns across the content, it will only scale
them down. In other words, one cannot modify what an attention head attends to via prefix-tuning.4

Prefix-tuning only adds a bias to the attention block output. Let us see how this attention
scaling down affects the output of the attention block. Following Equation (2), the output at position
i for the pretrained (ti), the fully fine-tuned (tft

i) and the prefix-tuned (tpt
i) models are as follows:5

ti =
∑p

j=1AijWV xj , tft
i =

∑p
j=1A

ft
ij(WV +∆WV)xj ,

tpt
i = Apt

i0WV s1+
p∑

j=1

Apt
ijWV xj

(6)
= Apt

i0WV s1+
p∑

j=1

Aij(1-A
pt
i0)WV xj=Apt

i0WV s1+(1-A
pt
i0)ti.

(7)

Hence, prefix-tuning only biases the attention block value at each position i towards the constant
vector WV s1, which is independent of the content (x1, ...,xp). I.e., the prefix-tuned activation is
a linear combination of the pretrained activation and the constant vector WV s1. The content only
affects the scale Apt

i0 of the bias via the amount of attention on the prefix. In contrast, in full fine-
tuning ∆WQ, ∆WK and ∆WV allow for a content-dependent change of the attention and value
computation. These results hold for suffix-tuning (placing the prefix after the input) but not for suffix
soft-prompting. We validate that this indeed is the case when prefix-tuning real-world transformers.
In Figures 5 and 6, we show that a prefix applied to LLaMA’s first layer does not change the relative
attention distribution over the content positions X and results in a bias with a constant direction.

Longer prefixes define larger subspaces for the bias but are not fully utilized in practice. In
the case of a longer prefix (s1, . . . , snS

), the bias vector is in a subspace of dimensionality nS :
tpt
i =

∑nS

j=1 A
pt
i,Sj

WV sj + (1−
∑nS

j=1 A
pt
i,Sj

)ti, where i goes over the content and j over the prefix posi-
tions. Larger prefixes thus have a larger subspace to modify the attention block output. The specific
direction is determined by the relative distribution of attention across the prefix positions. However,
when we examine the distribution of attention across the prefix positions for various inputs as in
Appendix B, it appears that the prefixes do not span this subspace. Regardless of the input, the
attention Apt

i,Sj
over the prefix positions remains nearly constant. Thus, prefix-tuning does not seem

to make full use of the space that the vectors WV sj span. We hypothesise that this is due to the
two competing optimization goals for the vectors sj : at the same time they need to “grab attention”
when interacting with WK and determine the bias direction when multiplied with WV .

So, is prefix-tuning equivalent to full fine-tuning or is it less powerful than full fine-tuning? In
Section 3, we showed that prefix-tuning, in principle, has a large capacity to influence the behavior
of the model. But then, in this section, we showed that it has some severe limitations, including not
being able to affect the attention pattern and only biasing the attention layer activations. These two
results seem to be contradicting one another, so how do we reconcile them?

The constructions for the results in Section 3 (described in Appendix A) are simply an algorithm
that extracts the completion from a lookup table encoded in the virtual tokens. The attention patterns

4Likhosherstov et al. (2021) show that a fixed attention head can approximate any sparse attention pattern.
However, they require control over all the input embeddings while we can only control the prefix ones.

5He et al. (2021) show a similar analysis but do not study the expressiveness of prefix-tuning.

5

Published as a conference paper at ICLR 2024

2 6 0 1 4 6 3 0 1 2 0 0 1 1 2 2 3 4 6

2
6
0
1
4
6
3
0
1
2
0
0
1
1
2
2
3
4
6

Pr
e�

x Pretrained model
on ascending

Full �ne-tuning
on descending

Pre�x-tuning
on descending

U
se

r i
np

ut
M

od
el

re
sp

on
se

2 6 0 1 4 6 3 0 1 2 6 6 4 3 2 2 1 1 0

2
6
0
1
4
6
3
0
1
2
6
6
4
3
2
2
1
1
0

2 6 0 1 4 6 3 0 1 2 0 0 0 1 3 3 3 3 3

2
6
0
1
4
6
3
0
1
2
0
0
0
1
3
3
3
3
3

The pretrained model has seen only
sorting in ascending order. Hence,

the single attention head �rst
looks at the smaller numbers

and then to larger ones.

Pre�x-tuning, on the other hand, cannot
change the key and value matrices and

the attention pattern. It can only
"steal" some attention. That is

why the model still focuses
on the zeros, as with the

pretrained model.

Full �ne-tuning can change the key and
value matrices and hence can lead to

new attention patterns. In this case,
it modi�es the model to �rst

look at the larger numbers.

Sorted ascending Sorted descending Not sorted

Figure 1: Attention patterns of a small transformer pretrained on sorting in ascending order. The model is given
the prefix S and user input X and generates Y autoregressively. We have highlighted the attention when the
first response Y1 is being generated. Full fine-tuning sorts in descending order but prefix-tuning cannot as it
cannot update the learned attention. Note how the relative attention of X to X in the left and right plots is
exactly the same: the prefix cannot change the attention pattern for the same inputs. The relative attention of
X to X in the center plot is very different because full fine-tuning can arbitrarily change WQ and WK .

2 6 0 1 4 6 3 0 1 2 6 6 4 3 2 2 1 1 0

2
6
0
1
4
6
3
0
1
2
6
6
4
3
2
2
1
1
0

Pr
e�

x

Head 1

U
se

r i
np

ut
M

od
el

re
sp

on
se

2 6 0 1 4 6 3 0 1 2 6 6 4 3 2 2 1 1 0

2
6
0
1
4
6
3
0
1
2
6
6
4
3
2
2
1
1
0

2 6 0 1 4 6 3 0 1 2 6 6 4 3 2 2 1 1 0

2
6
0
1
4
6
3
0
1
2
6
6
4
3
2
2
1
1
0

2 6 0 1 4 6 3 0 1 2 6 6 4 3 2 2 1 1 0

2
6
0
1
4
6
3
0
1
2
6
6
4
3
2
2
1
1
0

Head 2 Head 3 Head 4

First focuses on
large inputs

First focuses on
small inputs

Focuses on the
inputs in order

Focuses on the
inputs in order

Figure 2: Model pretrained on the four tasks. The four attention heads specialize in the skills necessary to solve
these tasks: look at the elements in order, look first at the smallest elements or first at the largest elements.

are simply extracting the current position embedding and the virtual token and hence the attention
does not depend on the actual content in the tokens. There is no need to learn a new attention pattern
to learn a different map from input to output.6 Furthermore, the virtual token designates the map
precisely by acting as a bias. Therefore, the observations in these two sections do not contradict one
another. Soft prompting and prefix-tuning can be on par with full fine-tuning but only in very limited
circumstances: when all the knowledge is represented in the virtual token as a lookup table and the
model simply extracts the relevant entry. Transformers do not behave like this in practice. Models
are typically trained with token inputs rather than virtual tokens. Moreover, if we had a lookup table
of the responses to each input we would not need a learning algorithm in the first place.

Therefore, the limitations from this section hold for real-world pretrained transformers. Then how
come prefix-tuning has been reported to achieve high accuracy and often to be competitive to full
fine-tuning? The next section aims to explain when and why prefix-tuning can work in practice.

5 THE BIAS CAN ELICIT SKILLS FROM THE PRETRAINED MODEL

Pretraining potentially exposes a model to different types of completions for the same token se-
quence. For a string like I didn’t enjoy the movie, the model may have seen completions such as
I found the acting to be sub par, This is negative sentiment or Je n’ai pas aimé le film. Hence, a
pretrained model could do text completion, sentiment analysis, or translation. Still, the input does
not fully determine the desired completion type and the model can generate any one of them. Hence,
following our results from Section 4, we hypothesise that prefix-tuning cannot gain new knowledge
but can bring to the surface latent knowledge present in the pretrained model.7 We test this hypoth-

6In a follow-up work (Petrov et al., 2024), we utilize this observation to show that, in fact, there exist
pretrained weights for which a transformer can be a universal approximator for sequence-to-sequence functions
when prefixed. This is not in contradiction with the present results as these transformers can approximate any
function without having to modify their attention mechanism.

7A similar hypothesis has also been proposed by Reynolds and McDonell (2021) for fine-tuning in general.

6

Published as a conference paper at ICLR 2024

esis by constructing small transformers trained on one or few tasks. We use a minimal transformer
model (Karpathy, 2020) to show that prefix-tuning struggles to learn a new task that full fine-tuning
can. Then, that prefix-tuning can easily elicit a latent skill from pretraining. Finally, we show how
it can even learn some new tasks, provided they can be solved by combining pretraining skills.

Table 1: A transformer pretrained on sorting
in ascending order cannot be prefix-tuned to
sort in descending order. 10 random seeds.

