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A ADDITIONAL DISCUSSION OF RELATED WORK

Since preparing the initial version of this manuscript, we became aware of several related recent
and concurrent works. Our main contribution relative to these works is the detailed phenomenology
explored throughout the main text, but here we provide a more detailed discussion of some of
the connections between the current paper and other work, highlighting the main similarities and
differences.

A.1 ASYMPTOTIC ERROR FORMULAS AND THEOREM 3.1

Alternative asymptotic formulas for the test error of anisotropic random feature regression have
been presented in a set of concurrent works, yielding overlapping results with Theorem 3.1. The
result that is most closely related is that of d’Ascoli et al. (2021), who also study the random feature
model with anisotropic input data and target function. They derive formulas for arbitrary convex loss
function (generalizing our setup) and then focus on two specialized learning scenarios: (1) linear
target function with additive noise and quadratic loss, corresponding to the case studied here; and
(2) discrete class labels sign(�Tx/

p
n0) with label-flipping noise and logistic cost function. Their

main results rely on a Gaussian equivalence theorem for anisotropic data, which they derive assuming
the Gaussian equivalence principle of Goldt et al. (2020a;b), and then proceed via a standard replica
calculation. Another salient paper is that of Loureiro et al. (2021), who study generic feature maps for
student-teacher models. A Gaussian covariate model is proposed and rigorous asymptotic solutions
are derived for it using Gaussian comparison inequalities, which are shown to agree with calculations
from the replica method. The model is general enough to facilitate comparisons to realistic datasets,
and numerical evidence and universality arguments support the utility of the model for exactly
describing the random feature model we examine here, among many other applications.

Our technical approach proceeds in a substantially different manner, using tools from random matrix
theory and operator-valued free probability, rather than statistical physics techniques or the replica
method. The results could be made entirely rigorous, though here we simply present the pertinent
calculations and defer justification of the underlying linearization techniques to future work and
to (Tripuraneni et al., 2021a;b). Our analysis ultimately yields final expressions with a relatively
simple form, involving only a single scalar self-consistent equation, which lends itself to more
straightforward downstream calculations and analysis (e.g. Propositions 3.1-3.4 and Corollary
G.1). Finally, beyond the total error, we also derive formulas for the bias and variance, which aid
significantly in the interpretation of the phenomenology, and are novel results. Interestingly, the
order parameter Q from d’Ascoli et al. (2021) (and others) is interpreted as the variance of the
student’s outputs, but actually differs from the variance defined in Eq. (6). The reason is that the
bias-variance decomposition is defined conditionally on x. Because the conditional mean is nonzero,
i.e. E[ŷ|x] 6= 0, Q actually corresponds to an uncentered second moment, and corresponds to our
term E3 (defined in Eq. (S147)) which differs from the total variance by the non-trivial additive term
E4 = Ex[E[ŷ|x]2] (defined in Eq. (S162)). A more thorough discussion of these and related concepts
is given by Adlam & Pennington (2020b).

A.2 GAUSSIAN EQUIVALENTS

Our calculations utilize the concept of Gaussian equivalents, in particular a linear-signal-plus-noise
surrogate F lin for the random feature matrix F . This approach originates from Karoui (2010) in the
context of kernel random matrices of the form Kij = �(X>

i Xj/n0) or Kij = �(kXi �Xjk2/n0)
and from Pennington & Worah (2019); Adlam et al. (2019); Péché et al. (2019) for the covariance
matrices F>F/n1 studied here. This linearization technique was further developed by Adlam et al.
(2019) for anisotropic covariates (and in the presence of bias), where it was shown to be sufficient for
predicting the training error for random feature ridge regression with isotropic linear target functions.
In the setting of spherical data and weights, Mei & Montanari (2019) extended these results to cover
the test error as well. In this case, many of the main technical results could build directly from Karoui
(2010) owing to a decomposition of kernel inner product matrices (Mei & Montanari, 2019, Section
C.4) that ultimately relies on the orthogonality of Gegenbauer polynomials and cannot (immediately)
be extended to the Gaussian settings studied here and elsewhere. For random feature regression
with the neural tangent kernel (which subsumes the standard random feature setting), a proof of the
linearization was outlined for the test error in the setting of isototropic Gaussian covariates by Adlam
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& Pennington (2020a). As mentioned previously, an extension to anisotropic Gaussian covariates
was later developed by Tripuraneni et al. (2021a;b), which is the basis for our analysis in this work.

In a parallel and largely independent line of work stemming from Goldt et al. (2020a), a nearly
identical approach is developed under the name of the Gaussian equivalence property, under which
a possibly nonlinear target function and/or prediction are replaced with simple linear Gaussian
equivalents. This is a crucial step in the analysis in Goldt et al. (2020b); Gerace et al. (2020); d’Ascoli
et al. (2021) and related work. For example, Gerace et al. (2020) use this principle (in fact, a stronger
version they refer to as “replicated Gaussian equivalence") in order to perform their replica analysis
of the isotropic random feature model. Subsequently, in the isotropic setting, this principle was
rigorously justified using the Lindeburg exchange method under a variety of technical assumptions
on the data distribution, weight distributions, nonlinear activation function, and target function (Hu
& Lu, 2021). Goldt et al. (2020b) relaxes some of these conditions and provides extensive tests of
the resulting formulas on real-world datasets. To perform the analysis for anisotropic input data
and target function weights, as is pursued in d’Ascoli et al. (2021), an anisotropic extension of the
Gaussian equivalence theorem is required. Substantial numerical evidence and theoretical arguments
are presented by d’Ascoli et al. (2021); Loureiro et al. (2021) for the validity of this extension, but to
the best of our knowledge a rigorous proof in this context has not been established.

A.3 WEIGHT-DATA ALIGNMENT

One of the basic conclusions of our study of anisotropy is that weight-data alignment generally
improves performance. Similar observations appear in several recent works, albeit in slightly different
contexts. For example, Ghorbani et al. (2019) study the random feature model with isotropic inputs,
but anisotropic weights, in the case of a fixed quadratic target function and derives an asymptotic
formula for the test error in the population limit (ie. m � n0, n1). For wide networks, n1 � n0, the
error simplifies and is exactly proportional to a simple measure of alignment between the random
feature weights and the target, that is loosely related to the measure we propose in Definition 2.1.

Ghorbani et al. (2021) also study the random feature model in the population limit, and makes the
assumption that the target function is sensitive to a much lower dimensional subspace of the input by
positing sub-linear scaling of the dimensionality of the relevant subspace. They show that increasing
the power of the input data in this subspace generally decreases test error and the number of random
features required to learn a function of fixed complexity. Although the learning contexts and the final
scaling limits for m,n0, n1 are distinct, these phenomena parallel our main result on alignment (see
e.g. Fig. 3b for illustration in the context of the d-scale model).

A main contribution of the current paper is the partial order on the space of weight-data alignments,
which allows us to prove that the total error and the bias decrease in response to stronger alignment
(Proposition 3.3). Our results in this vein are most directly related to those of d’Ascoli et al. (2021),
who informally observe a basic relationship between weight-data alignment and performance, though
the impact of alignment is also investigated elsewhere, e.g. Loureiro et al. (2021, Fig. 2). While
these works informally examine concept of alignment, the conclusions about it derive from numerical
evaluation of the formulas, and as such the generality of some of the results remains unclear and some
of the underlying phenomena are partially obfuscated. For example, it is not clear why the “isotropic”
and “misaligned” curves cross each other in of d’Ascoli et al. (2021, Fig. 2c): naively, one might
expect the misaligned model to always perform worse. Our results provide a nice perspective on this
behavior: owing to the differing covariate distributions, the two forms of alignment are incomparable
under the partial order.

B USEFUL INEQUALITIES

Here we include the statements and proofs of several auxiliary inequalities that we use throughout
the Supplementary Material.

B.1 BASIC PROPERTIES OF THE SELF-CONSISTENT EQUATION FOR x

We begin by reviewing the basic inequalities, first given in (Tripuraneni et al., 2021a;b). The
definitions of the following quantities can be found in Theorem 3.1.
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Lemma B.1 (Adapted from (Tripuraneni et al., 2021a;b)). We have the following bounds:

!, ⌧1, ⌧̄1, x, Ia,b, I�a,b � 0 and
@x
@�  0.

Proof. As shown in (Pennington & Worah, 2018) for the unit-variance case, a simple Hermite
expansion argument establishes the relation ⌘ � ⇣, which implies ! = s(⌘/⇣ � 1) � 0. From
Appendix G.4.1, ⌧1 and ⌧̄1 are traces of positive semi-definite matrices and are therefore nonnegative.
From the same equations, it follows that x = �⇢⌧1⌧̄1 � 0. Nonnegativity of x implies Ia,b � 0 and
I�a,b � 0 from their definitions in (12). Finally, using the nonnegativity of !, ⌧1, ⌧̄1, x, and Ia,b, the
expression for @x@� in Theorem 3.1 immediately gives,

@x

@�
= � x

� + ⇢�( � ⌧1 + ⌧̄1)(! + �I1,2)
 0. (S1)

Next we show that the self-consistent equation x = 1��⌧1
!+I1,1

appearing in Theorem 3.1 and defined in
(S237) admits a unique positive real solution for x.

Lemma B.2 (Adapted from (Tripuraneni et al., 2021a;b)). There is a unique real x � 0 satisfying

x = 1��⌧1
!+I1,1

.

