
A Dataset Documentation and Accessibility1

A.1 Dataset Documentation and Intended Uses2

The dataset generated using the APIGen framework is intended for training and evaluating function-3

calling agents. The dataset consists of diverse query-answer pairs, where the answers are verified4

function calls that could address the requested query with provided APIs. The APIs and function5

calls are in a standardized JSON format, as demonstrated in the main paper Fig. 3. More details of6

the format and examples are available in Appendix A.2. The dataset covers a wide range of API7

categories and includes various query styles, such as simple, multiple, parallel, and parallel multiple8

function calls, as introduced in [1].9

Hosting, Licensing, and Maintenance Plan. The dataset currently can be viewed and downloaded10

from our project homepage 1 or via Huggingface 2. All datasets are licensed under the Creative11

Commons Attribution 4.0 License (CC BY). We also plan to open-source the trained models on12

Huggingface once after the company’s legal approval. As for maintenance, we have established13

a long-term plan to keep the datasets up-to-date, correct any potential issues, and provide support14

to users. We also aim to expand these datasets further based on new advances in the field, thus15

continually promoting progress in the field of function-calling agent training.16

Author Responsibility Statement. As the authors, we hereby affirm that we bear full responsibility17

for the datasets provided in this submission. We confirm that to the best of our knowledge, no rights18

are violated in the collection, distribution, and use of these datasets.19

A.2 JSON Data Format and Examples20

This JSON data format is used to represent a query along with the available tools and the corresponding21

answers. Here’s a description of the format:22

A.2.1 Dataset Structure23

The JSON data structure comprises three main keys: query, a string representing the problem24

statement; tools, an array of tools each defined by properties such as name, description, and25

parameters that further describe each tool’s required and optional parameters with their types and26

descriptions; and answers, an array detailing responses with the tool used (name) and the arguments27

provided (arguments) for each answer, thereby aligning tools with their respective query intentions.28

The detailed description of each data point’s entries is as follows.29

• query (string): The query or problem statement.30

• tools (array): An array of available tools that can be used to solve the query.31

– Each tool is represented as an object with the following properties:32

* name (string): The name of the tool.33

* description (string): A brief description of what the tool does.34

* parameters (object): An object representing the parameters required by the tool.35

· Each parameter is represented as a key-value pair, where the key is the parameter name36

and the value is an object with the following properties:37

· type (string): The data type of the parameter (e.g., "integer", "float", "array").38

· description (string): A brief description of the parameter.39

· required (boolean): Indicates whether the parameter is required or optional.40

• answers (array): An array of answers corresponding to the query.41

– Each answer is represented as an object with the following properties:42

1https://apigen-pipeline.github.io/
2https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k

1

https://apigen-pipeline.github.io/
https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k


* name (string): The name of the tool used to generate the answer.43

* arguments (object): An object representing the arguments passed to the tool to44

generate the answer.45

· Each argument is represented as a key-value pair, where the key is the parameter46

name and the value is the corresponding value.47

A.2.2 Example Data48

Here’s an example JSON data for the simplest scenario.49

50
{51

"query": "What is the weather in Palo Alto?",52

"tools": [53

{54

"name": "weather_api.get_current_weather",55

"description": "Retrieves the current weather conditions56

for a specified location.",57

"parameters": {58

"location": {59

"type": "string",60

"description": "The name of the city or geographic61

location.",62

"required": true63

},64

"units": {65

"type": "string",66

"description": "The units for temperature measurement67

(e.g., ’Celsius ’, ’Fahrenheit ’).",68

"required": false69

}70

}71

}72

],73

"answers": [74

{75

"name": "weather_api.get_current_weather",76

"arguments": {77

"location": "Palo Alto",78

"units": "Celsius"79

}80

}81

]82

}8384

In this example, the query asks about the current weather in Palo Alto. The tools array contains a85

single entry for weather_api.get_current_weather, describing the tool used to retrieve weather86

