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ABSTRACT

Kernel methods are widely used in machine learning, especially for classification
problems. However, the theoretical analysis of kernel classification is still lim-
ited. This paper investigates the statistical performances of kernel classifiers. With
some mild assumptions on the conditional probability η(x) = P(Y = 1 | X = x),
we derive an upper bound on the classification excess risk of a kernel classifier us-
ing recent advances in the theory of kernel regression. We also obtain a minimax
lower bound for Sobolev spaces, which shows the optimality of the proposed clas-
sifier. Our theoretical results can be extended to the generalization error of over-
parameterized neural network classifiers. To make our theoretical results more
applicable in realistic settings, we also propose a simple method to estimate the
interpolation smoothness of 2η(x)− 1 and apply the method to real datasets.

1 INTRODUCTION

In this paper, we study the problem of binary classification in a reproducing kernel Hilbert space
(RKHS). Suppose n i.i.d samples {(Xi, Yi) ∈ X × {−1, 1}} are drawn from a joint distribution
(X,Y ) ∼ ρ, where the conditional probability of the response variable Y given the predictor
variable X = x is denoted by η(x) = P(Y = 1|X = x). We aim to find a classifier function
f(x) : X → [−1, 1] that minimizes the classification risk, defined as:

L(f̂) := P(X,Y )∼ρ)

[
sign(f̂(X)) ̸= Y

]
.

The minimal classification risk is achieved by the Bayes classifier function corresponding to ρ,
which is defined as f∗ρ (x) = 2η(x)− 1. Our main focus is on analyzing the convergence rate of the
classification excess risk, defined as:

E(f̂) = L(f̂)− L(f∗ρ ).

This paper studies a class of kernel methods called spectral algorithms (which will be defined in
Section 2.3) for constructing estimators of f∗ρ . The candidate functions are selected from an RKHS
H, which is a separable Hilbert space associated with a kernel function K defined on X (Smale
& Zhou, 2007; Steinwart & Christmann, 2008). Spectral algorithms, as well as kernel methods,
are becoming increasingly important in machine learning because both experimental and theoretical
results show that overparameterized neural network classifiers exhibit similar behavior to classifiers
based on kernel methods Belkin et al. (2018). Therefore, understanding the properties of classifica-
tion with spectral algorithms can shed light on the generalization of deep learning classifiers.

In kernel methods context, researchers often assume that f∗ρ ∈ H, and have obtained the mini-
max optimality of spectral algorithms (Caponnetto, 2006; Caponnetto & De Vito, 2007). Some
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researchers have also studied the convergence rate of the generalization error of misspecified spec-
tral algorithms

(
f∗ρ /∈ H

)
, assuming that f∗ρ falls into the interpolation space [H]s with some s > 0

(Fischer & Steinwart, 2020; Zhang et al., 2023). In this line of work, researchers consider the embed-
ding index condition which reflects the capability of H embedding into L∞ space. Moreover, Zhang
et al. (2023) extends the boundedness assumption to the cases where [H]s ∩ L∞(X,µ) & [H]s.

Motivated by the aforementioned studies, we adopt similar assumptions in our study of kernel clas-
sifiers trained via the gradient flow. We assume that the Bayes classifier f∗ρ ∈ [H]s satisfies the
boundedness condition f∗ρ ∈ [−1, 1]. We first derive the upper bound of the classification excess
risk, showing that the generalization error of the kernel classifier is highly related to the interpola-
tion smoothness s. To clarify the minimax optimality of kernel classification, we then obtain the
minimax lower bound for classification in Sobolev RKHS, which is a novel result in the literature.
Our technique is motivated by the connection between kernel estimation and infinite-width neural
networks, and our framework can be applied to neural network supervised learning. Furthermore,
we provide a method to estimate the interpolation space smoothness parameter s and also present
some numerical results for neural network classification problems through simulation studies and
real data analysis.