Proof. Let t = 1/x � 0 and define,

h(t) = t
⇣⇢( � �) +

p
⇢2( � �)2 + 4�⇢� /t

2⇢ 
� 1
⌘
+ ! + I1,1(1/t) , (S2)

which is a rewriting of eqn. (S237), so it suffices to show that h admits a unique real positive root. To
that end, first observe that limt!0 I1,1(1/t) = 0 and limt!1 I1,1(1/t) = s so that

h(0) = ! > 0 and lim
t!1

h(t)/t = �min{1,�/ } < 0 , (S3)

which together imply that h has an odd number of positive real roots. Next, we show that h is concave
for t � 0:

h00(t) = �2�

t3

⇣ �2⇢� 

(⇢2( � �)2 + 4�⇢� /t)3/2
+ I2,3(1/t)

⌘
(S4)

 0 , (S5)

which implies that h has at most two positive real roots. Therefore, we conclude that h has exactly
one positive real root. To provide a bounding interval for this root, we first observe that,

lim
t!1

h(t)�
�
�min{1,�/ }t+ ! + s+

��

⇢| � �|
�
= 0 , (S6)

so that h(t) can be upper- and lower-bounded by linear functions ,

! �min{1,�/ }t  h(t)  ! + s+
��

⇢| � �| �min{1,�/ }t . (S7)

The roots of these linear functions bound the root of h, so we have

min{1,�/ }
��

⇢| ��| + ! + s
 x  min{1,�/ }

!
. (S8)
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B.2 I AND I� INEQUALITIES

We now establish some useful properties of the I and I� functionals defined in (12). To begin, we
note that simple algebraic manipulations establish the following raising and lowering identities:

Ia�1,b�1 = �Ia�1,b + xIa,b and I�a�1,b�1 = �I�a�1,b + xI�a,b . (S9)

Next, we consider how the partial order of LJSDs given in Definition 2.1 leads to inequalities on the
I� functionals. Letting (I�a,b)1 and (I�a,b)2 to denote the corresponding functionals with the LJSDs
µ1 and µ2 respectively, we can establish the following useful lemma.

Lemma B.3 (Adapted from (Tripuraneni et al., 2021a;b)). Let µ1  µ2, so µ1 is more strongly

aligned than µ2 (recall Definition 2.1). Suppose the functions f, g, h : R ! R are such that

f(�) = g(�)h(�) and h(�) is nonincreasing for all � > 0, then

Eµ1 [qf(�)]

Eµ2 [qf(�)]
 Eµ1 [qg(�)]

Eµ2 [qg(�)]
. (S10)

Proof. By the law of iterated expectation, we have

Eµ1 [qf(�)] = Eµ2 [qg(�)]E�

Eµ2 [qg(�)|�]
Eµ2 [qg(�)]

Eµ1 [q|�]
Eµ2 [q|�]

h(�)

�
. (S11)

Note that the expectation E� in (S11) over � is the same under µ1 and µ2 by assumption. More-
over, the function h(�) is nonincreasing in � by assumption. Finally, observe that the factor
Eµ2 [rg(�)|�]/Eµ2 [rg(�)] defines a change in distribution for the random variable �, since tak-
ing its expectation over � yields 1. Denote a new random with this distribution by �̃. Then, we may
apply the Harris inequality to see

Eµ1 [qf(�)] = Eµ2 [qg(�)]E�̃

"
Eµ1 [q|�̃]
Eµ2 [q|�̃]

h(�̃)

#
(S12)

 Eµ2 [qg(�)]E�̃

"
Eµ1 [q|�̃]
Eµ2 [q|�̃]

#
E�̃
h
h(�̃)

i
(S13)

 Eµ2 [qg(�)]E�

Eµ2 [qg(�)|�]
Eµ2 [qg(�)]

Eµ1 [q|�]
Eµ2 [q|�]

�
E�

Eµ2 [qg(�)|�]
Eµ2 [qg(�)]

h(�)

�
(S14)

=
Eµ1 [qg(�)]

Eµ2 [qg(�)]
Eµ2 [qf(�)] . (S15)

Corollary B.1. Let µ1  µ2 and (I�a,b)i := � Eµi

⇣
q�a (�+ x�)�b

⌘
. Then, for a  1 and b � 0,

1

Eµ2 [�q]

⇣
I�a,b

⌘

2
� 1

Eµ1 [�q]

⇣
I�a,b

⌘

1
� 0. (S16)

Proof. Note that h : � 7! ��a�1(� + x�)�b is a nonincreasing function of � � 0. Then, setting
g = � and f = gh in Lemma B.3 gives the desired result.

Lemma B.4. Suppose the functions f, g, h : R ! R are such that f(�) = �g(�)h(�) and h(�) is

nonincreasing for all � > 0. Then, if the LJSD µ is aligned (see Definition 2.1), then E�[g]Eµ[qf ] 
Eµ[qg]E�[f ].
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Proof.

Eµ[qf ] = Eµ[q�gh] (S17)
= E�[Eµ[q�|�]g(�)h(�)] (S18)

= Eµ[g]E�

Eµ[q�|�]h(�)

g(�)

Eµ[g]

�
(S19)

 Eµ[g]E�

Eµ[q�|�]

g(�)

Eµ[g]

�
E�

h(�)

g(�)

Eµ[g]

�
(S20)

=
1

E�[g]
Eµ[q�g]E�[f ] , (S21)

where Eµ[q�|�] is nondecreasing in � because µ is aligned, so the inequality again follows from the
Harris inequality.

Corollary B.2. If µ is aligned, Ia,bI�a,b  Ia�1,bI�a+1,b.

Proof. Take g : �! ��a(�+ x�)�b and h : �! 1/� in Lemma B.4.

C WEIGHT-DATA ALIGNMENT IS A PARTIAL ORDER

We restate Definition 2.1 for reference, and prove that it defines a partial order. The definition and
proof are identical to those of Tripuraneni et al. (2021a;b), but differ in notation so we repeat them
here for clarity.
Definition C.1 (Restatement of Definition 2.1). Let µ1 and µ2 be LJSDs with the same marginal

distribution of �. If the asymptotic overlap coefficients are such that Eµ1 [�q|�] /Eµ2 [�q|�] =
Eµ1 [q|�] /Eµ2 [q|�] is nondecreasing in �, we say that µ1 is more strongly aligned than µ2 and write

µ1  µ2. Comparing against the case of isotropic weight distribution, µ;, we say µ1 is aligned when

µ1  µ; and anti-aligned when µ1 � µ;.

Proposition C.1. Definition 2.1 is a partial order over over weight-data alignments µ.

Proof. Reflexivity is satisfied as Eµ[q|�]/Eµ[q|�] = 1 is nondecreasing for all µ.

For antisymmetry, we see µ1  µ2 and µ2  µ1 imply Eµ1 [q|�]/Eµ2 [q|�] is constant in � as it is
nonincreasing and nondecreasing. However, setting Eµ1 [q|�] = cEµ2 [q|�] and taking expectation
over � and rearranging yields 1 = Eµ1 [q]/Eµ2 [q] = c, so in fact Eµ1 [q|�] = Eµ2 [q|�]. Assuming
that µ1 and µ2 are absolutely continuous (the case where they are a sum of point masses is similar),
we can write their densities as pi(�, q) = pi(�)pi(q|�). By assumption p1(�) = p2(�), so it suffices
to show p1(q|�) = p2(q|�) almost everywhere. Next note

0 = Eµ1 [q|�]� Eµ2 [q|�] =
Z

R+

q (p1(q|�)� p2(q|�)) dq, (S22)

we have that p1(q|�)� p2(q|�) = 0 almost everywhere.

Finally, for transitivity assume µ1  µ2 and µ2  µ3, then

Eµ1 [q|�]
Eµ3 [q|�]

=
Eµ1 [q|�]
Eµ2 [q|�]

· Eµ2 [q|�]
Eµ3 [q|�]

, (S23)

so Eµ1 [q|�]/Eµ3 [q|�] is the product of two nondecreasing, positive functions and is thus also nonde-
creasing.

D PROOFS OF PROPOSITIONS

D.1 PROPOSITION 3.1

Proposition D.1 (Restatement of Proposition 3.1). In the setting of Theorem 3.1, the bias Bµ is a

nonincreasing function of overparameterization ratio �/ .
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Proof. Recall from Theorem 3.1 that the bias is given by

Bµ = �I�1,2 , (S24)

where x is the unique positive real root of the self-consistent equation,

x =
1� �⌧1
! + I1,1

. (S25)

Differentiating (S24) with respect to �/ gives,

@Bµ

@(�/ )
= � 

2

�

@Bµ

@ 
= 2 2 @x

@ 
I�1,3 . (S26)

Since Lemma B.1 gives I�a,b � 0, it suffices to show @x
@  0, which immediately follows by

implicitly differentiating (S25)) and simplifying the expression,

@x

@ 
= � ⇢x⌧1(! + I1,1)

�
�
1 + ⇢(⌧̄1 +

 
� ⌧1)(! + �I1,2)

�  0 , (S27)

where the inequality also follows from Lemma B.1. Therefore we conclude that @Bµ

@(�/ )  0.

D.2 PROPOSITION 3.2

Proposition D.2 (Restatement of Proposition 3.2). In the setting of Corollary G.1 and in the overpa-

rameterized regime ( < �), the variance Vµ is a nonincreasing function of overparameterization

ratio �/ .

Proof. In the overparameterized regime, Corollary G.1 gives the expression for the variance as,

Vµ =
 

��  
(�2
" + I�1,1) +

xI2,2
! + �I1,2

(�2
" + I�1,2) , (S28)

and, since the self-consistent equation x = 1
!+I1,1

is independent of  , we have @x
@ = 0 and,

@Vµ

@ 
=

�

(��  )2
(�2
" + I�1,1) � 0 , (S29)

which implies that the variance is nonincreasing in the overparameterized regime.

D.3 PROPOSITION 3.3

Proposition D.3 (Restatement of Proposition 3.3). Let µ1, µ2 be two LJSDs such that µ1  µ2 (see

Definition 2.1). Then Bµ1  Bµ2 , Eµ1  Eµ2 , and Bµ1/Vµ1  Bµ2/Vµ2 .

Proof. For the bias, Corollary B.1 implies (I�1,2)1  (I�1,2)2 and therefore Bµ1  Bµ2 .