data, including parameters for location and units. The answers array lists the specific API call made87

with the location set as "Palo Alto" and units as "Celsius".88

Here’s an example JSON data for the parallel function-calling category, i.e., the user’s query contains89

multiple intentions and the answers contain multiple parallel tool calls:90

91
{92

"query": "Find the sum of all the multiples of 3 and 593

between 1 and 1000. Also find the product of the first five94

prime numbers.",95

"tools": [96

{97

"name": "math_toolkit.sum_of_multiples",98

2



"description": "Find the sum of all multiples of99

specified numbers within a specified range.",100

"parameters": {101

"lower_limit": {102

"type": "integer",103

"description": "The start of the range (inclusive).",104

"required": true105

},106

"upper_limit": {107

"type": "integer",108

"description": "The end of the range (inclusive).",109

"required": true110

},111

"multiples": {112

"type": "array",113

"description": "The numbers to find multiples of.",114

"required": true115

}116

}117

},118

{119

"name": "math_toolkit.product_of_primes",120

"description": "Find the product of the first n prime121

numbers.",122

"parameters": {123

"count": {124

"type": "integer",125

"description": "The number of prime numbers to126

multiply together.",127

"required": true128

}129

}130

}131

],132

"answers": [133

{134

"name": "math_toolkit.sum_of_multiples",135

"arguments": {136

"lower_limit": 1,137

"upper_limit": 1000,138

"multiples": [3, 5]139

}140

},141

{142

"name": "math_toolkit.product_of_primes",143

"arguments": {144

"count": 5145

}146

}147

]148

}149150

In this example, the query asks to find the sum of multiples of 3 and 5 between 1 and151

1000, and also find the product of the first five prime numbers. The available tools are152

math_toolkit.sum_of_multiples and math_toolkit.product_of_primes, along with their153

parameter descriptions. The answers array provides the specific tool and arguments used to generate154

each answer.155

3



A.3 Human Evaluation of Dataset Quality156

To ensure that the three-stage verification process employed by APIGen produces a high-quality157

dataset, we conduct a human evaluation on a sample of the generated data. We engage three human158

evaluators to manually inspect a total of 600 samples from our released dataset. The evaluators159

assess the quality of each sample based on factors such as the accuracy of parameter values and the160

appropriateness of the number of API calls.161

The results of the human evaluation reveal that only 28 out of the 600 inspected samples have minor162

issues, such as inaccurate parameter values or more API calls than expected. This means that the163

majority of the data, approximately 95.3%, are of very high quality. The high quality of the dataset164

can be attributed to the format and execution checkers implemented in the APIGen pipeline.165

The format checker ensures that the generated data adheres to the specified JSON format and contains166

all the necessary fields. This step helps to filter out poorly formatted or incomplete data points. The167

execution checker, on the other hand, executes the generated function calls against the appropriate168

backend and verifies their successful execution. By providing real execution results, the execution169

checker plays a crucial role in filtering out cases that might be difficult to identify by an LLM-based170

semantic checker alone.171

The combination of these two checkers, along with the final semantic checker, creates a robust172

verification process that effectively filters out low-quality data points. The human evaluation results173

confirm the effectiveness of this approach, demonstrating that APIGen is capable of generating174

high-quality datasets for training function-calling agents.175

B Dataset Generation and Experiment Details176

B.1 Generator LLM Prompt177

Example Prompt for the Generator to Generate Parallel Function-Calling Data

"""
You are a data labeler. The responsibility for you is to

generate a set of diverse queries and corresponding
answers for the given functions in JSON format.

Construct queries and answers that exemplifies how to use
these functions in a practical scenario. Include in each
query specific, plausible values for each parameter. For
instance, if the function requires a date, use a typical
and reasonable date.