1.1 OUR CONTRIBUTION

In this paper, we study the generalization error of kernel classifiers. We show that

i) We show the generalization error of the gradient flow kernel classifier is bounded by
O(n−sβ/(2sβ+2)) provided that the Bayes classifier f∗ρ ∈ [H]s, where β is the eigenvalue
decay rate (EDR) of the kernel. This result is not only applicable to the Sobolev RKHS
H but also to any RKHS with the embedding index α0 = 1/β, such as the RKHS with
dot-product kernels and the RKHS with shift-invariant periodic kernels.

ii) We establish a minimax lower bound on the classification excess risk in the interpolation
space of Sobolev RKHS. Combined with the results in i), the convergence rate of the kernel
classifier is minimax optimal in Sobolev space. Before our work, Yang (1999) illustrated a
similar result of the minimax lower bound for Besov spaces. However, the result has only
been proved for d = 1 by Kerkyacharian & Picard (1992) and the case for d > 1 remains
unresolved.

iii) To make our theoretical results more applicable in realistic settings, we propose a sim-
ple method to estimate the interpolation smoothness s. We apply this method to estimate
the relative smoothness of various real datasets with respect to the neural tangent kernels,
where the results are in line with our understanding of these real datasets.

1.2 RELATED WORKS

We study the classification rules derived from a class of real-valued functions in a reproducing
kernel Hilbert space (RKHS), which are used in kernel methods such as Support Vector Machines
(SVM) (Steinwart & Christmann, 2008). Most of the existing works consider hinge loss as the loss
function, i.e. Wahba (2002); Steinwart & Scovel (2007); Bartlett & Wegkamp (2008); Blanchard
et al. (2008) etc. Another kernel method, kernel ridge regression, also known as least-square SVM
(Steinwart & Christmann, 2008), is investigated by some researchers (Xiang & Zhou, 2009; Rifkin
et al., 2003). Recently, some works have combined the least square loss classification with neural
networks (Demirkaya et al., 2020; Hu et al., 2021).

We choose kernel methods because it allows us to use the integral operator tool for analysis (De Vito
et al., 2005; Caponnetto & De Vito, 2007; Fischer & Steinwart, 2020; Zhang et al., 2023), while pre-
vious SVM works tend to use the empirical process technique (Steinwart & Scovel, 2007). More-
over, we can easily extend the H to the misspecified model case [H]s when true model f∗ρ belongs
to a less-smooth interpolation space. Furthermore, we consider more regularization methods, collec-
tively known as spectral algorithms, which were first proposed and studied by Rosasco et al. (2005);
Bauer et al. (2007); Caponnetto & De Vito (2007). Zhang et al. (2023) combined these two ideas and
obtained minimax optimality for the regression model. We extend their results to the classification
problems.
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We study the minimax optimality of Sobolev kernel classification, and before our work, the minimax
lower bound of classification excess risk for the RKHS class was seldom considered. Loustau (2008;
2009) have discussed Classification problems in Sobolev space, but they did not consider the lower
bound of classification risk. Audibert (2004); Audibert & Tsybakov (2007); Massart & Nédélec
(2006) provided some minimax lower bound techniques for classification, but how to solve RKHS
remains unknown. Sobolev space (see, e.g., Adams & Fournier (2003)) is known as a vector space
of functions equipped with a norm that is a combination of L2-norms of the function together with
its derivatives up to a given order and can be embedded into Hölder class. Inspired by the minimax
lower bound for Hölder class classification in Audibert & Tsybakov (2007), we derive the lower
bound for the Sobolev class.

Recently, deep neural networks have gained incredible success in classification tasks from image
classification (Krizhevsky et al., 2012; He et al., 2016) to natural language processing (Devlin et al.,
2019). Since Jacot et al. (2018) introduced the neural tangent kernel, The gradient flow of the
training process can be well approximated by a simpler gradient flow associated with the NTK
kernel when the width of neural networks is sufficiently large (Lai et al., 2023; Li et al., 2023a).
Therefore, we can analyze the classification risk of neural networks trained by gradient descent.