For the test error, we use the explicit expression for the variance from Eq. (S378) and the identity
I�2,2 = 1

xI
�
1,1 �

�
xI

�
1,2 which follows from Eq. (S9) to write,

Eµ = C0 + C1I�1,1 + C2I�1,2 , (S30)
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where the Ci � 0 and depend on µ only through the marginal � (i.e. they are independent of the
weight distribution):

C0 = �⇢ 
�

@x

@�
�2
"

⇣
(! + �I1,2)(! + I1,1) +

�

 
�⌧̄1I2,2

⌘
� 0 (S31)

C1 = �⇢ 
�

@x

@�

⇣
(! + �I1,2)(! + I1,1) +

�⌧1
x

(! + �I1,2)
⌘
� 0 (S32)

C2 = �� ⇢
 

�

@x

@�

✓
�2

 
�⌧̄1I2,2 �

��⌧1
x

(! + �I1,2)
◆

(S33)

= �⇢ 
�

@x

@�

 
�2

 
�⌧̄1I2,2 �

��⌧1
x

(! + �I1,2)�
�2

⇢ @x@�

!
(S34)

= �⇢� @x
@�

✓
�⌧̄1I2,2 �

 ⌧1
x

(! + �I1,2) +
�

⇢x
(1 + ⇢(⌧1 /�+ ⌧̄1)(! + �I1,2))

◆
(S35)

= �⇢� @x
@�

✓
�⌧̄1I2,2 +

�

⇢x
(1 + ⇢⌧̄1(! + �I1,2))

◆
(S36)

� 0 . (S37)

It is now straightforward to write,

Eµ2 � Eµ1 = C1(I�1,1)2 + C2(I�1,2)2 � C1(I�1,1)1 + C2(I�1,2)1 (S38)

= C1

�
(I�1,1)2 � (I�1,1)1

�
+ C2

�
(I�1,2)2 � (I�1,2)1

�
(S39)

� 0 , (S40)

where the inequality follows from Corollary B.1. Similarly, we can write,

Bµ1

Bµ2

Eµ2 � Eµ1 = C0

(I�1,2)1
(I�1,2)2

+ C1

(I�1,2)1
(I�1,2)2

(I�1,1)2 + C2(I�1,2)1 � C0 � C1(I�1,1)1 � C2(I�1,2)1

(S41)

= C0

� (I�1,2)1
(I�1,2)2

� 1
�
+ C1

� (I�1,2)1
(I�1,2)2

(I�1,1)2 � (I�1,1)1
�

(S42)

 0 , (S43)

where the inequality follows from Corollary B.1 and from Lemma B.3 with g : �! ��(�+ �x)�1

and h : �! (�+ �x)�1. Finally, using Eµi = Bµi + Vµi , the above implies Bµ1/Vµ1  Bµ2/Vµ2 .

D.4 PROPOSITION 3.4

Proposition D.4 (Restatement of Proposition 3.4). If the LJSD is aligned (see Definition 2.1), then,

in the setting of Corollary G.1, the test error has at most two interior critical points as a function of

the overparameterization ratio �/ .

Proof. From Corollary G.1, there is a critical point at the interpolation threshold �/ = 1. Therefore
it suffices to show that there is at most one additional interior critical point. Focusing first on the
overparameterized regime � >  , the test error reads,

Eµ = �I�1,2 +
 

��  
(�2
" + I�1,1) +

xI2,2
! + �I1,2

(�2
" + I�1,2) , (S44)

and, since @x
@ = 0,

@E

@ 
=

�

(��  )2
(�2
" + I�1,1) > 0 , (S45)

which implies that the test error is monotone decreasing in the overparameterized regime.
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Next, let us consider the case � <  . In this case,

Eµ = �I�1,2 +
�

 � �
(�2
" + I�1,1) + xI�2,2 , (S46)

so that,
@Eµ

@ 
= �

@x

@ 

@

@x
I�1,2 �

�

( � �)2
(�2
" + I�1,1) +

�

 � �

@x

@ 

@

@x
I�1,1 +

@x

@ 

@

@x
(xI�2,2) (S47)

= � �

( � �)2
(�2
" + I�1,1) +

@x

@ 

✓
�
@

@x
I�1,2 +

�

 � �

@

@x
I�1,1 +

@

@x
(xI�2,2)

◆
(S48)

= � �

( � �)2
(�2
" + I�1,1) +

@x

@ 

✓
�2�I�2,3 �

�

 � �
I�2,2 + I�2,2 � 2xI�3,3

◆
(S49)

= � �

( � �)2
(�2
" + I�1,1)�

@x

@ 

 

 � �
I�2,2 (S50)

= � �

( � �)2
(�2
" + I�1,1) +

�

 ( � �)

I�2,2
! + �I1,2

. (S51)

Therefore we see that @E@ = 0 implies

�

 
= x(! + I1,1) = 1� (! + �I1,2)

�2
" + I�1,1
I�2,2

, (S52)

or, equivalently, g(x) = 0 for

g(x) = 1� (! + �I1,2)
�2
" + I�1,1
I�2,2

� x(! + I1,1) . (S53)

First we note that g has at most one real root since its derivative is never positive,

g0(x) = 2�I2,3
�2
" + I�1,1
I�2,2

+ (! + �I1,2)
 
1� 2

�2
" + I�1,1
I�3,3

!
� (! + �I1,1) + xI2,2 (S54)

= 2�I2,3
�2
" + I�1,1
I�2,2

� 2(! + �I1,2)
�2
" + I�1,1
I�3,3

(S55)

= 2
�2
" + I�1,1
(I�2,2)2

⇣
�I2,3I�2,2 � (! + �I1,2)I�3,3

⌘
(S56)

= 2
�2
" + I�1,1
(I�2,2)2

⇣
�2I2,3I�2,3 � (! + �I1,2 � x�I2,3)I�3,3

⌘
(S57)

= 2
�2
" + I�1,1
(I�2,2)2

⇣
�2I2,3I�2,3 � (! + �2I1,3)I�3,3

⌘
(S58)

 2�2
�2
" + I�1,1
(I�2,2)2

⇣
I2,3I�2,3 � I1,3I�3,3

⌘
(S59)

 0 , (S60)

where the last line follows from Corollary B.2 since we are assuming µ is aligned.

Next, regarding x as a function of �/ , we consider the interval (x�, x+) for x� = x(�/ =
0) and x+ = x(�/ = 1). From the self-consistent equation for x, we immediately see that
x+(! + I1,1(x+)) = 1 and x� = 0 so that

g(x+) = �(! + �I1,2)
�2
" + I�1,1
I�2,2

(S61)

< 0 . (S62)
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and

g(x�) = 1� (! + �2Eµ[�])
�2
" + Eµ[q�])

Eµ[q�2])
. (S63)

Observe that,

g(x�) > 0 , �2
" < �2

c ⌘ Eµ[q�2]

! + �Eµ[�]
� Eµ[q�] . (S64)

Therefore, from the intermediate value theorem, we conclude that g has no real roots in (x�, x+) for
�2
" > �2

c , and exactly one real root if �2
" < �2

c .

E LINEAR REGRESSION LIMIT

To reduce to the linear case, we need to take  ! 0 and �(x) ! x, in which case we have that
⌘ = ⇣ = ⇢! 1 and ! ! 0, so that

⌧1 ! x and ⌧̄1 ! 1

�
, (S65)

so that

� =
1

x
� I1,1 (S66)

=
1

x
� �Es2⇠µdata

s2

�+ xs2
. (S67)

E.1 COMPARISON TO MEL & GANGULI (2021)

To compare with (Mel & Ganguli, 2021), note that � = 1/↵, � = 1/��, x = ⌧1 = �/�̃, so we have

� = �

 
�̃

�
� �Es2⇠µdata

s2�̃/�

�̃+ s2

!
(S68)

= �̃� �Es2⇠µdata

s2�̃

�̃+ s2
, (S69)

which is the expression appearing in Eq. (8) in (Mel & Ganguli, 2021). To compare expressions for
the test error, note that

@x

@�
! � x

� + �I1,2
, (S70)

and so,

⇢f =
@�̃

@�
(S71)

=
@�/x

@��
(S72)

= � 1

x2

@x

@�
(S73)

=
1

x(� + �I1,2)
, (S74)
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so that,

E = �I�1,2 +
1

⇢f

⇣
�I�1,2 + �2

"

⌘
x2I2,2 (S75)

= �I�1,2 +
1

⇢f
�I�1,2(xI1,1 � x�I1,2) +

�2
"

⇢f
x2I2,2 (S76)

= �I�1,2 +
1

⇢f
�I�1,2(1� x(� + �I1,2)) +

�2
"

⇢f
x2I2,2 (S77)

= �I�1,2 +
1

⇢f
�I�1,2(1� ⇢f ) +

�2
"

⇢f
x2I2,2 (S78)

=
1

⇢f

⇣
�I�1,2 + �2

"x
2I2,2

⌘
. (S79)

In contrast to our conventions, the error F in (Mel & Ganguli, 2021) does include an additive constant
induced by the label noise, and also normalizes by the total output variance i.e. F = E+�2

"
Var[y] . Taking

this relation into account and using the definitions of I and I� , and finally translating the notation
via the substitutions �! 1/↵,�q ! v = (SUTw)2, �2

"
Var[y] ! fn,

|v|2
Var[y] ! fs, we find

F =
E + �2

"

Var [y]
(S80)

=
�2
"

Var [y]
+

1

⇢f

0

@ 1

Var [y]
Eµ

2

4q�
 

�̃

�̃+ �

!2
3

5+ �
�2
"

Var [y]
Eµ

"✓
�

�̃+ �

◆2
#1

A (S81)

= fn +
1

⇢f

0

@fsEµ

2

4v̂2

 
�̃

�̃+ �

!2
3

5+ fn
1

↵
Eµ

"✓
�

�̃+ �

◆2
#1

A (S82)

which is Eq. (6) of (Mel & Ganguli, 2021).