Ascending Descending

Pretrain on asc. 91±5% 0±0%
Full fine-tune on desc. 0±0% 85±5%
Prefix-tune on desc. 0±0% 0±0%

Prefix-tuning may not learn a new task requiring a
different attention pattern. To check if prefix-tuning
can learn a new task, we train a 1-layer, 1-head trans-
former to sort numbers into ascending order and then
fine-tune it to sort in descending order. During training,
the model sees random sequences of 10 digits from 0
to 7 followed by their ascending sorted order. The pre-
trained accuracy (fully matching the sorted sequence) is
91%. Full fine-tuning on the descending task leads to
85% test accuracy, hence full fine-tuning successfully learns the new task. However, prefix-tuning
with a prefix size nS=1 results in 0% accuracy, hence prefix-tuning fails to learn the new task at all.

The attention patterns in Figure 1 show why this is the case: the pretrained model learns to attend
first to the smallest numbers and then to the larger ones. When fully fine-tuned, the attention patterns
are reversed: they now first attend to the largest values. However, following Section 4, prefix-tuning
cannot change the attention pattern over the input sequence and will still attend to the smallest values.
Hence, prefix-tuning may indeed struggle to learn a new task requiring new attention patterns.

Table 2: A transformer pretrained on several tasks can
be prefix-tuned for one of them. 10 random seeds.

Accuracy on: ↗ ↘ +1 +2

Pretrained 25±13% 25±12% 24±11% 22±7%
Prefix-tune on ↗ 95± 2% 0± 0% 0± 0% 0±0%
Prefix-tune on ↘ 0± 0% 90± 3% 1± 1% 1±1%
Prefix-tune on +1 0± 0% 1± 3% 95± 6% 0±1%
Prefix-tune on +2 0± 0% 0± 0% 1± 2% 98±5%

Prefix-tuning can elicit a skill from the pre-
trained model. The second part of our hy-
pothesis was that prefix-tuning can elicit latent
skills in the pretrained model. To test that, we
pretrain a 1-layer, 4-head model with solutions
sorted in ascending (↗) or descending (↘) or-
der, or adding one (+1) or two (+2) to each el-
ement of the input sequence. Each solution is
shown with 25% probability. The model has
no indication of what the task is, hence, it as-
signs equal probability to all tasks, as shown in the first row in Table 2. Full fine-tuning for each task
naturally results in high accuracy. However, prefix-tuning (nS=1) can also reach accuracy above
90% for all tasks. Compared to the previous case, prefix-tuning is more successful here because the
pretrained model contains the attention mechanisms for solving the four tasks, as shown in Figure 2.

If all a prefix does is bias the attention layer activations, how can it steer the model to collapse its
distribution onto one task? This is likely due to the attention block solving all tasks in parallel and
placing their solutions in different subspaces of the residual stream (intermediate representation,
Elhage et al., 2021). As the MLP needs to select one solution to generate, a further indicator on the
selected task (or lack of selection thereof) should also be represented. The bias induced by the prefix
then acts on this “selection subspace” to nudge the MLP to select the desired solution.

This can be clearly seen from the activations of the attention layer at the last input position (XnX
):

the position where the task selection happens as the first output element fully describes the task.
Figure 4 shows plots of randomly selected dimensions of the residual stream with and without a
prefix. The attention block activations of the pretrained model (without prefix) show no correlation
with the output it is about to generate, demonstrating that the choice of completion is indeed not
determined by the attention block. However, the prefix-tuned activations for the same inputs are
clustered as a result of the prefix-induced bias. This indicates that the bias induced by the prefix
may act as a “task selector” of the subspace of the residual stream specializing in the desired task.

Prefix-tuning can combine knowledge from pretraining tasks to solve new tasks. Prefix-tuning
eliciting one type of completion learned in pretraining starts to explain its practical utility. Still,
prefix-tuning seems to be successful also at tasks that the pretrained model has not seen. As we
showed above, a model trained to sort in one order cannot be prefix-tuned to sort in the other. Then
how is it possible for prefix-tuning to learn a new task? We posit that this can happen, as long as the
“skill” required to solve the new task is a combination of “skills” the pretrained model has seen.

7

Published as a conference paper at ICLR 2024

Table 3: Prefix tuning can learn a new task requiring only
pretraining skills (↗+1) but cannot learn a completely
new task (H). Average accuracy over 3 seeds.

Accuracy on: ↗ ↘ +1 +2 ↗+1 H
Pretrained 17% 23% 34% 25% 0% 0%
Prefix-tune on ↗ 100% 0% 0% 0% 0% 0%
Prefix-tune on ↘ 0% 100% 0% 0% 0% 0%
Prefix-tune on +1 0% 0% 100% 0% 0% 0%
Prefix-tune on +2 0% 0% 0% 100% 0% 0%
Prefix-tune on ↗+1 0% 0% 0% 0% 93% 0%
Prefix-tune on H 0% 0% 0% 0% 0% 1%

We test this by pretraining a 40-layer 4-head
model with the same four tasks. We prefix-
tune (nS=12) for two new tasks: increment-
ing the ascending sorted sequence (↗+1) and
double histogram (mapping each element to
the number of elements with the same value,
e.g., 3,0,0,1 7→1,2,2,1, H). The pretrained
model has not seen either task. Prefix-tuning
results in 93% accuracy for ↗+1 which is
a combination of the ↗ and +1 pretraining
tasks and just 1% for the H task which re-
quires different skills: finding other instances
of the same token and counting. H is not a hard task: it requires 2 layers and 2 heads to be solved
exactly (Weiss et al., 2021). Therefore, prefix-tuning is can indeed combine skills that the model has
learned in order to solve a novel task but may not learn a completely new task requiring new skills.

6 EFFECTS OF PREFIX-TUNING BEYOND THE SINGLE ATTENTION LAYER

Section 4 focused exclusively on a single attention layer. Still, even if a prefix only induces a bias
on its output, this bias can exhibit complex behaviors via the subsequent MLPs and attention layers.
This section shows how a prefix can change the attention pattern of the following attention layer but
only in a linear fashion while full fine-tuning also has bilinear effects. Appendix C further argues
that the representational capacity of prefix-tuning may be limited. Therefore, prefix-tuning appears
to be less expressive than full fine-tuning, even with the same number of learnable parameters.

Prefix-tuning can change the attention, albeit the one of the next layer Let us examine how
the prefix of one attention layer affects the following one. Assume no MLPs, residual connections
or layer norms: the output t(1)i of the first is the input x(2)

i of the second. The pretrained outputs are
t
(1)
i =

∑p
j=1 A

(1)
ij W

(1)
V x

(1)
j , resulting in the second layer attention Ã

(2)
ij =T/

√
k t

(1)⊤
i H(2)t

(1)
j . Here Ãij is the

pre-softmax attention, i.e., Aij=exp Ãij/
∑p

r=1 exp Ãir. For prefix-tuning we then have:

t
pt(1)
i = A

pt(1)
i0 WV s

(1)
1 +

p∑
j=1

A
pt(1)
ij W

(1)
V x

(1)
j

(7)
= A

pt(1)
i0︸ ︷︷ ︸
αi

WV s
(1)
1︸ ︷︷ ︸

µ

+(1−A
pt(1)
i0)t

(1)
i ,

Ã
pt(2)
ij = T√

k
t

pt(1)⊤
i H(2)t

pt(1)
j ,

= T√
k
(αiαj µ

⊤H(2)µ︸ ︷︷ ︸
constant

+αj(1-αi) t
(1)⊤
i H(2)µ︸ ︷︷ ︸

depends only on t
(1)
i

+αi(1-αj)µ
⊤H(2)t

(1)
j︸ ︷︷ ︸

depends only on t
(1)
j

+(1-αi)(1-αj) t
(1)⊤
i H(2)t

(1)
j︸ ︷︷ ︸

pretrained attention Ã
(2)
ij

).

The presence of µ shows that the prefix of layer 1 can change the attention pattern of the following
layer. This change is content-specific: the second and the third terms depend on the inputs, hence a
simple bias can affect the attention when passed through MLPs and further attention blocks. Com-
pare with Equation (6), which showed a prefix cannot change the attention of the same layer. Still,
even considering this cross-layer effect, prefix-tuning is more limited in its expressiveness than full
fine-tuning. While the second and the third terms are input-dependent, each depends on one input
position only. The prefix does not change the bilinear dependency on both the query and key. This
is something that the full fine-tuning can achieve: Ãft(2)

ij = T/
√
k t

ft(1)⊤
i (H(2) +∆H(2))t

ft(1)
j .