2 PRELIMINARIES

We observe n samples {(Xi, Yi) ∈ X × {−1, 1}} where X ⊂ Rd is compact. Let ρ be an unknown
probability distribution on X × {−1, 1} and µ be the marginal distribution on X . We assume µ
has a uniformly bounded density 0 < µmin ≤ µ(x) ≤ µmax for x ∈ X . The classification task
is to predict the unobserved label y given a new input x. The conditional probability is defined as
η(x) = P(Y = 1|X = x). For any classifier f , the risk based on the 0-1 loss can be written as
L(f) = E(X,Y )∼ρI{sign(f(X)) ̸= Y } = EX [(1− η(X))I{f(X) ≥ 0}+ η(X)I{f(X) < 0}].

(1)
One of the minimizers of the risk has the form f∗ρ = 2η − 1. Let L∗ = L(f∗ρ ). For any classifier f̂
learned from data, its accuracy is often characterized by the classification excess risk, which can be
formulated as

E(f̂) = L(f̂)− L∗ = EX(|f∗ρ (X)|I{f̂(X)f∗ρ (X) < 0}). (2)
In the rest of this section, we introduce some essential concepts in RKHS and kernel classifiers.
In Section 2.1, we review some definitions in the interpolation space of RKHS. The relationship
between fractional Sobolev space and Sobolev RKHS is presented in Section 2.2. Section 2.3
presents the explicit formula of the gradient-flow kernel classifier and the corresponding rewritten
form through spectral algorithms and filter functions.

2.1 INTERPOLATION SPACE OF RKHS

Denote L2(X ) := L2(X , µ) as the L2 space. Throughout the paper, we denote by H a sep-
arable RKHS on X with respect to a continuous kernel function K. We also assume that
supx∈X K(x, x) ≤ κ for some constant κ. The celebrated Mercer’s theorem shows that there
exist non-negative numbers λ1 ≥ λ2 ≥ · · · and functions e1, e2, · · · ∈ L2(X ) such that
⟨ei, ej⟩L2(X ) = δij and

Kd(x, x
′) =

∞∑
j=1

λjej(x)ej(x
′), (3)

where the series on the right hand side converges in L2(X ).

Denote the natural embedding inclusion operator by Sk : H → L2(X , µ). Moreover, the adjoint
operator S∗

k : L2(X , µ) → H is an integral operator, i.e., for f ∈ L2(X , µ) and x ∈ X , we have

(S∗
kf) (x) =

∫
X
K (x, x′) f (x′) dµ (x′) .

It is well-known that Sk and S∗
k are Hilbert-Schmidt operators (and thus compact) and their HS

norms (denoted as ∥ · ∥2 ) satisfy that

∥S∗
k∥2 = ∥Sk∥2 = ∥K∥L2(X ,µ) :=

(∫
X
K(x, x)dµ(x)

)1/2

≤ κ.

3



Published as a conference paper at ICLR 2024

Next, we define two integral operators as follows:

L := SkS
∗
k : L2(X , µ) → L2(X , µ), T := S∗

kSk : H → H.

L and T are self-adjoint, positive-definite, and in the trace class (and thus Hilbert-Schmidt and
compact). Their trace norms (denoted as ∥ · ∥1 ) satisfy that ∥L∥1 = ∥T∥1 = ∥Sk∥22 = ∥S∗

k∥
2
2.

For any s ≥ 0, the fractional power integral operator Ls : L2(X , µ) → L2(X , µ) and T s : H → H
are defined as

Ls(f) =

∞∑
j=1

λsj ⟨f, ej⟩L2 ej , T s(f) =

∞∑
j=1

λsj

〈
f, λ

1
2
j ej

〉
H
λ

1
2
j ej . (4)

The interpolation space [H]s is defined as

[H]s :=


∞∑
j=1

ajλ
s/2
j ej :

∞∑
j

a2j <∞

 ⊆ L2(X ) (5)

It is easy to show that [H]s is also a separable Hilbert space with orthogonal basis {λs/2i ei}i∈N .
Specially, we have [H]0 ⊆ L2(X , µ), [H]1 = H and [H]s2 ⊊ [H]s1 ⊊ [H]0 for any numbers
0 < s1 < s2. For the functions in [H]s with larger s, we say they have higher (relative) interpolation
smoothness with respect to the RKHS (the kernel).