E.2 COMPARISON TO WU & XU (2020)

Wu & Xu (2020) study the case of anisotropic regularizer:

�̂� =
�
X>X + �⌃w

��1
X>y (S83)

with n samples, p features, X 2 Rn⇥p and p/n ! �. After simplifying the error expression they
arrive at eq. 3.1:

E
⇣
ŷ � x̃>�̂�

⌘2
= �̃2

✓
1 +

1

n
tr

✓
⌃x/w

⇣
X>

/wX/w + �I
⌘�1

� �⌃x/w

⇣
X>

/wX/w + �I
⌘�2

◆◆

(S84)

+
�2

n
tr

✓
⌃x/w

⇣
X>

/wX/w + �I
⌘�1

⌃w�

⇣
X>

/wX/w + �I
⌘�1

◆
(S85)

Setting ⌃w ! I must give the expression for isotropic regularization, thus the effect of the weighting
matrix ⌃w can be accounted for by just changing the parameters of the isotropic model. The effective
feature covariance is ⌃ ! ⌃x/w and the effective weight covariance is ⌃� ! ⌃w� .

The error expression given in eqs. 4.1-4.3 is

E
⇣

ỹ � x̃>�̂�
⌘2�

! m0 (��)
m2 (��) ·

 
�E gh

(h ·m (��) + 1)2
+ �̃2

!
(S86)

where

� =
1

m (��) � �E h

1 + h ·m (��) (S87)

1 =

 
1

m2 (��) � �E h2

(h ·m (��) + 1)2

!
m0 (��) (S88)

11



Published as a conference paper at ICLR 2022

In our notation, the predicted output on a new input x is

ŷ =

✓
1

p
n0
�>X + ✏tr

◆✓
1

n1
F>F + �Im

◆�1✓ 1

n1
F>f (x)

◆
(S89)

!
✓

1
p
n0
�>X + ✏tr

◆✓
1

n0
X>X + �Im

◆�1 1

n0
X>x (S90)

=

✓
1

p
n0
�>X + ✏tr

◆
X>

✓
1

n0
XX> + �In0

◆�1 1

n0
x (S91)

= ŷ>X̃>
⇣
X̃X̃> + ��In0

⌘�1
x̃ (S92)

where X̃ has 1p
m

= 1p
samples

normalization. Thus translating our notation involves setting �! �,

� ! �/�, ⌃ ! ⌃x/w, �! h, ⌃� ! �⌃w� , and q ! �g. In this new notation, our equation for x
reads

� =
�

x
� �E h

1 + h ·
⇣

x
�

⌘ (S93)

which shows x ! �m (��), and therefore @x
@� ! @�m(��)

@�/� = ��2m0 (��). Next, note that

�@x
@�

I2,2 =
x

� + �I1,2
I2,2 (S94)

=
I1,1 � �I1,2
� + �I1,2

(S95)

=
I1,1 + �

� + �I1,2
� 1 (S96)

=
1/x

� + �I1,2
� 1 (S97)

= � 1

x2

@x

@�
� 1 (S98)

So the full error is

E = �I�1,2 �
@x

@�

✓
�I�1,2I2,2 + �2

eI2,2
◆

(S99)

= �

✓
1� @x

@�
I2,2

◆
I�1,2 � �2

e
@x

@�
I2,2 (S100)

=

✓
� 1

x2

@x

@�

◆
�I�1,2 + �2

e

✓
� 1

x2

@x

@�
� 1

◆
(S101)

=

✓
� 1

x2

@x

@�

◆⇣
�I�1,2 + �2

e

⌘
� �2

e (S102)

! m0(��)
m2(��)

 
�E hg

(1 +m(��)h)2
+ �̃2

!
� �̃2 (S103)

which, after removing the additive shift, matches the expressions given in (Wu & Xu, 2020) eq. 4.1.

F STRUCTURED LEARNING CURVES

F.1 EFFECT OF SPECTRAL GAP

Here we demonstrate that a large gap in the spectrum of ⌃ can induce steep cliffs in the learning
curves as a function of the overparameterization �/ :

Suppose there is a gap in the spectrum of ⌃ of size g. That is, there are �� < �+ such that there is
no eigenvalue � 2 (��,�+) and �+

��
= g. Assuming � < 1 and µ is aligned, and working in the

12
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noiseless ridgeless limit, we will show the slope of the learning curve @ logEµ

@(�/ ) becomes arbitrarily
negative for small !.

From Theorem (3.1), x, ⌧1 satisfy

x =
1� �⌧1

! + �E �
�+x�

(S104)

⌧1 =

q
( � �)2 + 4x ��/⇢+  � �

2 �
(S105)

Since x  min{1,�/ }
! (Eq. (S8)), for ! > 0, x stays finite in the ridgeless limit � ! 0, so

�⌧1 ! | � �|+  � �

2 
. (S106)

We have the numerator 1� �⌧1 ! min(1,�/ ), and

x

✓
! + �E �

�+ x�

◆
= min

✓
1,
�

 

◆
. (S107)

Since x = 0 is not a solution for 0 <  ,� < 1, we can change variables to �̃ = �
x , giving

!
1

�̃
+ E �

�̃ + �
=

1

�
min

✓
1,
�

 

◆
(S108)

which implies �̃ is a continuous decreasing function of �/ (keeping � fixed). Taking the limit of
(S108) directly shows that �̃max := lim�/ !0 �̃ = 1, while �̃min := lim�/ !1 �̃ satisfies

!
1

�̃min
+ E �

�̃min + �
=

1

�
(S109)

By the intermediate value theorem, �̃ takes all values in the interval (�̃min,1). For � < 1, using
E �
�̃min+�

 1 we obtain �̃min  ! �
1�� .

We assume that ! �
1��  ��, so the previous bound gives �̃min  �� and thus �̃ attains all values

in (��,�+). In particular, there is some 0 < �/ < 1 such that �̃ (�/ ) =
p
���+. At this point,

differentiating (S108) gives

��̃ @

@�̃

1

 
= !

1

�̃
+ �̃E �

(�̃ + �)2
(S110)

 !
1

�̃
+ �̃

 
�+

(�̃ + �+)
2 p (� � �+) +

��

(�̃ + ��)
2 p (�  ��)

!
(S111)

= !
1

�̃
+

p
g

�p
g + 1

�2 (S112)

Since ��̃ @
@�̃

1
 = 1

�

⇣
@ log x
@(�/ )

⌘�1
, we get

1

�

1

! 1
�̃ +

p
g

(pg+1)2
 @ log x

@ (�/ )
(S113)

For large spectral gap g this tends toward

1

�

p
�+��
!

 @ log x

@ (�/ )
(S114)
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If the nonlinearity ! is small compared to the middle of the spectral gap
p
�+��, x undergoes large

fractional change as a function of the overparameterization ratio �/ .

To see how this affects the test error, we can use the lowering identity I�a�1,b�1 = �I�a�1,b + xI�a,b
to write the ridgeless error expression from Eq. (S46) as

Eµ = �I�1,2 +
�

 � �

⇣
�2
✏ + I�1,1

⌘
+ xI�2,2 (S115)

=
�

 � �
�2
✏ +

 

 � �
I�1,1. (S116)

So we can write
@

@ (�/ )
log

✓
Eµ � �

 � �
�2
✏

◆
=

@

@ (�/ )
log

 

 � �
I�1,1 (S117)

=
 

 � �
+

@

@ (�/ )
log I�1,1 (S118)

For general a, b, we have

@

@ (�/ )
log I�a,b = �b

✓
@ log x

@ (�/ )

◆ E
h

�a+1

(�̃+�)b+1 q
i

E
h

�a

(�̃+�)b
q
i (S119)

Specializing to a = b = 1, and using the fact that �
�̃+�Eq [q|�] is a nondecreasing function of �

(guaranteed since q is aligned), we may apply the Harris inequality to obtain

� @

@ 
log I�1,1 =

✓
@ log x

@ (�/ )

◆ E�
h

�
�̃+�

⇣
�

�̃+�Eq [q|�]
⌘i

E�
h⇣

�
(�̃+�)Eq [q|�]

⌘i (S120)

�
✓
@ log x

@ (�/ )

◆
E�


�

�̃ + �

�
(S121)

g!1���!
✓
@ log x

@ (�/ )

◆
p (� > �+) (S122)

� 1

�

p
�+��
!

p (� > �+) , (S123)

which implies

� @

@ (�/ )
log

✓
Eµ � �

 � �
�2
✏

◆
= �  

 � �
� @

@ (�/ )
log I�1,1 (S124)

� �  

 � �
+

1

�

p
�+��
!

p (� > �+) (S125)

In particular, if �2
" = 0, then

�@ logEµ

@ (�/ )
� �  

 � �
+

1

�

p
�+��
!

p (� > �+) (S126)

Thus as ! ! 0 the learning curve becomes arbitrarily steep at the critical value x = �/
p
�+��.

F.2 ANALYSIS OF THE D-SCALE MODEL IN THE SEPARATED LIMIT

We will consider the d-scale covariance model:

�n = C↵n, pn =
1

d
, n = 0, 1, · · · , d� 1 (S127)

where C is chosen so that

1 = s = t̄r [⌃] =
1

d

d�1X

n=0

C↵n = C
1

d

1� ↵d

1� ↵
(S128)
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We will obtain expressions for x in the limit of small �. Consider the ridgeless limit of �̃ := �/x:
1

�̃
! +

X

n

pn
�n

�̃ + �n
=

1

max (�, )
(S129)

Suppose, ! sits between the scales C↵j , C↵j+1. To enforce this constraint, we will take ! = !̂↵j+ 1
2

where !̂ is a constant independent of ↵.