Even if prefix-tuning could be a universal approximator, it would not be parameter-efficient.
Prefix-tuning appears to be less parameter-efficient than other comparable approaches. We designed
an experiment to this end. Our pretrained model in Section 5 failed to learn the double histogram
task (H). A rank-1 Low Rank Adaptation (LoRA, Hu et al., 2021) applied only to the MLPs in
a 4-layer 4-head model pretrained in the exact same way results in 92% accuracy on the H task.
The number of parameters for the LoRA fine-tuning is exactly the same as for a prefix of size 12.
However, as can be expected from the results in Section 5, training this prefix results in 0% accuracy.
Hence, prefix-tuning fails at a task that LoRA with the same number of parameters can learn.

8

Published as a conference paper at ICLR 2024

7 DISCUSSION AND RELATED WORKS

Understanding fine-tuning and prefix-tuning. Prior works show that prefixes have low intrinsic
dimension allowing transfer to similar tasks and initialization of prefixes for new tasks (Qin et al.,
2021; Su et al., 2022; Zhong et al., 2022; Wang et al., 2022b; Zheng et al., 2023). In this work, we
offered theoretical insights into their results: this subspace is the span of the prefix-induced bias.
Another line of work shows that skills can be localized in the parameter space of pretrained models
(Wang et al., 2022a; Panigrahi et al., 2023). Here, we showed that it is also possible to identify
subspaces of the residual stream corresponding to individual tasks and select them via prefix-tuning.

Prompting and in-context learning. Prompting and in-context learning are a special case of
prefix-tuning. Therefore, the limitations and mechanisms discussed in this work apply to prompt-
ing as well: prompts cannot change the distribution of attention of the first attention layer over the
content following it and can only induce a bias on the output of this layer (Section 4). Even consid-
ering the cross-layer effects, a prompt is strictly less expressive than full fine-tuning (Section 6) and
prompting is unlikely to enable the model to solve a completely new task. Our theory thus explains
why Kossen et al. (2023) observed that in-context examples cannot overcome pre-training skills.

While context-based fine-tuning approaches may not learn arbitrary new tasks, as shown in Sec-
tion 5, they can leverage pre-trained skills. Wies et al. (2023) have PAC-learnability results that
also show that when pretraining is on a mixture tasks, they can be efficiently learned via in-context
learning, Moreover, transformers can learn linear models in-context by mimicking gradient descent
(Von Oswald et al., 2023) or approximating matrix inversion (Akyürek et al., 2022). This is consis-
tent with our theory: the prediction updates are enacted as biases in the attention block activations.
Hence, despite the limitations discussed in this work, context-based methods can result in powerful
fine-tuning if the pretrained model has “transferable skills” such as algorithmic fundamentals. Still,
in-context learning will likely fail for non-algorithmic tasks, e.g., translating to a language that the
model has never seen before, even if large number of translation pairs are provided in-context.

Implications for model interpretability. An open question for language model interpretability
is whether attention is sufficient for explainability (Jain and Wallace, 2019; Wiegreffe and Pinter,
2019). Section 5 points toward the negative: by interfering in the output of the attention layer with
the bias induced by a prefix, we can change the behavior of the model, without changing its attention.
On the flip side, prefix-tuning can be used to understand what “skills” a model has: if prefix-tuning
for a task fails, then the model likely lacks one of the key “skills” for that task.

Limitations. The present analysis is largely limited to prefixing with prompts, soft prompts and
for prefix-tuning. While our theoretical results hold for suffix-tuning, they do not necessarily apply
to suffixing with prompts or soft prompts. That is because the deeper representations for prompt and
soft prompt suffixes would depend on the previous positions. This does not apply to suffix-tuning
as it fixes all intermediate representations. Therefore, whether suffixing is more expressive than
prefixing remains an open question. Separately, while we provided evidence towards context-based
fine-tuning methods being parameter inefficient learners, the formal analysis of the conditions under
which they may be universal approximators remain an open question. Finally, we mostly considered
simple toy problems. In practice, however, language models are pretrained with very large datasets
and can pick up very complex behaviors. Hence, the extent to which the limitations we demonstrated
apply to large-scale pretrained transformers also remains for future work.

8 CONCLUSION

This paper formally showed that fine-tuning techniques working in embedding space, such as soft
prompting and prefix-tuning, are strictly more expressive than prompting which operates in the
discrete token space. However, we then demonstrated that despite this larger expressivity, prefix-
tuning suffers from structural limitations that prevent it from learning new attention patterns. As a
result, it can only bias the output of the attention layer in a direction from a subspace of rank equal
to the size of the prefix. We showed that this results in practical limitations by constructing minimal
transformers where prefix tuning fails to solve a simple task. This result seems to be at odds with the
empirical success of prefix-tuning. We provided explanations towards that. First, we showed that
prefix-tuning can easily elicit a skill the pretrained model already has and can even learn a new task,
if it has picked up the skills to solve it during pretraining. Second, we showed that the effect of the
prefix-induced bias is more complicated and powerful when combined with downstream non-linear
operations. However, it appears to be still less expressive than full fine-tuning.

9

Published as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

In order to facilitate the reproduction of our empirical results, validating our theoretical results, and
further studying the properties of context-based fine-tuning, we release all our code and resources
used in this work. Furthermore, in Appendix A we offer explicit constructions of transformers with
the properties discussed in Section 3. We also provide Python implementations of these construc-
tions that validate their correctness.

ACKNOWLEDGEMENTS

This work is supported by a UKRI grant Turing AI Fellowship (EP/W002981/1) and the EPSRC
Centre for Doctoral Training in Autonomous Intelligent Machines and Systems (EP/S024050/1).
AB has received funding from the Amazon Research Awards. We also thank the Royal Academy of
Engineering and FiveAI.

REFERENCES

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. 2022. What learn-
ing algorithm is in-context learning? Investigations with linear models. In International Confer-
ence on Learning Representations.

Jiaqi Bai, Zhao Yan, Jian Yang, Xinnian Liang, Hongcheng Guo, and Zhoujun Li. 2023.
Knowprefix-tuning: A two-stage prefix-tuning framework for knowledge-grounded dialogue gen-
eration. arXiv preprint arXiv:2306.15430.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models
are few-shot learners. Advances in Neural Information Processing Systems.

YunSeok Choi and Jee-Hyong Lee. 2023. CodePrompt: Task-agnostic prefix tuning for program and
language generation. In Findings of the Association for Computational Linguistics: ACL 2023.

Ana Santos Costa, Montserrat Comesaña, and Ana Paula Soares. 2022. PHOR-in-One: A mul-
tilingual lexical database with PHonological, ORthographic and PHonographic word similarity
estimates in four languages. Behavior Research Methods.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers).

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. 2021. A mathematical framework for transformer circuits. Transformer Circuits
Thread.

Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. 2021. WARP: Word-level Adver-
sarial ReProgramming. In Proceedings of the 59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers).

Mohamad H Hassoun. 1995. Fundamentals of artificial neural networks. MIT press.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. 2021. To-
wards a unified view of parameter-efficient transfer learning. In International Conference on
Learning Representations.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning
for NLP. In International Conference on Machine Learning.

10

https://github.com/AleksandarPetrov/prefix-tuning-theory
https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://arxiv.org/abs/2306.15430
https://arxiv.org/abs/2306.15430
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://aclanthology.org/2023.findings-acl.325
https://aclanthology.org/2023.findings-acl.325
https://doi.org/10.3758/s13428-022-01985-3
https://doi.org/10.3758/s13428-022-01985-3
https://doi.org/10.3758/s13428-022-01985-3
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://transformer-circuits.pub/2021/framework/index.html
https://aclanthology.org/2021.acl-long.381
https://aclanthology.org/2021.acl-long.381
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html

Published as a conference paper at ICLR 2024

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations.

Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-Peng Lim, Roy Ka-Wei Lee, Lidong Bing, and
Soujanya Poria. 2023. LLM-Adapters: An adapter family for parameter-efficient fine-tuning of
large language models. arXiv preprint arXiv:2304.01933.

Sarthak Jain and Byron C. Wallace. 2019. Attention is not explanation. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers).

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361.

Andrej Karpathy. 2020. minGPT GitHub Repository.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2022.
Large language models are zero-shot reasoners. Advances in Neural Information Processing
Systems.

Jannik Kossen, Tom Rainforth, and Yarin Gal. 2023. In-context learning in large language models
learns label relationships but is not conventional learning. arXiv preprint arXiv:2307.12375.

Emanuele La Malfa, Aleksandar Petrov, Christoph Weinhuber, Simon Frieder, Ryan Burnell, An-
thony G. Cohn, Nigel Shadbolt, and Michael Wooldridge. 2023. The ARRT of Language-Models-
as-a-Service: Overview of a new paradigm and its challenges. arXiv preprint arXiv:2309.16573.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for parameter-efficient
prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing.

Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning: Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers).

Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky. 2023. Scaling down to scale up: A guide
to parameter-efficient fine-tuning. arXiv preprint arXiv:2303.15647.

Valerii Likhosherstov, Krzysztof Choromanski, and Adrian Weller. 2021. On the expressive power
of self-attention matrices. arXiv preprint arXiv:2106.03764.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2023.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Computing Surveys.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. 2022. P-
Tuning: Prompt tuning can be comparable to fine-tuning across scales and tasks. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers).

Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heintz, and Dan Roth. 2021. Recent advances in natural language processing
via large pre-trained language models: A survey. ACM Computing Surveys.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun Hsieh,
Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, Yangxiaokang Liu, Nadia Irwanto,
Jessica Pan, Faiaz Rahman, Ahmad Zaidi, Mutethia Mutuma, Yasin Tarabar, Ankit Gupta, Tao
Yu, Yi Chern Tan, Xi Victoria Lin, Caiming Xiong, Richard Socher, and Nazneen Fatema Rajani.
2021. DART: Open-domain structured data record to text generation. In Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies.

11

https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2304.01933
https://arxiv.org/abs/2304.01933
https://aclanthology.org/N19-1357
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://github.com/karpathy/minGPT
https://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://arxiv.org/abs/2307.12375
https://arxiv.org/abs/2307.12375
https://arxiv.org/abs/2309.16573
https://arxiv.org/abs/2309.16573
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.acl-long.353/
https://arxiv.org/abs/2303.15647
https://arxiv.org/abs/2303.15647
https://arxiv.org/abs/2106.03764
https://arxiv.org/abs/2106.03764
https://dl.acm.org/doi/full/10.1145/3560815
https://dl.acm.org/doi/full/10.1145/3560815
https://aclanthology.org/2022.acl-short.8
https://aclanthology.org/2022.acl-short.8
https://arxiv.org/abs/2111.01243
https://arxiv.org/abs/2111.01243
https://aclanthology.org/2021.naacl-main.37

Published as a conference paper at ICLR 2024

Yawen Ouyang, Yongchang Cao, Yuan Gao, Zhen Wu, Jianbing Zhang, and Xinyu Dai. 2023. On
prefix-tuning for lightweight out-of-distribution detection. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. 2023. Task-specific skill
localization in fine-tuned language models. In International Conference on Machine Learning.

Aleksandar Petrov, Philip HS Torr, and Adel Bibi. 2024. Prompting a pretrained transformer can be
a universal approximator. arXiv preprint arXiv:2402.14753.

Guanghui Qin and Jason Eisner. 2021. Learning how to ask: Querying LMs with mixtures of
soft prompts. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies.

Yujia Qin, Xiaozhi Wang, Yusheng Su, Yankai Lin, Ning Ding, Jing Yi, Weize Chen, Zhiyuan Liu,
Juanzi Li, Lei Hou, et al. 2021. Exploring universal intrinsic task subspace via prompt tuning.
arXiv preprint arXiv:2110.07867.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Lan-
guage models are unsupervised multitask learners.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song,
John Aslanides, Sarah Henderson, Roman Ring, et al. 2021. Scaling language models: Methods,
analysis & insights from training Gopher.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. 2017. Learning multiple visual domains
with residual adapters. In Advances in Neural Information Processing Systems.

Laria Reynolds and Kyle McDonell. 2021. Prompt programming for large language models: Beyond
the few-shot paradigm. In Extended Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems.

Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu, and Yi-Shin Chen. 2018. CARER:
Contextualized affect representations for emotion recognition. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. 2020. Auto-
Prompt: Eliciting knowledge from language models with automatically generated prompts. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP).

Mirko Solazzi and Aurelio Uncini. 2004. Regularising neural networks using flexible multivariate
activation function. Neural Networks, 17(2):247–260.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan, Yankai Lin, Huadong Wang, Kaiyue Wen,
Zhiyuan Liu, Peng Li, Juanzi Li, Lei Hou, Maosong Sun, and Jie Zhou. 2022. On transferability
of prompt tuning for natural language processing. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. 2022. Black-box tuning
for language-model-as-a-service. In International Conference on Machine Learning.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. LLaMA: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural
Information Processing Systems.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mordvint-
sev, Andrey Zhmoginov, and Max Vladymyrov. 2023. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning.

12

https://aclanthology.org/2023.acl-long.85
https://aclanthology.org/2023.acl-long.85
https://openreview.net/forum?id=Rgnaj43Pk0
https://openreview.net/forum?id=Rgnaj43Pk0
https://arxiv.org/abs/2402.14753
https://arxiv.org/abs/2402.14753
https://aclanthology.org/2021.naacl-main.410
https://aclanthology.org/2021.naacl-main.410
https://arxiv.org/abs/2110.07867
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://proceedings.neurips.cc/paper/2017/hash/e7b24b112a44fdd9ee93bdf998c6ca0e-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/e7b24b112a44fdd9ee93bdf998c6ca0e-Abstract.html
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://www.aclweb.org/anthology/D18-1404
https://www.aclweb.org/anthology/D18-1404
https://aclanthology.org/2020.emnlp-main.346
https://aclanthology.org/2020.emnlp-main.346
https://www.sciencedirect.com/science/article/pii/S0893608003001898
https://www.sciencedirect.com/science/article/pii/S0893608003001898
https://aclanthology.org/2022.naacl-main.290
https://aclanthology.org/2022.naacl-main.290
https://proceedings.mlr.press/v162/sun22e.html
https://proceedings.mlr.press/v162/sun22e.html
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.mlr.press/v202/von-oswald23a.html

Published as a conference paper at ICLR 2024

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’, and Daniel Cer. 2022. SPoT: Better frozen
model adaptation through soft prompt transfer. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).

Xiaozhi Wang, Kaiyue Wen, Zhengyan Zhang, Lei Hou, Zhiyuan Liu, and Juanzi Li. 2022a. Find-
ing skill neurons in pre-trained transformer-based language models. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing.

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon Kim. 2022b.
Multitask prompt tuning enables parameter-efficient transfer learning. In International Confer-
ence on Learning Representations.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. 2021. Finetuned language models are zero-shot learners. In
International Conference on Learning Representations.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2021. Thinking like transformers. In International
Conference on Machine Learning.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is not not explanation. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP).

Noam Wies, Yoav Levine, and Amnon Shashua. 2023. The learnability of in-context learning. arXiv
preprint arXiv:2303.07895.

Hui Wu and Xiaodong Shi. 2022. Adversarial soft prompt tuning for cross-domain sentiment analy-
sis. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers).

Yuanhang Zheng, Zhixing Tan, Peng Li, and Yang Liu. 2023. Black-box prompt tuning with sub-
space learning. arXiv preprint arXiv:2305.03518.

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and Dacheng Tao. 2022. PANDA: Prompt transfer
meets knowledge distillation for efficient model adaptation. arXiv preprint arXiv:2208.10160.

13

https://aclanthology.org/2022.acl-long.346
https://aclanthology.org/2022.acl-long.346
https://aclanthology.org/2022.emnlp-main.765
https://aclanthology.org/2022.emnlp-main.765
https://openreview.net/forum?id=Nk2pDtuhTq
https://openreview.net/forum?id=gEZrGCozdqR
https://proceedings.mlr.press/v139/weiss21a.html
https://aclanthology.org/D19-1002
https://arxiv.org/abs/2303.07895
https://aclanthology.org/2022.acl-long.174
https://aclanthology.org/2022.acl-long.174
https://arxiv.org/abs/2305.03518
https://arxiv.org/abs/2305.03518
https://arxiv.org/abs/2208.10160
https://arxiv.org/abs/2208.10160

Published as a conference paper at ICLR 2024

A CONSTRUCTING TRANSFORMERS THAT UTILIZE THE CAPACITY OF THE
EMBEDDING SPACE

A.1 UNCONDITIONAL GENERATION FOR A SINGLE VIRTUAL TOKEN

This section provides an explicit construction of a transformer with the properties described in The-
orem 1. The goal is to construct a transformer that, by varying the choice of the virtual token, can
generate any sequence of N tokens.

First, we need to specify how we encode the target sequence (Y1, . . . ,YN) into the virtual token s1.
We chose the size of the embedding (and hence of s1) to be N . This way, each element of s1 can
represent one position of the target sequence. We then represent the token value by discretizing each
element of s1 into V levels:

s1 = ((Y1−1)/V , . . . , (YN−1)/V) .

Note that this means that each element of s1 is in [0, 1).

When predicting the token for the i + 1 position, the transformer needs to pick the i-th element of
s1, and then decode the corresponding value as a one-hot encoding representing the Yi-th token.