2.2 FRACTIONAL SOBOLEV SPACE AND SOBOLEV RKHS

For m ∈ N, we denote the usual Sobolev space Wm,2(X ) by Hm(X ) and L2(X ) by H0(X ).
Then the (fractional) Sobolev space for any real number r > 0 can be defined through the real
interpolation

Hr(X ) :=
(
L2(X ), Hm(X )

)
r
m ,2

where m := min{k ∈ N : k > r}.

It is well known that when r > d/2, Hr is a separable RKHS with respect to a bounded kernel and
the corresponding eigenvalue decay rate (EDR) is β = 2r/d. Furthermore, the interpolation space
of Hr(X ) under Lebesgue measure is given by

[Hr(X )]s = Hrs(X ). (6)

It follows that given a Sobolev RKHS H = Hr for r > d/2, if f ∈ Ha for any a > 0, one can find
that f ∈ [H]s with s = a/r. Thus, in this paper, we will assume that the Bayes classifier f∗ρ is in
the interpolation of the Sobolev RKHS [H]s.

2.3 KERNEL CLASSIFIERS: SPECTRA ALGORITHM

We then introduce a more general framework known as spectra algorithm (Rosasco et al., 2005;
Caponnetto, 2006; Bauer et al., 2007). We define the filter function and the spectral algorithms as
follows:
Definition 1 (Filter function). Let

{
φν :

[
0, κ2

]
→ R+ | ν ∈ Γ ⊆ R+

}
be a class of functions and

ψν(z) = 1− zφν(z). If φν and ψν satisfy:

• ∀α ∈ [0, 1], we have supz∈[0,κ2] z
αφν(z) ≤ Eν1−α, ∀ν ∈ Γ;

• ∃τ ≥ 1 s.t. ∀α ∈ [0, τ ], we have supz∈[0,κ2] |ψν(z)| zα ≤ Fτν
−α, ∀ν ∈ Γ,

where E,Fτ are absolute constants, then we call φν a filter function. We refer to ν as the regular-
ization parameter and τ as the qualification.
Definition 2 (spectral algorithm). Let φν be a filter function index with ν > 0. Given the samples
Z, a spectral algorithm produces an estimator of f∗ρ given by f̂ν = φν (TX) gZ .
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The following example shows that f̂t(x) can be formulated by the spectral algorithms.
Example 1 (Classifier with Gradient flow). The filter function of gradient flow φν can be defined as
φgfν (z) = 1−e−νz

z . The qualification τ could be any positive number, E = 1 and Fτ = (τ/e)τ . So
that for a test input x, the predicted output is given by ŷ = sign(f̂ν(x)).

Other spectral algorithms consist of kernel ridge regression, spectral cut-off, iterated Tikhonov, and
so on. For more examples, we refer to Gerfo et al. (2008). Spectral algorithms differ in φν(z) and
ψν(z), which is corresponding to saturation effect defined in Gerfo et al. (2008). Moreover, Li et al.
(2023b) gives a thorough analysis of the saturation effect for kernel ridge regression.

Notations. Denote B(x, r) as a ball, and λ[B(x, r)] is denoted as the Lebesgue measure of
B(x, r). We use ∥ · ∥B(B1,B2) to denote the operator norm of a bounded linear operator from a
Banach space B1 to B2, i.e., ∥A∥B(B1,B2) = sup∥f∥B1=1

∥Af∥B2
. Without bringing ambiguity, we

will briefly denote the operator norm as ∥ · ∥. In addition, we use trA and ∥A∥1 to denote the trace
and the trace norm of an operator. We use ∥A∥2 to denote the Hilbert-Schmidt norm.

3 MAIN RESULTS

3.1 ASSUMPTIONS

This subsection lists the standard assumptions for general RKHS H and clarifies how these assump-
tions correspond to properties of Sobolev RKHS.
Assumption 1 (Source condition). For s > 0, there is a constant B > 0 such that f∗ρ ∈ [H]s and
∥f∗ρ ∥[H]s ≤ B.