The ↵ scaling of �̃ will depend on the value of max(�, ). Discarding the second term in (S129) we
obtain max (�, )!  �̃, and thus the lowest possible scaling for �̃ is �̃ = Cj+ 1

2
↵j+ 1

2 . Substituting
this ansatz into (S129) and taking the limit ↵! 0, we obtain

1

max (�, )
=

1

�̃
! +

1

d

X

n

C↵n

Cj+ 1
2
↵j+ 1

2 + C↵n
(S130)

↵!0���! 1

�̃
! +

j + 1

d
(S131)

Solving for �̃ gives �̃ = max(�, )

1�max(�, ) j+1
d

!. For other values of max(�, ), �̃ may have higher scaling,

ie. �̃ = Ck↵k with k  j. Substituting and solving for �̃ we obtain �̃ =
max(�, ) k+1

d �1

1�max(�, ) k
d

�k. Thus we
obtain the following self-consistent solutions for �̃:

�̃ =

8
<

:

max(�, )

1�max(�, ) j+1
d

! max (�, ) < d
j+1

max(�, ) k+1
d �1

1�max(�, ) k
d

�k
d

k+1 < max (�, ) < d
k

(S132)

Thus �̃ takes on the scale of a single eigenvalue �k for a range of overparameterization ratios
corresponding to d

k+1 <  max
⇣
�
 , 1

⌘
< d

k . To understand what happens at the transitions between
these regimes, we can apply the results from the previous subsection F.1 for generic ⌃ with large
spectral gap. In the notation of F.1, the D-scale model has a spectral gap between each pair of
consecutive scales of size g = �j/�j+1 = C↵j/C↵j+1 = 1/↵ and as a consequence, �̃ will exhibit
near infinite slop as it passes through the middle of a gap

p
�j+1�j = C↵j+ 1

2 . Comparing to the
self-consistent solutions (S132) these transitions must happen at the critical values max(�, ) = d

k+1
for k  j. At these transition points, the error exhibits steep cliffs in the parameter regime descried
in F.1.

G PROOF OF THEOREM 3.1

The proof closely follows the methods described in (Adlam et al., 2019; Adlam & Pennington,
2020a;b; Tripuraneni et al., 2021a;b). Indeed, precisely the same techniques from operator-valued
free probability used in those works apply here. The main and only difference is the anisotropic
weight covariance ⌃� , which changes the details of the computations but not the arguments justifying
the linearized Gaussian equivalents and the application of operator-valued free probability. We
therefore refer the reader to those previous works for an in-depth discussion of methods and merely
focus here on the details of the requisite calculations. Throughout this section, we use t̄r to denote
the dimension-normalized trace, i.e. t̄r(A) = 1

n tr(A) for a matrix A 2 Rn⇥n.

G.1 DECOMPOSITION OF THE TEST LOSS

The test loss can be written as,
E⌃⇤ = E(x,y)(y � ŷ(x))2 = E1 + E2 + E3 (S133)

with
E1 = E(x,")tr(y(x)y(x)

>) (S134)

E2 = �2E(x,")tr(K
>
x K�1Y >y(x)) (S135)

E3 = E(x,")tr(K
>
x K�1Y >Y K�1Kx) . (S136)
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Recall the kernels K = K(X,X) and Kx = K(X,x) are given by,

K =
F>F

n1
+ �Im and Kx =

1

n1
F>f . (S137)

Using the cyclicity and linearity of the trace, the expectation over x requires the computation of

ExKxK
>
x , Exy(x)K

>
x , Exy(x)y(x)

> . (S138)

As described in detail in (Tripuraneni et al., 2021a;b; Adlam et al., 2019; Adlam & Pennington,
2020a; Mei & Montanari, 2019), asympotically the trace terms E1, E2, and E3 are invariant to a
linearization of the random feature vector f ,

f ! f lin =

p
⇢

p
n0

Wx+
p
⌘ � ⇣✓ , (S139)

where ✓ 2 Rn1 is a vector of iid standard normal variates. Similarly, we will take the linearization of
the training features to be

p
⇢p
n0

WX+
p
⌘ � ⇣⇥ where ⇥ 2 Rn1⇥m has standard normal components.

The expectations over x are now trivial and we readily find,

ExKxK
>
x =

1

n2
1

F>� ⇢
n0

W⌃W> + (⌘ � ⇣)In1

�
F (S140)

Exy(x)K
>
x =

p
⇢

n0n1
�>⌃W>F (S141)

Exy(x)y(x)
> =

1

n0
�⌃�> (S142)

Next, we recall the definition, Y = �>X/
p
n0 + ✏, and, using the above substitution, we find

E✏

⇥
Y >Y

⇤
=

1

n0
X>⌃�X + �2

"Im (S143)

E✏

⇥
Y >Exy(x)K

>
x

⇤
=

p
⇢

n3/2
0 n1

X>⌃�⌃W
>F . (S144)

Putting these pieces together, we have

E1 =
tr(⌃�⌃)

n0
(S145)

E2 = E21 (S146)
E3 = E31 + E32 , (S147)

where,

E21 = �2

p
⇢

n3/2
0 n1

Etr
�
X>⌃�⌃W

>FK�1
�

(S148)

E31 = �2
"Etr

�
K�1⌃3K

�1
�

(S149)

E32 =
1

n0
Etr

�
K�1⌃3K

�1X>⌃�X
�

(S150)

and,

⌃3 =
⇢

n0n2
1

F>W⌃W>F +
⌘ � ⇣

n2
1

F>F . (S151)

G.2 DECOMPOSITION OF THE BIAS AND TOTAL VARIANCE

Note that it is sufficient to calculate the bias term given the total test loss, since the total variance
can be obtained as V⌃ = E⌃ � B⌃. Following the total multivariate bias-variance decomposition
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of (Adlam & Pennington, 2020b), for each random variable in question we introduce an iid copy of it
denoted by either the subscript 1 or 2. We can then write,

B⌃ = E(x,y)(y � E(W,X,")ŷ(x;W,X, "))2 (S152)
= E(x,y)E(W1,X1,"1)E(W2,X2,✏2)(y � ŷ(x;W1, X1, "1))(y � ŷ(x;W2, X2, ✏2)) (S153)

=
tr(⌃�⌃)

n0
+ E21 +H000 , (S154)

where an expression for E21 was given previously and H000 satisfies
H000 = Eŷ(x;W1, X1, "1)ŷ(x;W2, X2, ✏2) , (S155)

where the expectations are over x,W1, X1, "1,W2, X2, and ✏2. Recalling the definition of ŷ,
ŷ(x;W,X, ") := Y (X, ✏)K(X,X;W )�1K(X,x;W ) (S156)

and the techniques described in the previous section, it is straightforward to analyze the above term.
First note we can write,

ExK(X1,x;W1)K(x, X2;W2) =
⇢

n0n2
1

F>
11W1⌃W

>
2 F22 . (S157)

Here we have defined F11 ⌘ F (W1, X1) and F22 ⌘ F (W2, X2). Now we proceed to calculate H000

as
H000 = Eŷ(x;W1, X1, ")ŷ(x;W2, X2, ✏2) (S158)

= EK(x, X2;W2)K(X2, X2;W2)
�1Y (X2, ✏2)

>Y (X1, "1)K(X1, X1;W1)
�1K(X1,x;W )

(S159)

= Etr
�
K(X2, X2;W2)

�1X>
2 X1K(X1, X1;W1)

�1K(X1,x;W )K(x, X2;W2)
�

(S160)

=
⇢

n2
0n

2
1

Etr
�
K�1

22 X>
2 ⌃�X1K

�1
11 F>

11W1⌃W
>
2 F22

�
(S161)

⌘ E4 , (S162)
where in the second-to-last line we have defined K11 ⌘ K(X1, X1;W1) and K22 ⌘
K(X2, X2;W2).

G.3 SUMMARY OF LINEARIZED TRACE TERMS

We now summarize the requisite terms needed to compute the total test error, bias, and variance after
using cyclicity of the trace to rearrange several of them. In the following, we slightly change notation
in order to make explicit the dependence on the covariance matrix ⌃. To be specific, whereas above
we assumed that the columns of X1 and X2 were drawn from multivariate Gaussians with covariance
⌃, below we assume that they are drawn from multivariate Gausssians with identity covariance. This
change is equivalent to replacing X1 ! ⌃1/2X1 and X2 ! ⌃1/2X2 in the above expressions. We
utilize this definition so that X1, X2, W1, W2, and ⇥ all have iid standard Gaussian entries. From
the previous computations, we can now write the requisite terms as,

⌃3 =
⇢

n0n2
1

F>
11W1⌃W

>
1 F11 +

⌘ � ⇣

n2
1

F>
11F11 (S163)

E21 = �2

p
⇢

n3/2
0 n1

tr
⇣
X>

1 ⌃1/2⌃�⌃W
>
1 F11K

�1
11

⌘
(S164)

E31 = �2
✏ tr
�
K�1

11 ⌃3K
�1
11

�
(S165)

E32 =
1

n0
tr
⇣
K�1

11 ⌃3K
�1
11 X>

1 ⌃1/2⌃�⌃
1/2X1

⌘
(S166)

E4 =
⇢

n2
0n

2
1

tr
⇣
F22K

�1
22 X>

2 ⌃1/2⌃�⌃
1/2X1K

�1
11 F>

11W1⌃W
>
2

⌘
(S167)

E⌃ =
1

n0
tr (⌃⌃�) + E21 + E31 + E32 (S168)

B⌃ =
1

n0
tr (⌃⌃�) + E21 + E4 (S169)

V⌃ = E⌃ �B⌃ (S170)
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G.4 CALCULATION OF ERROR TERMS

To compute the test error, bias, and total variance, we need to evaluate the asymptotic trace objects
appearing in the expressions for E21, E31, E32, and E4, defined in the previous section. As these
expressions are essentially rational functions of the random matrices X , W , ⇥, ⌃, and ⌃� , these
computations can be accomplished by representing the rational functions as single blocks of a suitably-
defined block matrix inverse - the so-called linear pencil method (see eg . Far et al., 2006) - and then
applying the theory of operator-valued free probability (Mingo & Speicher, 2017). These techniques
and their application to problems of this type have been well-established elsewhere (Adlam et al.,
2019; Adlam & Pennington, 2020a;b), we only lightly sketch the mathematical details, referring the
reader to the literature for a more pedagogical overview. Instead, we focus on presenting the details
of the requisite calculations.