We extract the i-th element of s1 using one attention block of two heads. The fst head always
looks at the first position which is our virtual token s1. For that purpose we create an attention head
that always has Afst

ij = 1 if j = 1 and Afst
ij = 0 otherwise together with a value matrix W fst

V that
extracts the embedding. This is achieved with

W fst
Q = [0N ,1N], W fst

K = [0N , 1,1N−1], W fst
V = [IN ,0N×N], (8)

and a sufficiently high inverse temperature parameter T .

The pos head instead extracts the one-hot encoding of the current position. This can be done with an
attention head that always attends only to the current position and a value matrix W pos

V that extracts
the position embedding as a one-hot vector:

W pos
Q = [0N×N , IN], W pos

K = [0N×N , IN], W pos
V = [0N×N , IN]. (9)

When the outputs of these two attention heads are summed, then only the element of s1 that corre-
sponds to the current position will be larger than 1. From Equation (2) the output at the i-th position
of the attention block is:

ti =

p∑
j=1

Afst
ijxj +

p∑
j=1

Apos
ij eN (j) = s1 + eN (i),

where x1 = s1 and xj = E:,Yj−1 for j > 1.

We can extract the value of s1 corresponding to the current position by substracting 1 from the
hidden state and apply ReLU: L̂ex = L̂[IN ,−1N]. Now, we are left with only one non-zero entry
and that’s the one corresponding to the next token. We can retain only the non-zero entry if we just
sum all the entries of the hidden state with L̂sum = L̂[1⊤

N , 0].

The final step is to map this scalar to a V -dimensional vector which has its maximum value at index
Yi. This task is equivalent to designing V linear functions, each attaining its maximum at one of
0, 1/V , . . . , (V−1)/V . To construct this, we use the property of convex functions that their tangent is
always under the plot of the function. Therefore, given a convex function γ(x), we construct the i-th
linear function to be simply the tangent of γ at i−1/V . If we take γ(x) = (x − 1/2)2, this results in
the following linear layer:

Lproj = L

[[
2(1− 1)

V
− 1, . . . ,

2(V − 1)

V
− 1

]T
,

[
1

4
− (1− 1)2

V 2
, . . . ,

1

4
− (V − 1)2

V 2

]⊤]
. (10)

Figure 3 shows the predictors for each individual token id.

With just two attention heads and three linear layers, the transformer
A[(W fst

Q ,W pos
Q), (W fst

K ,W pos
K), (W fst

V ,W pos
V)] # L̂ex # L̂sum # Lproj # softmax achieves the up-

per bound of V N unique outputs by controlling a single virtual token at its input. Note that for this

14

Published as a conference paper at ICLR 2024

0/V 2/V 4/V 6/V 8/V V/V

Logit for token 1
(largest token when the input is 0/V)

Logit for token 8
(largest token when the input is 7/V)

input

ou
tp

ut

Figure 3: Illustration of the predictors for each token in the Lproj linear layer for V = 10. The layer is
constructed in such a way that the i-th token has the highest confidence when the input is i−1/V .

construction, the choice of embedding matrix E ∈ RN×V does not matter. The same transformer
architecture can generate only V unique outputs if we only control the first token instead. Therefore,
it is indeed the case that the embedding space has exponentially more capacity for control than the
token space. You can see this transformer implemented and running in practice in Section 2 of this
notebook.

A.2 CONDITIONAL GENERATION FOR A SINGLE VIRTUAL TOKEN (nX = nY = 1)

This section provides an explicit construction of a transformer with the properties described in The-
orem 2. The goal is to construct a transformer that, by varying the choice of the virtual token, can
cause the model to act as any map m : [1, . . . , V] → [1, . . . , V]. In other words, by selecting the
virtual token, we can fully control how the model will respond to any token the user may provide.

First, we need to specify how the map m will be encoded in the virtual token s1. We choose
the embedding size de to be V . Now, we can use the same encoding scheme as before, but now
each element in s1 corresponds to a different user token, rather than to a position in the generated
sequence:

s1 = (m(1)/V , . . . ,m(V)/V).

Therefore, the first element of s1 designates the response if the user provides token 1, the second
element is the response to the token 2, and so on.

Extracting the Yi-th value from s1 and decoding it can be done in a very similar way as for the
unconditional case. The only difference is that instead of looking at the user input position, we look
at its value. Take E = IV and N = 2.

Hence we have the following val head (only differing in the WV matrix from Equation (9)):

W val
Q = [02×V , I2], W val

K = [02×V , I2], W val
V = [IV ,0V×2].

We also need embedding of the first token, so we have a modified version of Equation (8):

W fst
Q = [0V , 1, 1], W fst

K = [0V , 1, 0], W fst
V = [IV ,0V×2].

And hence the output of this attention block at the second position would be:

t2 =

2∑
j=1

Afst
ijxj +

2∑
j=1

Aval
ij W

fst
V xj = s1 + eV (Y1).

Similarly to the unconditional case, only the entry of t2 corresponding to the user token will have a
value above 1 and that value would be 1 +m(x1)/V .

15

https://colab.research.google.com/drive/1CU2wt3I2qEwy9xvNB9oBamKzFlugnmcl
https://colab.research.google.com/drive/1CU2wt3I2qEwy9xvNB9oBamKzFlugnmcl

Published as a conference paper at ICLR 2024

We can now extract the one-hot representation of the target token using the same approach
as before, just adjusting for the different hidden state size: L̂ex = L̂[IV ,−1V], L̂sum =

L̂[1⊤
V , 0], and the same projection had as before (Equation (10)). The final transformer is then:

A[(W fst
Q ,W val

Q), (W fst
K ,W val

K), (W fst
V ,W val

V)] # L̂ex # L̂sum # Lproj # softmax . You can see this trans-
former implemented and running in practice in Section 3 here.

A.3 CONDITIONAL GENERATION FOR LONGER RESPONSES (nX = 1, nY > 1)

We can obtain longer responses via a simple extension. If the response length is N0, then we can
encode the map m : [1, . . . , V] → [1, . . . , V]N0 in N0 virtual tokens, each corresponding to one of
the target positions:

si = (m(1)i/V , . . . ,m(V)i/V) for i = 1, . . . , N0.

For this model we would then have N = 2N0 and de = V .

First, we need a head that always looks at the token provided by the user, which will be at position
No + 1:

W user
Q = [0V ,1N], W user

K = [0(V+No), 1,0(No−1)], W user
V = [IV ,0V×N].

In order to consume the map at the right location, we need to also look at the embedding of the token
No positions before the one we are trying to generate:

W back
Q =

[
0N0×(N0+V) IN0

0N0×(N0+V) 0N0×N0

]
, W back

K = [0N×V , IN], W back
V = [IV ,0V×N].

From here on, the decoding is exactly the same as in the nX = nY = 1 case. The final transformer
is then: A[(W user

Q ,W back
Q), (W user

K ,W back
K), (W user

V ,W back
V)] # L̂ex # L̂sum #Lproj # softmax . You can

see this transformer implemented and running in practice in Section 4 here.

A.4 CONDITIONAL GENERATION FOR LONGER USER INPUTS (nX > 1, nY = 1)

Finally, we consider the case when the user input X is longer. This is a bit more complicated because
we need to search through a domain of size V V . We will only consider the case with nX = 2 where
we would need two attention layers. A similar approach can be used to construct deeper models
for nX > 2. Finally, combining the strategy in the previous section for longer responses with the
strategy in this section for longer user inputs allows us to construct transformers that map from
arbitrary length user strings to arbitrary length responses.

In order to encode a map m : [1, . . . , V]2 → [1, . . . , V] into a single virtual token we would need a
more involved construction than before. Similarly to how we discretized each element of the virtual
token s1 in V levels before, we are going to now discretize it into V V levels. Each one of these
levels would be one of the V V possible maps from the second user token to the response. The
first user token would be used to select the corresponding element of s1. Then this scalar will be
“unpacked” into a new vector of V elements using the first attention block. Then, the second user
token will select an element from this unpacked vector, which will correspond to the target token.

We construct the virtual token as follows:

s1 =

[
V∑
i=1

m1(i)×
V i−1

V V
, . . . ,

V∑
i=1

mV (i)×
V i−1

V V

]
,

where mf (x) = m(f, x) is a map from the second user token to the response when the first token is
fixed to be f .