This assumption is weak since s can be small. However, functions in [H]s with smaller s are less
smooth, which will be harder for an algorithm to estimate.
Assumption 2 (Eigenvalue Decay Rate (EDR)). The EDR of the eigenvalues {λj} associated to the
kernel K is β > 1, i.e.,

cj−β ≤ λj ≤ Cj−β (7)
for some positive constants c and C.

Note that the eigenvalues λi and EDR are only determined by the marginal distribution µ and the
RKHS H. For Sobolev RKHS Hr equipped with Lebesgue measure ν and bounded domain with
smooth boundary X ⊆ Rd, it is well known that when r > d/2, Hr is a separable RKHS with
respect to a bounded kernel and the corresponding eigenvalue decay rate (EDR) is β = 2r/d (Ed-
munds & Triebel, 1996).

Our next assumption is the embedding index. First, we give the definition of embedding property
Fischer & Steinwart (2020): For 0 < α < 1, there is a constantA > 0 with ∥[H]αν ↪→ L∞(ν)∥ ≤ A.
This means [H]α is continuously embedded into L∞(ν) and the operator norm of the embedding is
bounded by A. The larger α is, the weaker the embedding property is.
Assumption 3 (Embedding index). Suppose that there exists α0 > 0, such that

α0 = inf

{
α ∈ [

1

β
, 1] : ∥[H]α ↪→ L∞(X , µ)∥ <∞

}
,

and we refer to α0 as the embedding index of an RKHS H.

This assumption directly implies that all the functions in [H]α are µ-a.e bounded for α > α0.
Moreover, we will clarify this assumption for Sobolev kernels and dot-product kernels on Sd−1 in
the appendix.

3.2 MINIMAX OPTIMALITY OF KERNEL CLASSIFIERS

This subsection presents our main results on the minimax optimality of kernel classifiers. We first
establish a minimax lower bound for the Sobolev RKHS Hr(X ) under the source condition (As-
sumption 4). We then provide an upper bound based on Assumptions 4, 5, and 6, and we clarify that
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the Sobolev RKHS satisfies these assumptions. As a result, we demonstrate that the Sobolev kernel
classifier is minimax rate optimal.
Theorem 1 (Lower Bound). Suppose f∗ρ ∈ [Hr(X )]s for s > 0, whereHr is the Sobolev RKHS. For
all learning methods f̂ , for any fixed δ ∈ (0, 1), when n is sufficiently large, there is a distribution
ρ ∈ P such that, with probability at least 1− δ, we have

E(f̂) ≥ Cδn− sβ
2(sβ+1) , (8)

where C is a universal constant.

Theorem 1 shows the minimax lower bound on the classification excess risk over the interpolation
space of the Sobolev RKHS. Theorem 1 also establishes a minimax lower bound at the rate of
n−

a
2a+d for the Sobolev space Ha with a = rs. Yang (1999) illustrated a similar result of the

minimax lower bound for Besov spaces. However, the result has only been proved for d = 1 by
Kerkyacharian & Picard (1992) and the case for d > 1 remains unresolved.

The following theorem presents an upper bound for the kernel classifier.
Theorem 2 (Upper Bound). Suppose that Assumptions 4, 5, and 6 hold for 0 < s ≤ 2τ , where τ is
the qualification of the filter function. By choosing ν ≍ n

β
sβ+1 , for any fixed δ ∈ (0, 1), when n is

sufficiently large, with probability at least 1− δ, we have

E(f̂ν) ≤ C

(
ln

4

δ

)
n−

sβ
2(sβ+1) (9)

where C is a constant independent of n and δ.

Combined with Theorem 1, Theorem 2 shows that by choosing a proper early-stopping time, the
Sobolev kernel classifier is minimax rate optimal. Moreover, given the kernel and the decay rate β,
the optimal rate is mainly affected by the smoothness s of f∗ρ with respect to the kernel. Thus, in
Section 5, we will introduce how to estimate the smoothness of functions or datasets given a specific
kernel.

We emphasize that Theorem 2 can be applied to any general RKHS with an embedding index α0 =
1/β, such as an RKHS with a shift-invariant periodic kernel and an RKHS with a dot-product kernel.
Thanks to the uniform convergence of overparameterized neural networks (Lai et al., 2023; Li et al.,
2023a), Theorem 2 can also be applied to analyze the generalization error of the neural network
classifiers. We will discuss this application in the next section.