Relative to prior work, the main challenge in the current setting is generalizing the calculations to
include an arbitrary weight covariance matrix ⌃� . This generalization is facilitated by the general
theory of operator-valued free probability, and in particular through the subordinated form of the
operator-valued self-consistent equations that we first present in eqn. (S201). The form of this
equation enables the simple computation of the operator-valued R-transform of the remaining random
matrices, W , X , and ⇥, which are all iid Gaussian and can therefore be obtained simply by using
the methods of (Far et al., 2006). The remaining complication amounts to performing the trace in
eqn. (S201), which asymptotically becomes an integral over the LJSD µ. While this might in general
lead to a complicated coupling of many transcendental equations, it turns out that the trascendentality
can be entirely factored into a single scalar fixed-point equation, whose solution we denote by x (see
eqn. (S237)), and the remaining equations are purely algebraic given x. To facilitate this particular
simplification, it is necessary to first compute all of the entries in the operator-valued Stieltjes
transform of the kernel matrix K, which we do in Sec. G.4.1. Using these results, we compute the
remaining error terms in the subsequent sections.

As a matter of notation, note that throughout this entire section whenever a matrix X , X1, or X2

appears it is composed of iid N (0, 1) entries as in Appendix G.3. This differs from the notation
of the main paper, but we follow this prescription to ease the already cumbersome presentation.
This definition of X allows us to explicitly extract and represent the training covariance ⌃ in our
calculations.

G.4.1 K�1

The NCAlgebra Mathematica package (NCRealization method; algorithm described in Helton et al.,
2006) was used to generate the following matrix pencil QK�1

:

QK�1

=

0

BBBBBBBBBBBBBBB@

Im
p
⌘�⇣⇥>

�
p
n1

p
⇢X>

�
p
n0

0 0 0 0 0 0

�⇥
p
⌘�⇣p
n1

In1 0 0 �
p
⇢Wp
n1

0 0 0 0

0 0 In0 �⌃1/2 0 0 0 0 0

0 �W>
p
n1

0 In0 0 0 ⌃�p
⇢ 0 0

0 0 0 0 In0 �⌃1/2 0 0 0
� Xp

n0
0 0 0 0 In0 0 0 0

0 0 0 0 0 0 In0 �⌃1/2 0
0 0 0 0 0 0 0 In0 � Xp

n0

0 0 0 0 0 0 0 0 Im

1

CCCCCCCCCCCCCCCA

.

(S171)
This matrix is specifically chosen so that inverting [QK�1

]> and taking the normalized trace of its
first block gives exactly � t̄rK�1, the quantity of interest. Computing the full inverse of [QK�1

]>

via repeated applications of the Schur complement formula and taking block-wise traces shows that

GK�1

1,1 = � t̄r(K�1) (S172)

GK�1

9,1 =
� t̄r

�
⌃�⌃1/2XK�1X>⌃1/2

�

n0
(S173)

GK�1

2,2 = � t̄r(K̂�1) (S174)
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GK�1

3,3 = GK�1

6,6 = 1�
p
⇢ t̄r

�
⌃1/2W>FK�1X>�

p
n0n1

(S175)

GK�1

4,3 = GK�1

6,5 = t̄r(⌃1/2)�
p
⇢ t̄r

�
⌃W>FK�1X>�
p
n0n1

(S176)

GK�1

5,3 = GK�1

6,4 =
�
p
⇢ t̄r

⇣
⌃1/2W>K̂�1W

⌘

n1
(S177)

GK�1

6,3 =
�
p
⇢ t̄r

⇣
⌃W>K̂�1W

⌘

n1
(S178)

GK�1

7,3 =
t̄r
�
⌃�⌃1/2W>FK�1X>⌃1/2

�
p
n0n1

� t̄r(⌃�⌃1/2)
p
⇢

(S179)

GK�1

8,3 =
t̄r
�
⌃�⌃W>FK�1X>⌃1/2

�
p
n0n1

� t̄r(⌃�⌃)p
⇢

(S180)

GK�1

3,4 = GK�1

5,6 = �
p
⇢ t̄r

�
FK�1X>W>�
p
n0n1 

(S181)

GK�1

4,4 = GK�1

5,5 = 1�
p
⇢ t̄r

�
⌃1/2W>FK�1X>�

p
n0n1

(S182)

GK�1

5,4 =
�
p
⇢ t̄r

⇣
K̂�1WW>

⌘

n1 
(S183)

GK�1

7,4 =
t̄r
⇣
⌃�⌃1/2XF>K̂�1W

⌘

p
n0n1

� t̄r(⌃�)p
⇢

(S184)

GK�1

8,4 =
t̄r
�
⌃�⌃1/2W>FK�1X>⌃1/2

�
p
n0n1

� t̄r(⌃�⌃1/2)
p
⇢

(S185)

GK�1

3,5 = GK�1

4,6 = �
p
⇢ t̄r

�
⌃1/2XK�1X>�

n0
(S186)

GK�1

4,5 = �
p
⇢ t̄r

�
⌃XK�1X>�

n0
(S187)

GK�1

7,5 =
t̄r
�
⌃�⌃1/2XK�1X>⌃1/2

�

n0
(S188)

GK�1

8,5 =
t̄r
�
⌃�⌃XK�1X>⌃1/2

�

n0
(S189)

GK�1

3,6 = �
p
⇢ t̄r

�
K�1X>X

�

n0�
(S190)

GK�1

7,6 =
t̄r
�
⌃�⌃1/2XK�1X>�

n0
(S191)

GK�1

8,6 =
t̄r
�
⌃�⌃1/2XK�1X>⌃1/2

�

n0
(S192)

GK�1

7,7 = GK�1

8,8 = GK�1

9,9 = 1 (S193)

GK�1

8,7 = t̄r(⌃1/2) , (S194)

where GK�1

:= id9 ⌦ t̄r [(QK�1

)>]�1 2 M9(C) is a scalar 9 ⇥ 9 matrix whose i, j entry GK�1

i,j

is the normalized trace of the (i, j)-block of the inverse of [QK�1

]>. We have also defined K̂ =
1
n1

FF> + �In1 (note that K is m⇥m while K̂ is n1 ⇥n1). It is straightforward to verify that when
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the n0, n1,m ! 1 limit is eventually taken, each entry of GK�1

is properly scaled and will tend
toward a finite value.

We aim to compute the limiting values of these trace terms as n0, n1,m ! 1, as they will be related
to the error terms of interest. To proceed, recall that the asymptotic block-wise traces of the inverse
of QK�1

can be determined from its operator-valued Stieltjes transform (Mingo & Speicher, 2017).
The simplest way to apply the results of (Far et al., 2006; Mingo & Speicher, 2017) is to augment
QK�1

to form the the self-adjoint matrix Q̄K�1

,

Q̄K�1

=

 
0 [QK�1

]
>

QK�1

0

!
, (S195)

and observe that we can write Q̄K�1

as,

Q̄K�1

= Z̄ � Q̄K�1

W,X,⇥ � Q̄K�1

⌃

=

✓
0 I9
I9 0

◆
�
 

0 [QK�1

W,X,⇥]
>

QK�1

W,X,⇥ 0

!
�
 

0 [QK�1

⌃ ]
>

QK�1

⌃ 0

!
,

(S196)

where

QK�1

W,X,⇥ = �

0

BBBBBBBBBBBBBB@

0
p
⌘�⇣⇥>

�
p
n1

p
⇢X>

�
p
n0

0 0 0 0 0 0

�⇥
p
⌘�⇣p
n1

0 0 0 �
p
⇢Wp
n1

0 0 0 0
0 0 0 0 0 0 0 0 0

0 �W>
p
n1

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

� Xp
n0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 � Xp

n0

0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCA

(S197)

QK�1

⌃ = �

0

BBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 �⌃1/2 0 0 0 0 0
0 0 0 0 0 0 ⌃�p

⇢ 0 0

0 0 0 0 0 �⌃1/2 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 �⌃1/2 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCA

, (S198)

and the addition in (S196) is performed block-wise. Note that we have separated the iid Gaussian
matrices W,X,⇥ from the constant terms and from the ⌃-dependent terms. Denote by ḠK�1 2
M18(C) the block matrix

ḠK�1

=

 
0 [GK�1

]
>

GK�1

0

!
= id18 ⌦ t̄r

⇣
Q̄K�1

⌘�1
, (S199)

and by ḠK�1

⌃ 2 M18(C) the operator-valued Stieltjes transform of Q̄K�1

⌃ . Using (S196) and the
definition of the operator-valued Stieltjes transform G

Q̄K�1
W,X,⇥+Q̄K�1

⌃
, we can write

ḠK�1

= id18 ⌦ t̄r
⇣
Z̄ � Q̄K�1

W,X,⇥ � Q̄K�1

⌃

⌘�1
= G

Q̄K�1
W,X,⇥+Q̄K�1

⌃
(Z̄) (S200)

Thus using the subordinated form of the equations for addition of free variables (Mingo & Speicher,
2017; section 9.2 Thm. 11), and the defining equation for ḠK�1

⌃ , the operator-valued theory of
free probability shows that in the limit n0, n1,m ! 1, the Stieltjes transform ḠK�1

satisfies the
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following 18⇥ 18 matrix equation:

ḠK�1

= ḠK�1

⌃ (Z̄ � R̄K�1

W,X,⇥(Ḡ
K�1

))

= id⌦ t̄r
⇣
Z̄ � R̄K�1

W,X,⇥(Ḡ
K�1

)� Q̄K�1

⌃

⌘�1
,

(S201)

where R̄K�1

W,X,⇥(Ḡ
K�1

) 2 M18(C) is the operator-valued R-transform of Q̄K�1

W,X,⇥. Note that (S201)
is a coupled set of 18⇥18 scalar equations and thus eliminates all reference to large random matrices.
To see this, note that Z̄, ḠK�1

, R̄K�1

W,X,⇥(Ḡ
K�1

) are all scalar-entried 18 ⇥ 18 matrices. The right-
hand side of (S201) is defined by expanding the inverse to obtain an 18 ⇥ 18 block matrix whose
blocks involve various rational functions of ⌃,⌃� and the scalar entries of Z̄, ḠK�1

, R̄K�1

W,X,⇥(Ḡ
K�1

).
Finally one computes the normalized traces of these blocks, giving scalar values and eliminating all
reference to random matrices. Below, when writing out these equations explicitly, we will use the
fact that traces of rational functions of ⌃,⌃� tend toward expectations of the corresponding rational
functions over the LJSD µ. Both here and in the sequel, to ease the already cumbersome presentation,
we use GK�1

to also denote the limiting value satisfying (S201).