An additional change from the previous constructions is that we are going to divide the residual
stream into two sections. This is in line with the theory that different parts of the residual stream
specialize for different communications needs by different attention heads (Elhage et al., 2021). We
will use the first half of the residual stream to extract and “unpack” the correct mapping from second
token to target token, while the second half of the residual stream will be used to copy the second
token value so that the second attention layer can use it to extract the target. As usual, the embedding

16

https://colab.research.google.com/drive/1CU2wt3I2qEwy9xvNB9oBamKzFlugnmcl
https://colab.research.google.com/drive/1CU2wt3I2qEwy9xvNB9oBamKzFlugnmcl

Published as a conference paper at ICLR 2024

matrix will be the identity matrix: E = IV . Finally, for convenience, we will also use a dummy
zero virtual token that we will attend to when we want to not attend to anything. This results in
context size N = 4 with the input being([

0V
eN (1)

]
,

[
s1

eN (2)

]
,

[
E:,X1

eN (3)

]
,

[
E:,X2

eN (4)

])
=

([
0V

eN (1)

]
,

[
s1

eN (2)

]
,

[
eV (X1)
eN (3)

]
,

[
eV (X2)
eN (4)

])
.

We want the output at the last position to be the target m(X1,X2), that is:

arg max
u∈1,...,V

y4,u = m(X1,X2) for any m,X1,X2.

The first attention block will have three attention heads.

As before, we want to extract the value of s1 that corresponds to the first token the user provided
(X1) and place it in the first half of the residual stream. We want only the third position to do that,
while the rest of the positions keep the first half of their residual stream with zeros. Hence we have
the following fst head:

W fst
Q =

[
02×V

1 1 0 1
0 0 1 0

]
, W fst

K =

[
02×V

1 0 0 0
0 1 0 0

]
, W fst

V =

[
IV 0V×N

0V×V 0V×N

]
.

The user1 head extracts the value of the first user-provided token (X1) and also places it in the first
half of the residual stream:

W user1
Q =

[
02×V

1 1 0 1
0 0 1 0

]
, W user1

K =

[
02×V

1 0 0 0
0 0 1 0

]
, W user1

V =

[
IV 0V×N

0V×V 0V×N

]
.

And the user2 head does the same for the value of the second user-provided token (X2), placing it
in the second half of the residual stream:

W user2
Q =

[
02×V

1 1 1 0
0 0 0 1

]
, W user2

K =

[
02×V

1 0 0 0
0 0 0 1

]
, W user2

V =

[
0V×V 0V×N

2IV 0V×N

]
,

where the factor 2 is there because, as usual, the first linear layer will subtract 1 from everything in
order to extract the value selected by the first token.

This linear layer looks as usual: L̂ex2 = L̂[I2V ,−12V]. The result is that the first V elements will
be 0 except one which designates which map from second user token to output we should use, and
the second V elements have a one hot-encoding of the second user token. Constructing an MLP that
unpacks the mapping can become quite involved so we do not provide an explicit form for it. But
from the universal approximation theorems and the finiteness of the domain and range, we know
that such an MLP should exist. We thus designate by unpack the MLP that decodes the first half
of the residual stream to: (

mX1(1)

V
, . . . ,

mX1(V)

V

)
and keeps the second half unchanged.

And now, by using two attention heads, the second attention block extracts the value of the above
vector at the position designated by the second token, in a fashion not dissimilar to all the previous
cases:

W emb
Q = [0⊤

V ,1
⊤
V], W emb

K = [1⊤
V ,0

⊤
V], W emb

V = [IV 0V×V] ,

W user2’
Q = [0⊤

V ,1
⊤
V], W user2’

K = [0⊤
V ,1

⊤
V], W user2’

V = [0V×V IV] ,

And finally, with L̂ex = L̂[IV ,−1V], L̂sum = L̂[1⊤
V , 0], and the same projec-

tion had as before (Equation (10)), we get the target token. The final transformer is
then: A[(W fst

Q ,W user1
Q ,W user2

Q), (W fst
K ,W user1

K ,W user2
K), (W fst

V ,W user1
V ,W user2

V)] # L̂ex2 # unpack #
A[(W emb

Q ,W user2’
Q), (W emb

K ,W user2’
K), (W emb

V ,W user2’
V)] # L̂ex # L̂sum # Lproj # softmax . You can see

this transformer implemented and running in practice in Section 5 here.

17

https://colab.research.google.com/drive/1CU2wt3I2qEwy9xvNB9oBamKzFlugnmcl

Published as a conference paper at ICLR 2024

Figure 4: Attention block activations for
ten sequences at the last input position (10)
when pretrained on the four tasks. The left
plot shows the pretrained activations t10 are
not predictive of the completion. The right
plot shows prefixes cluster the activations
tpt
10. Connecting the pretrained and prefixed

activations highlights the bias. No dimen-
sionality reduction is used; the clustering is
solely due to the prefixes.

With pre�xes
Without pre�xes

(pretrained model)

Ascending
pre�x

Response sorted ascending

Dimension 94 of the residual stream

1.0

1.0 1.5 2.0

0.5

0.5

-1.0

-0.5

-0.5

0.0

0.0
Dimension 94 of the residual stream

D
im

en
sio

n
14

8
of

 th
e r

es
id

ua
l s

tre
am Response sorted descending

Response increased by 1
Response increased by 2

Descending
pre�x

Add 1
pre�x

Without pre�x
(points from the left plot)

Add 2
pre�x

1.0 1.5 2.00.5-0.5 0.0

TA
B

LE
:

Fo
ur th

Ro
un

d
Q

ua
l

ify
in

g :
N

EW
_

EN
T R
I

ES
_

TH IS _
R

O
U

N
D : 2 4 T

EX
T :

Fo
ur th

ro
un

d
qu

al
ify

in
g

ha
d 2 4

ne
w

en
tr

ie
s .

TABLE
:

Fo u r
th

Ro u n d
Qu a l

ify in g
:

NEW
_

ENT
RI

ES
_

TH
IS

_
RO

UND
:

2
4
T

EXT
:

Fo u r
th

ro u n d
q u a l

ify in g
h a d

2
4

n e w
e n trie s

.

TA
B

LE
:

Fo
ur th

Ro
un

d
Q

ua
l

ify
in

g :
N

EW
_

EN
T R
I

ES
_

TH IS _
R

O
U

N
D : 2 4 T

EX
T :

Fo
ur th

ro
un

d
qu

al
ify

in
g

ha
d 2 4

ne
w

en
tr

ie
s .

TABLE
:

Fo u r
th

Ro u n d
Qu a l

ify in g
:

NEW
_

ENT
RI

ES
_

TH
IS
_

RO
UND

:

2
4
T

EXT
:

Fo u r
th

ro u n d
q u a l

ify in g
h a d

2
4

n e w
e n trie s

.

TA
B

LE
:

Fo
ur th

Ro
un

d
Q

ua
l

ify
in

g :
N

EW
_

EN
T R
I

ES
_

TH IS _
R

O
U

N
D : 2 4 T

EX
T :

Fo
ur th

ro
un

d
qu

al
ify

in
g

ha
d 2 4

ne
w

en
tr

ie
s .

TABLE
:

Fo u r
th

Ro u n d
Qu a l

ify in g
:

NEW
_

ENT
RI

ES
_

TH
IS

_
RO

UND
:

2
4
T

EXT
:

Fo u r
th

ro u n d
q u a l

ify in g
h a d

2
4

n e w
e n trie s

.

Attention for
layer 1, head 12

of LLaMA
with a pre�x

Attention for
layer 1, head 12

of LLaMA
with a pre�x

normalized
over the
content

Attention for
layer 1, head 12

of LLaMA
without a pre�x

Figure 5: The attention of the twelfth head of the first layer of LLaMA (Touvron et al., 2023). The
left plot shows the attention with a prefix of length one. The second plot shows the same attention but
normalized such that the attenion over the non-prefix positions sums to 1. The right plot shows the at-
tention of the pre-trained model (without prefix). The center and the right plots are the same, illustrat-
ing that the presence of the prefix indeed only scales down the attention over the content (non-prefix
positions) but does not change its relative distribution, providing empirical validation of Equation (6).
The test sequence is TABLE: Fourth Round Qualifying : NEW ENTRIES THIS ROUND : 24
TEXT: Fourth round qualifying had 24 new entries. from the DART table-to-test dataset
(Nan et al., 2021).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

32
34

36

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

Actual pre�xed activations

In
pu

t p
os

iti
on

Residual stream Residual stream

Predicted activations

Figure 6: The activations of the twelfth head of the first layer of LLaMA (Touvron et al., 2023). The left plot
shows the activations in the presence of the prefix. The right plot shows the activations ti of the pretrained
model, scaled by one minus the attention that the prefix would take and then biased in the direction WV s1.
The two plots are the same, illustrating that our theory, Equation (7) in particular, also holds for real-world
large transformer models. The test sequence is the same as in Figure 5.