Ensure the query:
− Is clear and concise
− Contain multiple parallel queries in natural language for

the given functions, they could use either the same
function with different arguments or different functions

− Demonstrates typical use cases
− Includes all necessary parameters in a meaningful way. For

numerical parameters, it could be either numerals or words
− Across a variety level of difficulties, ranging from

beginner and advanced use cases
− The corresponding result’s parameter types and ranges match

with the functions descriptions.

Ensure the answer:

178

4



− Is a list of function calls in JSON format.
− The length of the answer list should be equal to the number

of requests in the query
− Can solve all the requests in the query effectively

Here are examples of queries and corresponding answers for
similar functions:

{examples}

Note that the query could be interpreted as a combination of
several independent requests.

Based on these examples and the above instructions, generate
{number} diverse query and answer pairs for the functions
‘{func_name}‘.

The detailed functions description is as follows:
{func_desc}

{format_inst}

Now please generate {number} diverse query and answer pairs
following the above format.

"""

179

The template provided outlines the prompt for an LLM to generate datasets as data labelers, empha-180

sizing the diversity of query types and complexity to ensure thorough coverage of potential real-world181

applications. It specifies the importance of generating clear, concise queries and precisely formatted182

JSON responses. Sampled data, used to populate the examples field, and API information, filling183

the func_name and func_desc fields, enable a structured approach to dataset generation. The184

format_inst specifies the enforced JSON output format, as shown below.185

Example Format Instruction to Generate Parallel Function-Calling Data

The output MUST strictly adhere to the following JSON format,
and NO other text MUST be included:

‘‘‘
[

{
"query": "The generated query.",
"answers": [

{
"name": "api_name",
"arguments": {

"arg_name": "value",
... (more arguments as required)

}
},
... (more API calls as required)

]
}

]
‘‘‘

186

5



The enforced JSON output format facilitates efficient data extraction and cost-effective generation.187

By requesting multiple query-answer pairs in a single inference with the number field—referred to188

here as a "batching" technique—token usage and costs are significantly reduced.189

B.2 Semantic Checker LLM Prompt190

We prompted another LLM as the semantic checker to evaluate whether the execution results and the191

tool calls align with the user query. We could use multiple LLMs with different prompts as checkers192

here to increase the credibility of this verification stage. We provide one example prompt as follows.193

Example Prompt for the Semantic Checker to Verify the Data

"""
As a data quality evaluator, you must assess the alignment

between a user query, corresponding function calls, and
their execution results.

These function calls and results are generated by other
models, and your task is to ensure these results
accurately reflect the user’s intentions.

Do not pass if:

1. The function call does not align with the query’s
objective, or the input arguments appear incorrect.

2. The function call and arguments are not properly chosen
from the available functions.

3. The number of function calls does not correspond to the
user’s intentions.

4. The execution results are irrelevant and do not match the
function’s purpose.

5. The execution results contain errors or reflect that the
function calls were not executed successfully.

Given Information:
− All Available Functions:

{func_desc}

− User Query: {query}

− Generated Function Calls: {func_call}

− Execution Results: {execution_result}

Note: The query may have multiple intentions. Functions may
be placeholders, and execution results may be truncated
due to length, which is acceptable and should not cause a
failure.

The main decision factor is wheather the function calls
accurately reflect the query’s intentions and the function
descriptions.

Provide your reasoning in the thought section and decide if
the data passes (answer yes or no).

If not passing, concisely explain your reasons in the thought
section; otherwise, leave this section blank.

194

6



Your response MUST strictly adhere to the following JSON
format, and NO other text MUST be included.