As described in (Adlam & Pennington, 2020a;b), since Q̄K�1

W,X,⇥ is a block matrix whose blocks are iid
Gaussian matrices (and their transposes), an explicit expression for R̄K�1

W,X,⇥(Ḡ
K�1

) can be obtained
through a covariance map, denoted by ⌘ (Far et al., 2006). In particular, ⌘ : Md(C) ! Md(C) is
defined by,

[⌘(D)]ij =
X

kl

�(i, k; l, j)↵kDkl , (S202)

where ↵k is dimensionality of the kth block and �(i, k; l, k) denotes the covariance between the
entries of the blocks ij block of Q̄K�1

W,X,⇥ and entries of the kl block of Q̄K�1

W,X,⇥. Here d = 18 is the
number of blocks. When the constituent blocks are iid Gaussian matrices and their transposes, as
is the case here, then R̄K�1

W,X,⇥ = ⌘ (Mingo & Speicher, 2017; section 9.1 and 9.2 Thm. 11), and
therefore the entries of R̄K�1

W,X,⇥ can be read off from eqn. (S195). To simplify the presentation, we
only report the entries of R̄K�1

W,X,⇥(G
K�1

) that are nonzero, given the specific sparsity pattern of
GK�1

. The latter follows from eqn. (S201) in the manner described in (Mingo & Speicher, 2017; Far
et al., 2006). Practically speaking, the sparsity pattern can be obtained by iterating an eqn. (S201),
starting with an ansatz sparsity pattern determined by Z̄, and stopping when the iteration converges to
a fixed sparsity pattern. In this case (and all cases that follow in the subsequent sections), the number
of necessary iterations is small and can be done explicitly. We omit the details and instead simply
report the following results for the nonzero entries:

R̄K�1

W,X,⇥(Ḡ
K�1

) =

 
0 RK�1

W,X,⇥(G
K�1

)>

RK�1

W,X,⇥(G
K�1

) 0

!
, (S203)

where,

[RK�1

W,X,⇥(G
K�1

)]
1,1

=
GK�1

2,2 (⇣ � ⌘)�p
⇢GK�1

6,3

�
(S204)

[RK�1

W,X,⇥(G
K�1

)]
1,9

= �
p
⇢GK�1

8,3

�
(S205)

[RK�1

W,X,⇥(G
K�1

)]
2,2

=
 GK�1

1,1 (⇣ � ⌘)

��
+
p
⇢ GK�1

4,5 (S206)

[RK�1

W,X,⇥(G
K�1

)]
4,5

=
p
⇢GK�1

2,2 (S207)

[RK�1

W,X,⇥(G
K�1

)]
6,3

= �
p
⇢GK�1

1,1

��
(S208)

[RK�1

W,X,⇥(G
K�1

)]
8,3

= �
p
⇢GK�1

1,9

��
, (S209)
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and the remaining entries of RK�1

W,X,⇥(G
K�1

) are zero. Owing to the large degree of sparsity, the
matrix inverse in (S201) can be performed explicitly and yields relatively simple expressions that
depend on the entries of GK�1

and the matrices ⌃ and ⌃� . For example, the (16, 4) entry of the
self-consistent equation reads,

GK�1

7,4 =


id⌦ t̄r

⇣
Z̄ � R̄K�1

W,X,⇥(Ḡ
K�1

)� Q̄K�1

⌃

⌘�1
�

16,4

(S210)

= t̄r
h
� 1

p
⇢
⌃�
�
In0 +

⇢

��
GK�1

1,1 GK�1

2,2 ⌃)�1
i

(S211)

n0!1
= �Eµ

h q/
p
⇢

1 + x
��

i
(S212)

= �
I�0,1p
⇢
, (S213)

where to compute the asymptotic normalized trace we moved to an eigenbasis of ⌃ and recalled the
definition of the LJSD µ and the definition of I� in Eq. (12). The remaining entries of the (S201)
can be obtained in a similar manner and together yield the following set of coupled equations for the
entries of GK�1

,

GK�1

1,1 = � �

�GK�1

2,2 (�⇣ + ⌘ + ⇢) + ⇢GK�1

2,2 �p
⇢GK�1

6,3 � �
(S214)

GK�1

2,2 =
��

 GK�1

1,1 (⌘ � ⇣)� ��
�p
⇢ GK�1

4,5 � 1
� (S215)

GK�1

3,6 = Eµ

h p
⇢GK�1

1,1

��⇢GK�1

1,1 GK�1

2,2 � ��

i
(S216)

GK�1

4,5 = Eµ

h �
p
⇢GK�1

1,1

��⇢GK�1

1,1 GK�1

2,2 � ��

i
(S217)

GK�1

5,4 = Eµ

h
�

�
p
⇢�GK�1

2,2

��⇢GK�1

1,1 GK�1

2,2 � ��

i
(S218)

GK�1

6,3 = Eµ

h
�

��
p
⇢�GK�1

2,2

��⇢GK�1

1,1 GK�1
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i
(S219)

GK�1

7,4 = Eµ

h
� q��

p
⇢
�
�⇢GK�1

1,1 GK�1

2,2 + ��
�
i

(S220)

GK�1

7,6 = Eµ

h q
p
�GK�1

1,1

�⇢GK�1

1,1 GK�1
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i
(S221)

GK�1

8,3 = Eµ

h
� q���

p
⇢
�
�⇢GK�1

1,1 GK�1
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�
i

(S222)

GK�1

8,5 = Eµ

h q�3/2GK�1

1,1

�⇢GK�1

1,1 GK�1

2,2 + ��

i
(S223)

GK�1

8,7 = Eµ

hp
�
i

(S224)

GK�1

9,1 =

p
⇢GK�1

8,3

�GK�1

2,2 (�⇣ + ⌘ + ⇢) + ⇢GK�1

2,2 �p
⇢GK�1

6,3 � �
(S225)

GK�1

3,4 = GK�1

5,6 = Eµ

h p
�⇢GK�1

1,1 GK�1

2,2

��⇢GK�1

1,1 GK�1

2,2 � ��

i
(S226)

GK�1

3,5 = GK�1

4,6 = Eµ

h
�

p
�
p
⇢GK�1

1,1

�⇢GK�1

1,1 GK�1

2,2 + ��

i
(S227)
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GK�1

4,3 = GK�1

6,5 = Eµ

h
� �

p
��

��⇢GK�1

1,1 GK�1

2,2 � ��

i
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GK�1

5,3 = GK�1

6,4 = Eµ

h �
p
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p
⇢�GK�1
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1,1 GK�1
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i
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GK�1

7,3 = GK�1

8,4 = Eµ

h
� q�

p
��

p
⇢
�
�⇢GK�1

1,1 GK�1
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�
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(S230)

GK�1

7,5 = GK�1

8,6 = Eµ

h q�GK�1

1,1

�⇢GK�1

1,1 GK�1

2,2 + ��

i
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GK�1

7,7 = GK�1

8,8 = GK�1

9,9 = 1 (S232)

GK�1

3,3 = GK�1

4,4 = GK�1

5,5 = GK�1

6,6 = Eµ

h
� ��

��⇢GK�1

1,1 GK�1

2,2 � ��

i
, (S233)

where we have used the fact that, asymptotically, the normalized trace becomes equivalent to an ex-
pectation over µ. After eliminating GK�1

6,3 and GK�1

4,5 from the first two equations, it is straightforward
to show that

⌧1 ⌘ t̄r(K�1) =
1

�
GK�1

1,1 =

p
( � �)2 + 4x ��/⇢+  � �

2 �
(S234)

⌧̄1 ⌘ t̄r(K̂�1) =
1

�
GK�1

2,2 =
1

�
+
 

�

�
⌧1 �

1

�

�
(S235)

⌧2 = t̄r(
1

n0
X>⌃1/2⌃�⌃

1/2XK�1) = ⌧1I�1,1 (S236)

where we have used the notation ⌧1 and ⌧2 from (Adlam & Pennington, 2020a;b), and ⌧̄1 is the
companion transform of ⌧1, and where x satisfies the self-consistent equation,

x =
1� �⌧1
! + I1,1

=
1�

p
( ��)2+4x ��/⇢+ ��

2 

! + I1,1
. (S237)

Here we utilized the two-index set of functionals of µ, Ia,b defined in Eq. (12).

Note that the product ⌧1⌧̄1 is simply related to x,

x = �⇢⌧1⌧̄1 , (S238)

so that, given x, the equations for the remaining entries of GK�1

completely decouple. In particular,

GK�1

3,6 = �
p
⇢GK�1

1,1 I0,1
��

(S239)

GK�1

4,5 = �
p
⇢GK�1

1,1 I1,1
��

(S240)

GK�1

5,4 =
p
⇢GK�1

2,2 I0,1 (S241)

GK�1

6,3 =
p
⇢GK�1

2,2 I1,1 (S242)

GK�1

7,4 = �
I�0,1p
⇢

(S243)

GK�1

7,6 =
I�1

2 ,1
GK�1

1,1

��
(S244)

GK�1

8,3 = �
I�1,1p
⇢

(S245)
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GK�1

8,5 =
I�3

2 ,1
GK�1

1,1
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(S246)

GK�1

8,7 =
I 1

2 ,0

�
(S247)

GK�1

9,1 = �
p
⇢GK�1

1,1 GK�1

8,3

�
(S248)

GK�1

3,4 = GK�1

5,6 = �
xI 1

2 ,1

�
(S249)

GK�1

3,5 = GK�1

4,6 = �
p
⇢GK�1

1,1 I 1
2 ,1

��
(S250)

GK�1

4,3 = GK�1

6,5 = I 1
2 ,1

(S251)

GK�1

5,3 = GK�1

6,4 =
p
⇢GK�1

2,2 I 1
2 ,1

(S252)

GK�1

7,3 = GK�1

8,4 = �
I�1

2 ,1p
⇢

(S253)

GK�1

7,5 = GK�1

8,6 =
I�1,1GK�1

1,1

��
(S254)

GK�1

7,7 = GK�1

8,8 = GK�1

9,9 = 1 (S255)

GK�1

3,3 = GK�1

4,4 = GK�1

5,5 = GK�1

6,6 = I0,1 , (S256)

which will be important intermediate results for the subsequent sections.