4 APPLICATIONS IN NEURAL NETWORKS

Suppose that we have observed n i.i.d. samples {Xi, Yi}ni=1 from ρ. For simplicity, we further
assume that the marginal distribution µ of ρ is the uniform distribution on the unit sphere Sd−1. We
use a neural network with L hidden layers and widthm to perform the classification on {Xi, Yi}ni=1.
The network model f(x; θ) and the resulting prediction are given by the following equations

h0(x) = x, hl(x) =

√
2

m
σ(W l−1hl−1(x)), l = 1, ..., L

f(x; θ) =WLhL(x) and ŷ = sign(f(x; θ)),

(10)

where hl represents the hidden layer, σ(x) := max(x, 0) is the ReLU activation (applied element-
wise), W 0 ∈ Rm×d and W l ∈ Rm×m are the parameters of the model. We use θ to represent the
collection of all parameters flatten as a column vector. With the mirrored initialization (shown in Li
et al. (2023a)), we consider the training process given by the gradient flow θ̇ = −∂L(θ)/∂θ, where
the squared loss function is adopted L(θ) = 1

2n

∑n
i=1 (Yi − f(Xi, θ)))

2
.

The consideration for this choice of loss function is that the squared loss function is robust for
optimization and more suitable for hard learning scenarios (Hui & Belkin (2020); Demirkaya et al.
(2020); Kornblith et al. (2020)). Hui & Belkin (2020) showed that the square loss function has been
shown to perform well in modern classification tasks, especially in natural language processing
while Kornblith et al. (2020) presented the out-of-distribution robustness of the square loss function.
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When the network is overparameterized, Li et al. (2023a) showed that the trained network f(x; θ)
can be approximated by a kernel gradient method with respect to the following neural tangent kernel

Kntk(x, x
′) =

L∑
r=0

κ
(r)
1 (ū)

L−1∏
s=r

κ0(κ
(s)
1 (ū)) (11)

where ū = ⟨x, x′⟩, κ(p)1 = κ1 ◦ · · · ◦︸ ︷︷ ︸
p times

κ1 represents p times composition of κ1 and κ(0)1 (u) = u

by convention; if r = L, the product
∏L−1
s=r is understood to be 1. Denote Y[n] = (Y1, ..., Yn)

T ,
K(X[n], X[n]) as an n × n matrix of (K(Xi, Xj))i,j∈[n] and λmin = λmin(K(X[n], X[n])) The
following proposition shows the uniform convergence of f(x; θ).

Proposition 1 (Theorem 1 in Li et al. (2023a)). Suppose x ∈ Sd−1. For any ϵ > 0, any hidden
layer L ≥ 2, and δ ∈ (0, 1), when the width m ≥ poly

(
n, λ−1

min, ||Y[n]||2, ln(1/δ), ln(1/ϵ)
)
, with

probability at least 1− δ with respect to random initialization, we have

sup
t≥0

sup
x∈X

|ft(x; θ)− fntkt (x)| ≤ ϵ.

where fntkt (x) is defined as in Example 1 but with the kernel Kntk.

Theorem G.5 in Haas et al. (2023) showed that the RKHS of the NTK on Sd−1 is a Sobolev space.
Moreover, the kernel Kntk is a dot-product kernel satisfying a polynomial eigenvalue decay β =
d/(d− 1). Thus, we can obtain the following corollary by combining Theorem 2 and Proposition 1.

Corollary 1. Suppose that x ∈ Sd−1 and Assumption 4 holds for H being the RKHS of the
kernel Kntk and s > 0. Suppose t ≍ n

β
sβ+1 . For any fixed δ ∈ (0, 1), when m ≥

poly
(
n, λ−1

min, ||Y[n]||2, ln(1/δ)
)

and n is sufficiently large, with probability at least 1− δ, we have

E(ft(x; θ)) ≤ C

(
ln

4

δ

)
n−

sβ
2(sβ+1) (12)

where C is a constant independent of n and δ.