‘‘‘
{{

"thought": "Concisely describe your reasoning here",
"pass": "yes" or "no"

}}
‘‘‘
"""

195

Here, the func_desc field is the same as the generator, while the func_call and196

execution_result are the key fields to determine whether the generated data successfully ad-197

dress the query’s intention. We also enforce the model to output a JSON-formatted string, and then198

extract whether we should give a pass to this data point.199

B.3 Model Training200

We train two function-calling models of different sizes, xLAM-1B (FC) and xLAM-7B (FC), using201

the dataset generated by APIGen. The training pipeline mainly follows the AgentOhana paper [2].202

We use 8 NVIDIA A100 40GB GPUs for training both models.203

Since the Berkeley Function-Calling Benchmark [1] contains a relevance detection category, which204

evaluates a model’s ability to distinguish non-relevant queries and tools, we extend APIGen to205

generate relevance detection data points from the generated datasets. These data points cover two206

types of scenarios:207

• The provided tools cannot solve the query (e.g., query: "I want to know the weather in Palo Alto208

on Dec 25, 2023," provided tool: get_house_price(city)).209

• The provided tools are missing key arguments to solve the query (e.g., query: "I want to know the210

weather in Palo Alto on Dec 25, 2023," provided tool: get_weather(city)).211

In both cases, the correct output is an empty tool call or a concise explanation indicating that the212

model should refuse to answer due to insufficient or irrelevant information.213

We create 8,000 such data points from the collected dataset by 1) randomly discarding some tools214

that will be called in the answer or 2) randomly dropping some required parameters that were215

used in the generated tool calls. Then we relabel the answer to be an empty tool call or with a216

concise explanation. By incorporating relevance detection data points into our training datasets, we217

can enhance the model’s performance in determining when the provided tools are not suitable for218

addressing a given query. This enables the training of agents that can effectively assess the relevance219

of the available tools and respond appropriately, either by utilizing the relevant tools or by refraining220

from answering when the necessary information is lacking.221

When training the model, we fill in the sampled query and available tools to the training prompt222

template, and then ask the model to predict the corresponding tool calls in specified JSON format.223

The training prompt template is as follows:224

Model Training Prompt

"""
[BEGIN OF TASK INSTRUCTION]
You are an expert in composing functions. You are given a

question and a set of possible functions.

225

7



Based on the question, you will need to make one or more
function/tool calls to achieve the purpose.

If none of the function can be used, point it out and refuse
to answer.

If the given question lacks the parameters required by the
function, also point it out.

[END OF TASK INSTRUCTION]

[BEGIN OF AVAILABLE TOOLS]
{func_desc}
[END OF AVAILABLE TOOLS]

[BEGIN OF FORMAT INSTRUCTION]
The output MUST strictly adhere to the following JSON format,

and NO other text MUST be included.
The example format is as follows. Please make sure the

parameter type is correct. If no function call is needed,
please make tool_calls an empty list ’[]’

‘‘‘
{{

"tool_calls": [
{{"name": "func_name1", "arguments": {{"argument1": "
value1", "argument2": "value2"}}}},
... (more tool calls as required)

]
}}
‘‘‘
[END OF FORMAT INSTRUCTION]

[BEGIN OF QUERY]
User Query: {query}
[END OF QUERY]
"""

226

The training hyperparameters for our models include a learning rate of 5× 10−6, two epochs, and227

use of the AdamW optimizer. Other settings include a cutoff length of 2048, a per-device batch size228

of six, two gradient accumulation steps, a cosine learning rate scheduler with 50 warmup steps, and229

the bfloat16 (BF16) data type.230

References231

[1] Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica, and232

Joseph E. Gonzalez. Berkeley function calling leaderboard. https://gorilla.cs.berkeley.233

edu/blogs/8_berkeley_function_calling_leaderboard.html, 2024.234

[2] Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, Weiran Yao, Juntao Tan, Thai Hoang,235

Liangwei Yang, Yihao Feng, Zuxin Liu, et al. Agentohana: Design unified data and training236

pipeline for effective agent learning. arXiv preprint arXiv:2402.15506, 2024.237

8

https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html

	Dataset Documentation and Accessibility
	Dataset Documentation and Intended Uses
	JSON Data Format and Examples
	Dataset Structure
	Example Data

	Human Evaluation of Dataset Quality

	Dataset Generation and Experiment Details
	Generator LLM Prompt
	Semantic Checker LLM Prompt
	Model Training