Finally, we note that these results are sufficient to compute the training error. The expected training
loss can be written as,

Etrain =
1

m
Etr
�
(Y � ŷ(X))(Y � ŷ(X))>

�
(S257)

=
�2

m
Etr
�
Y >Y K�2

�
(S258)

=
�2

m
Etr
� 1

n0
(X>⌃1/2⌃�⌃

1/2X + �2
"Im)K�2

�
(S259)

= ��2
�
@�⌧2 + �2

"@�⌧1
�

(S260)

= ��2
⇣
@�(⌧1I�1,1) + �2

"@�⌧1
⌘
. (S261)

G.4.2 E21

The calculation of E21 proceeds exactly as in (Tripuraneni et al., 2021a;b) with the simple modification
of including an additional factor ⌃� inside the final trace term, yielding

E21 = �2
x

�
I�2,1 . (S262)

G.4.3 E31

The calculation of E31 proceeds exactly as in (Tripuraneni et al., 2021a;b) with no modifications
since there is no dependence on ⌃� . The result is,

E31 = �⇢ 
�

@x

@�

✓
�2
"

⇣
(! + �I1,2)(! + I1,1) +

�

 
�⌧̄1I2,2

⌘◆
, (S263)

24



Published as a conference paper at ICLR 2022

G.4.4 E32

Define the block matrix QE32 ⌘ [QE32
1 QE32

2 ] by,

Q
E32
1 =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@
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p
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1
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(S264)
and,

Q
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2 =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@
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. (S265)

Then block matrix inversion (i.e. repeated applications of the Schur complement formula) shows that,

GE32
8,8 = GE32

14,14 = GE32
15,15 = GE32

16,16 = 1 (S266)

GE32
1,1 = GE32

9,9 = GK�1

1,1 (S267)

GE32
2,2 = GE32

7,7 = GK�1

2,2 (S268)

GE32
13,8 = GK�1

3,3 � 1 (S269)

GE32
3,3 = GE32

6,6 = GE32
11,11 = GE32

12,12 = GE32
4,4 = GE32

5,5 = GE32
10,10 = GE32

13,13 = GK�1

3,3 (S270)

GE32
3,4 = GE32

5,6 = GE32
10,11 = GE32

12,8 = GE32
12,13 = GK�1

3,4 (S271)

GE32
3,5 = GE32

4,6 = GE32
12,10 = GE32

13,11 = GK�1
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GE32
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GE32
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11,8 = GE32
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GE32
14,13 = GK�1
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GE32
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GE32
16,1 =

�

 
E32 , (S287)

where GE32
i,j denotes the normalized trace of the (i, j)-block of the inverse of

�
QE32

�>. For brevity,
we have suppressed the expressions for the other non-zero blocks.

To compute the limiting values of these traces, we require the asymptotic block-wise traces of QE32 ,
which may be determined from the operator-valued Stieltjes transform. To proceed, we first augment
QE32 to form the the self-adjoint matrix Q̄E32 ,

Q̄E32 =

✓
0 [QE32 ]

>

QE32 0

◆
. (S288)

and observe that we can write Q̄E32 as,
Q̄E32 = Z̄ � Q̄E32

W,X,⇥ � Q̄E32
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where QE32
W,X,✓ ⌘ [[QE32

W,X,✓]1 [QE32
W,X,✓]2] and,
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The operator-valued Stieltjes transforms satisfy,

ḠE32 = ḠE32
⌃ (Z̄ � R̄E32

W,X,⇥(Ḡ
E32))

= id⌦ t̄r
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(S293)

where R̄E32
W,X,⇥(Ḡ

E32) is the operator-valued R-transform of Q̄E32
W,X,⇥. As discussed above, since

Q̄E32
W,X,⇥ is a block matrix whose blocks are iid Gaussian matrices (and their transposes), an explicit

expression for R̄E32
W,X,⇥(Ḡ

E32) can be obtained from the covariance map ⌘, which can be read off
from eqn. (S288). As above, we utilize the specific sparsity pattern for GE32 that is induced by
Eq. (S293), to obtain,
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where,
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and the remaining entries of RE32
W,X,✓(G

E32) are zero. As above, plugging these expressions into
eqn. (S293) and explicitly performing the block-matrix inverse yields the following set of coupled
equations,

GE32
7,2 = �2

p
⇢⌧̄21 G

E32
8,5 + �2

p
⇢⌧̄21 G

E32
13,5 +

�⌧̄21 G
E32
9,1 (⇣ � ⌘)

�
+
�2⌧1⌧̄21 (⇣ � ⌘) (⇣ � ⌘)

�
(S317)

GE32
8,3 = I 1

2 ,1
⇣ � I 1

2 ,1
⌘ �

�⌧̄1I 3
2 ,1
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GE32
8,4 = ��⌧̄1I1,1 (⇢⌧1 (⇣ � ⌘) + �⇢)

 �
(S319)

GE32
8,5 = �I1,1 (⇢⌧1 (⇣ � ⌘) + �⇢)

p
⇢ �

(S320)

GE32
8,6 = �

p
⇢⌧1
⇣
 I 1

2 ,1
⇣ �  I 1

2 ,1
⌘ � �⌧̄1I 3

2 ,1
⇢
⌘

 �
(S321)

GE32
9,1 = �⌧21G

E32
7,2 (⇣ � ⌘)� �

p
⇢⌧21G

E32
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p
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2 ,2
�
�
p
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⇣
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2 ,2
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2 ,2
⌘ + �⌧̄1I 3

2 ,2
⇢
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p
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E32
9,1 I1,2 �

�2
p
⇢⌧̄21 I1,2 (⇢⌧1 (⇣ � ⌘) + �⇢)

 
(S324)
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+ xI 1
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GE32
13,5 = �

p
⇢GE32

9,1 I1,2
�

+
⇢3/2⌧21G

E32
7,2 I2,2
�

+
I2,2

�
�⇢2⌧21 ⌧̄1 (⇣ � ⌘) + x�⇢

�
p
⇢ �

(S335)
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GE32
14,5 =

I�1,2G
E32
9,1

�
�
⇢⌧21 I

�
2,2G

E32
7,2

�
+

I�2,2
⇣
�⇢2⌧2

1 ⌧̄1(⌘�⇣)
� � x⇢

 

⌘

⇢
(S340)
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GE32
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6,6 = GE32
10,10 = GE32

11,11 = GE32
12,12 = GE32

13,13 = I0,1 , (S369)

Here we have used the relations in eqns. (S266)-(S287), the definition of I�a,b, as well as the results in
Sec. G.4.1 to simplify the expressions. It is straightforward algebra to solve these equations for the
undetermined entries of GE32 and thereby obtain the following expression for E32,

E32 =
(⌘ � ⇣)A32 + ⇢B32

D32
, (S370)
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where,

A32 = �⇢3⌧1 2x4I1,1I2,2I�2,2 + ⇢2⌧1 x
3I2,2I�2,2(⇢�+ x (⇣ � ⌘))

� ⇢3⌧1 
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+ ⇢2⌧1 
2x2I1,1I�2,2(⇢+ x(⇣ � ⌘)) + ⇢2⌧1 x
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(S372)

D32 = �⇢3 x4�I2
2,2 + 2⇢2 x2�2I1,2(⌘ � ⇣)

+ ⇢3 x2�3I2
1,2 + ⇢3x2�I2,2( + �) + ⇢�

�
x2 (⇣ � ⌘)2 � ⇢2�

�
. (S373)

Further simplifications are possible using the raising and lowering identities in eqn. (S9), as well as
the results in Sec. G.4.1, to obtain,

E32 =
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�
I�3,2 � ⇢
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(S374)

where
@x

@�
= � x

� + ⇢�(⌧1 /�+ ⌧̄1)(! + �I1,2)
. (S375)

G.4.5 E4

The calculation of E4 proceeds exactly as in (Tripuraneni et al., 2021a;b) with the simple modification
of including an additional factor ⌃� inside the final trace term, yielding

E4 =
x2

�
I�3,2 . (S376)

G.5 FINAL RESULT FOR BIAS, VARIANCE, AND TEST ERROR

Putting the above pieces together, we have,

Bµ = �I�1,2 (S377)

Vµ = �⇢ 
�

@x

@�

✓
I�1,1(! + �I1,2)(! + I1,1) +

�2

 
�⌧̄1I�1,2I2,2 + �⌧1I�2,2(! + �I1,2)

+ �2
"

⇣
(! + �I1,2)(! + I1,1) +

�

 
�⌧̄1I2,2

⌘◆
. (S378)

(S379)

Some algebra shows that

Eµ = Bµ + Vµ (S380)
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= �
@�(⌧1(�2

" + I�1,1))
⌧21

� �2
" (S381)

=
Etrain

�2⌧21
� �2

" . (S382)

Corollary G.1. In the setting of Theorem 3.1, as the ridge regularization constant � ! 0, Eµ =

Bµ + Vµ with Bµ = �I�1,2 and Vµ given by

Vµ
�!0�! min(�, )

|��  | (�2
" + I�1,1) +

(
xI�2,2 if � <  

xI2,2

!+�I1,2
(�2
" + I�1,2) otherwise

, (S383)

where x is the unique positive real root of x = min(1,�/ )
!+I1,1

.
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