18

Published as a conference paper at ICLR 2024

Pre�x 1
Pre�x 2
Pre�x 3
Pre�x 4
Pre�x 5
Pre�x 6
Pre�x 7
Pre�x 8
Pre�x 9
Pre�x 10

Pre�x 1
Pre�x 2
Pre�x 3
Pre�x 4
Pre�x 5
Pre�x 6
Pre�x 7
Pre�x 8
Pre�x 9
Pre�x 10

Pre�x 1
Pre�x 2
Pre�x 3
Pre�x 4
Pre�x 5
Pre�x 6
Pre�x 7
Pre�x 8
Pre�x 9
Pre�x 10

Attention of layer 1
0.0 0.2 0.4 0.6 0.8 1.0

Attention of layer 5
0.0 0.2 0.4 0.6 0.8 1.0

Attention of layer 9
0.0 0.2 0.4 0.6 0.8 1.0

Attention of layer 2

Attention of layer 6
0.0 0.2 0.4 0.6 0.8 1.0

Attention of layer 10
0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0
Attention of layer 3

Attention of layer 7
0.0 0.2 0.4 0.6 0.8 1.0

Attention of layer 11
0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0
Attention of layer 4

Attention of layer 8
0.0 0.2 0.4 0.6 0.8 1.0

Attention of layer 12
0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7: The range of attention (1st to 99th percentile) for a single GPT-2 (Radford et al., 2019) prefix trained
on the Emotion dataset (Saravia et al., 2018). The prefix is of size 10 (nS = 10). This is the attention of the
last user input token (nX) because this is the position at which the class prediction is done. For illustration
purposes, we have normalized the attention so that the attention over the 10 prefix positions sums to 1. The
range of attention over the 10 positions for each layer are shown.

B ATTENTION DISTRIBUTION OVER THE PREFIX

As discussed in Section 4, longer prefixes define a subspace from which the bias for the attention
block is selected. For a prefix of size nS , that means that this subspace is nS-dimensional. Each of
prefix position j defines a basis vector WV sj for this subspace, while the attention Apt

i,Sj
on this

position determines how much of this basis component contributes to the bias.

In ordered to span the whole subspace and make full use of the capacity of the prefix, Apt
i,Sj

should
vary between 0 and 1 for different inputs. However, we observe that this does not happen in prac-
tice. Figure 7 shows the ranges of attention the different prefix positions take for the GPT-2 model
(Radford et al., 2019). For layer 1, for example, the attention each prefix positions gets is almost
constant hence, the effective subspace is collapsed and there is a single bias vector that’s applied to
the attention layer output, regardless of the user input X .

Some other layers show slightly higher variation. For example, layer 3 has three prefix positions
with large variations. Therefore, the effective bias subspace is 3-dimensional and the user input X
governs which bias vector from this subspace will be selected.

19

Published as a conference paper at ICLR 2024

linear linear
+

exp

nonlinear

fixed
MLP

fixed
MLP

fixed feature extraction

linear linear
+

exp

fixed feature extraction

linear

vector

linear

linear
+

exp

fixed feature extraction

scalar
linear linear

+
exp

fixed feature extraction fixed
MLP

fixed
MLP

Figure 8: Prefix-tuning as a neural network architecture. While linearities and non-linearities are present, the
only learnable parameters s(1), s(2), ... have limited interaction with the inputs x1 and x2. The interaction of
the prefix parameters with each input is only via the scalar attention, shown here with a light connection. The
mixing of information between the inputs happens via residual connections with the pretrained fixed feature
extraction and hence is not learnable. The MLP is also fixed and hence only acts as a multivariate activation
function. This limited interaction explains why prefix-tuning struggles to learn new tasks even in deeper models.

C EXPRESSIVITY OF PREFIX-TUNING ACROSS DEEPER MODELS

In Section 6, we considered the effect of the presence of the prefix in the first attention layer on
the attention of the second. However, the effects become more complex as one adds more attention
attention layers. We also ignored the MLPs between, but in practice they can play an important
role. Here, instead, we analyse prefix-tuning as learning a neural network. We argue that while
the resulting architecture includes both linear operation and non-linear activations, the structure is
unlikely to learn efficiently.

For simplicity, we will consider two inputs x1 and x2 and a single prefix s. The output of the
attention head, parameterized by s is then:

As(x1,x2) = ⟨y1,y2⟩

y1 =
exp(x1

⊤Hs)WV s+ exp(x1
⊤Hx1)WV x1 + exp(x1

⊤Hx2)WV x2

C1
(11)

y2 =
exp(x2

⊤Hs)WV s+ exp(x2
⊤Hx1)WV x1 + exp(x2

⊤Hx2)WV x2,

C2

where we have omitted the T/
√
k factors and have folded the softmax normalization into C1 and

C2. The layer inputs, pretrained parameters and the learnable parameters are correspondingly high-
lighted. The attention head is clearly a non-linear operation. However, the learnable parameter s
participates only in the left term. It interacts with only one of the inputs at a time and only by
computing a single scalar value x⊤

i Hs. As we discussed above, the interaction between x1 and
x2 is non-trainable and can be thought as a hard-coded feature extraction. Each of the outputs is
then passed to a pretrained MLP which can be thought of as an activation function. This would be a
multivariate activation function, which while unusual in the contemporary practice has been studied
before (Solazzi and Uncini, 2004). Figure 8 illustrates the computation graph of the resulting neural
network and shows that the only learnable interaction between the inputs is indirect. Therefore,
prefix-tuning can be considered as learning a neural network where the only interaction between
the inputs happens via non-learnable residual connections. Nevertheless, the alternating linear and
nonlinear operations are reminiscent of the standard neural network architecture and their universal
approximation properties (Hassoun, 1995). That begs the question if the prefix-tuning architecture
can be a universal approximator and whether it would be a parameter-efficient one.

An example of prefix-tuning failing to be a universal approximator. While we leave the formal
analysis of the representational capacity of prefix-tuning as future work, we provide an example of
pretrained parameters for which the architecture is not a universal approximator. As can be seen in
Figure 8, all information must pass through the non-learnable MLPs. Thus, if the MLPs destroy all
input information, there is no value for the prefixes s(1), s(2), ... that can change that fact. The MLPs

20

Published as a conference paper at ICLR 2024

can destroy all information, if, e.g., one of their linear layers has a zero weight matrix. While this
is unlikely to be learned with typical pretraining, this demonstrates that if prefix-tuning could be a
universal approximator, that would pose specific requirements on the pretrained MLPs and it is not
clear whether real-world pretraining would satisfy these requirements.

D EXTENDED RESULTS

In this appendix we present further experiments in the context of Section 5. We consider different
prefix lengths (nS ∈ {10, 50, 100}) and different model sizes (4, 16 and 32 layers). We consider
two extensions, the first one maintains the pretraining step as in Section 5, the other one extends
the set of pretraining tasks with 4 additional tasks. Both pretraining and prefix-tuning are done for
100 000 iterations with the prefix-tuning accuracy reported every 10 000 iterations.

D.1 PRETRAINING AS IN SECTION 5

The first setting has the same pretraining tasks as in Section 5, namely sorting in ascending (↗) or
descending (↘) order, and adding one (+1) or two (+2) to each element of the input sequence. We
evaluate by prefix-tuning on the same four tasks plus incrementing the ascending sorted sequence
(↗+1), double histogram (H), element-wise modulo operation (with respect to the first element of
the sequence), and FilterAtLeastNTimes which puts zeros at the positions of elements whose value
appears at less than N times in the sequence with N being the first element of the sequence:

Pretraining tasks:

Sort in ascending order (↗)
Sort in descending order (↘)
Add 1(+1)
Add 2 (+2)

Prefix-tuning tasks:

Sort in ascending order (↗)
Sort in descending order (↘)
Add 1(+1)
Add 2 (+2)
Sort ascending and add 1 (↗+1)
Modulo the first element (Modulo)
Double Histogram (H)
Filter the elements that are at least as large as the first element (FilterAtLeastNTimes)

The results are plotted in Figure 9. As expected, the prefix-tuned accuracy on the pretraining tasks
is close to 100%. Interestingly, prefix length 50 for the largest (32-layer) architecture appears to be
an exception and does not learn the +1, ↗ and ↘.

As also observed in Section 5, regardless of the prefix length and the model size, prefix-tuning a
model pretrained with these four tasks cannot learn the double histogram task (H). FilterAtLeast-
NTimes also appears to be challenging but the 16-layer and 32-layer experiments reach about 50%
accuracy for the longest prefix size nS = 100. This is curious as FilterAtLeastNTimes is related to
the double histogram task: it can be considered as thresholding the double histogram output. Fil-
terAtLeastNTimes, similarly to double histogram, is therefore not compositional in the pretraining
task. It is surprising then that FilterAtLeastNTimes would achieve higher accuracy than double his-
togram. This hints that, perhaps, compositionality does not fully explain why prefix-tuning works
for some and not other downstream tasks.

The results in Figure 9 also hint that bigger is not always better. For example, the 4-layer model
prefix-tuned for the Modulo task performs better with a prefix size 50 than the larger prefix size 100.
A similar effect can be observed with the 16-layer model prefix-tuned for the ↗+1 task. Larger
models are also not necessarily more conducive to successful prefix-tuning: for many of the cases
the 32-layer models perform worse when prefix-tuned than the 16-layer models.

D.2 EXTENDED PRETRAINING

The second setting extends the set of pretraining tasks. On top of the original three pretraining
tasks ↗, ↘,+1 (without +2) we also pretrain on element-wise modulo operation (with respect to the
first element of the sequence), element-wise less than (less than the first element in the sequence),

21

Published as a conference paper at ICLR 2024

Models pretrained with the original 4 tasks ()

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

Ad
d

1
Ad

d
2

D
ou

bl
e

H
is

to
gr

am
Fi

lte
rA

tL
ea

st
N

Ti
m

es
So

rt
 D

es
ce

nd
in

g
M

od
ul

o
So

rt
 A

sc
en

di
ng

So
rt

 A
sc

en
di

ng

+
Ad

d
1

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

Models with 4 attention layers Models with 16 attention layers Models with 32 attention layers
Pr

efi
x-

tu
ni

ng
 ta

sk
s

Prefix length:
10 50 100

Prefix-tuning training iterations Prefix-tuning training iterations Prefix-tuning training iterations

Figure 9: Extended result with pretraining as in Section 5. The pretraining and the prefix-tuning tasks are
described in Appendix D.1. Each prefix was trained for 100 000 iterations and we report accuracy at every
10 000 iterations. Each experiment is performed with 3 random seeds, except the 32 layer case which, due to
the computational costs involved, was performed only with one seed.

element-wise divisible (by the first element of the sequence), and inverse binary (element-wise nega-
tion). For the inverse binary task, the input is restricted to be binary. We evaluate by prefix-tuning
on the same seven tasks, as well as 11 additional ones as listed in the following table:

Pretraining tasks:

Sort in ascending order (↗)
Sort in descending order (↘)
Add 1 (+1)
Modulo the first element (Modulo)
Filter the elements that are less than the first element (LessThan)
Filter the elements that are divisible by first element (Divisible)
Element-wise negation (InverseBinary)

Prefix-tuning tasks:

Sort in ascending order (↗)
Sort in descending order (↘)
Add 1 (+1)
Add 2 (+2)
Add 3 (+3)
Modulo the first element (Modulo)
Filter the elements that are less than the first element (LessThan)
Filter the elements that are not less than the first element (MoreThanEqual)
Filter the elements that are divisible by first element (Divisible)
Filter the elements that are not divisible by first element (NotDivisible)
Element-wise negation (InverseBinary)
Double Histogram (H)
Filter the elements that are at least as large as the first element (FilterAtLeastNTimes)
Sort ascending, followed by add 1 (↗+1)
Add 1, followed by LessThan (+1 + LessThan)
LessThan, followed by Add 1 (LessThan +1)
LessThan, followed by sort ascending (LessThan + ↗)
Divisible, followed by Add 1 (Divisible +1)

22

Published as a conference paper at ICLR 2024

Models with 4 attention layers Models with 16 attention layers Models with 32 attention layers
Pr

efi
x-

tu
ni

ng
 ta

sk
s

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

20000 40000 60000 80000 100000

0.0

0.5

1.0

20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

Prefix length:
10 50 100

Ad
d

1
Ad

d
2

Ad
d

3
Ad

d
1

+
Le

ss
Th

an
D

iv
is

ib
le

D
iv

is
ib

le

+
Ad

d
1

D
ou

bl
e

H
is

to
gr

am
Fi

lte
rA

tL
ea

st
N

Ti
m

es
In

ve
rs

eB
in

ar
y

Le
ss

Th
an

Le
ss

Th
an

+

Ad
d1

Le
ss

Th
an

+
So

rt
 A

sc
en

di
ng

M
od

ul
o

M
or

eT
ha

nE
qu

al
N

ot
D

iv
is

ib
le

So
rt

 A
sc

en
di

ng
So

rt
 D

es
ce

nd
in

g
So

rt
 A

sc
en

di
ng

+

Ad
d

1

Prefix-tuning training iterations Prefix-tuning training iterations Prefix-tuning training iterations

Models pretrained with an extended set of tasks

Figure 10: Extended result with pretraining with additional tasks. The pretraining and the prefix-tuning tasks
are described in Appendix D.2. Each prefix was trained for 100 000 iterations and we report accuracy at every
10 000 iterations. Each experiment is performed with 3 random seeds, except the 32 layer case which, due to
the computational costs involved, was performed only with one seed.

23

Published as a conference paper at ICLR 2024

The results are shown in Figure 10. Even though the model did not see the +2 and +3 tasks, it appears
that prefix-tuning can generalize from the +1 task. The +1 + LessThan task is another example of
successful prefix-tuning for a task that is compositional in pretraining tasks. Similarly, for Divisible
+1, LessThan +1, LessThan + ↗, MoreThanEqual, NotDivisible,

Similarly to the case in Appendix D.1, we observe several instances in which the largest, 32-layer,
model performs worse, when prefix-tuned, than the smaller models, as well as cases where shorter
prefixes perform better than longer ones.

E FURTHER EXPERIMENTS WITH MEMORIZATION

Our experiments in Section 5 focused on algorithmic tasks such as sorting, incrementing and count-
ing. However, learning a natural language also includes a substantial memorization component. For
example, learning a new language requires learning its vocabulary. Hence, if a novel task requires
memorization of novel concepts, the fine-tuning method should be able to memorize them. To this
end, we evaluate and compare the abilities of prefix-tuning and LoRA to learn to memorize a large
number of new words and show that, for the same amount of learnable parameters, LoRA can learn
to translate to a new language while prefix-tuning cannot. These findings further strengthen our
results from Section 5.

We use the PHOR-in-One dataset (Costa et al., 2022) that contains 4921 unique translations of
English words into German, Spanish and Portuguese. The dataset is preprocessed to remove all
accents in order to ensure that fine-tuning does not require characters that the model has not seen
during pre-training (e.g., éçü would become ecu). Character-level tokenization is used, with the
additional <TR> token that separates the source and target words and a <PAD> token that we use to
ensure all training sequences are of the same length.

We then pre-train a 4-layer 4-head transformer to translate the English words to German. As seen
in Table 4, this model successfully memorizes 99.3% of the English-German pairs. We then want
to fine-tune this model to instead translate the English words to Spanish. Spanish is linguistically
closer to English than German, so, in a way, the fine-tuning task is simpler than the pre-training task.

We do prefix-tuning on English-Spanish pairs with a prefix of size nS = 66 but it achieves only
0.18% accuracy (about 10 words which are the same in English and Spanish, e.g., instrumental,
orbital, solar). However, rank-4 LoRA is able to achieve 94.8% accuracy with half the training
iterations. Both fine-tuning methods have similar numbers of learnable parameters (see Table 4).
Therefore, this is further evidence that prefix-tuning fails to learn a new task, while LoRA with the
same number of learnable parameters can.

Note that there is no train-test split for the word pairs. We are evaluating the accuracy on the training
set as this experiment is measuring memorization rather than generalization.

Table 4: Further experiments on memorization of word pairs form (Costa et al., 2022) in different languages.
The model is pre-trained on the English-to-German word pairs to almost perfect accuracy. Prefix-tuning fails to
modify it to memorize English-Spanish word pairs while LoRA with the same number of parameters and half
the training iterations reaches 94% percent accuracy. 5 random seeds.

Pre-training on
English to German

Prefix-tune (nS=66) on
English to Spanish

Rank-4 LoRA on
English to Spanish

Accuracy 99.3 ± 0.1% 0.18 ± 0.01% 94.8 ± 1.1%
Learnable parameters 3.19M 67 584 66 780
Training iterations 50 000 100 000 50 000

24

	Introduction
	Background
	The transformer architecture
	Context-based fine-tuning of a pretrained model

	Soft prompting has more capacity than prompting
	Prefix-tuning can only bias the output of an attention head
	The bias can elicit skills from the pretrained model
	Effects of prefix-tuning beyond the single attention layer
	Discussion and related works
	Conclusion
	Constructing transformers that utilize the capacity of the embedding space
	Unconditional generation for a single virtual token
	Conditional generation for a single virtual token
	Conditional generation for longer responses
	Conditional generation for longer user inputs

	Attention distribution over the prefix
	Expressivity of prefix-tuning across deeper models
	Extended results
	Pretraining as in sec:biascandoalot
	Extended pretraining

	Further experiments with memorization