This corollary shows that the generalization error of a fine-tuned, overparameterized neural network
classifier converges at the rate of n−

sβ
2(sβ+1) . This result also highlights the need for additional efforts

to understand the smoothness of real datasets with respect to the neural tangent kernel. A larger
value of s corresponds to a faster convergence rate, indicating the possibility of better generalization
performance. Determination of the smoothness parameter s will allow us to assess the performance
of an overparameterized neural network classifier on a specific dataset.

5 ESTIMATION OF SMOOTHNESS

In this section, we provide a simple example to illustrate how to determine the relative smoothness
s of the ground-truth function with respect to the kernel. Then we introduce a simple method to
estimate s with noise and apply the method to real datasets with respect to the NTK.

Determination of s. Suppose that X ∈ [0, 1] and the marginal distribution µX is a uniform dis-
tribution on [0, 1]. We consider the min kernel Kmin(x, x

′) = min(x, x′) (Wainwright, 2019) and
denote by Hmin the corresponding RKHS. The eigenvalues and the eigenfunctions of Hmin are

λj =

(
2j − 1

2
π

)−2

, ej(x) =
√
2 sin(

2j − 1

2
πx), j ≥ 1. (13)

Thus, the EDR is β = 2. For illustration, we consider the ground true function f∗(x) = cos(2πx).
Suppose f∗(x) =

∑∞
j fjej(x), then we have fj =

√
2
∫ 1

0
cos(2πx) sin( 2j−1

2 πx)dx ≍ j−1. Thus,
fj ≍ j−r where r = 1. By the definition of the interpolation space, we have s = 2r−1

β = 0.5.
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(a) (b) (c)

Figure 1: Experiments for estimating the smoothness parameter s in regression settings. (a) Naive
estimation based on 2, 000 sample points for σ = 0 (blue) and σ = 0.1 (orange). (b) Truncation
Estimation based on 2, 000 sample points with truncation point 100. In both plots (a) and (b), the x-
axis is the logarithmic index j and the y-axis is the logarithmic pj .(c) Truncation Estimation across
various values of sample size n, each repeated 50 times. The blue line represents the average of
estimates, the shaded area represents one standard deviation, and the true value is indicated by the
orange dashed line.

Estimation of s in regression. To better understand the estimation process, we first consider re-
gression settings where the noises have an explicit form and we then consider classification settings.
Suppose that we have n i.i.d. samples of X[n] = [X1, ..., Xn]

⊤ and Y[n] = [Y1, ..., Yn]
⊤ ∈ from

Yi = f∗(Xi) + σϵi, where ϵi ∼ N (0, 1).

We start with a naive estimation method. Let Kmin(X[n], X[n]) be the kernel matrix. Suppose
the eigendecomposition is given by Kmin(X[n], X[n]) = V ΣV ⊤, where V = [v1, ..., vn] is the
eigenvector matrix, vi’s are the eigenvectors, and Σ is the diagonal matrix of the eigenvalues. We
can estimate r by estimating the decay rate of pj , where pj = Y ⊤

[n]vj . To visualize the convergence
rate r, we perform logarithmic least-squares to fit pj with respect to the index j and display the
values of the slope r and the smoothness parameter s.

For σ = 0, r can be accurately estimated by the above naive method since there is no noise in Yi’s.
The blue line and dots in Figure 1 (a) present the estimation of s in this case, where the estimate is
around the true value 0.5. However, for σ = 0.1, the naive estimation is not accurate, as shown by
the orange line and dots in Figure 1 (a).

To improve the accuracy of the estimation, we introduce a simple modification called Truncation
Estimation, described as follows. We select some fixed integer as a truncation point and estimate the
decay rate of pj up to the truncation point. For the example with σ = 0.1, we choose the truncation
point 100 and the result is shown in Figure 1 (b). We observe that the estimation becomes much
more accurate than the naive estimation, with an estimate of s = 0.53 not too far away from the
true value 0.5. In general, noise in the data can worsen the estimation accuracy, while increasing the
sample size can improve the accuracy and robustness of the estimation. In Figure 1 (c), we show the
result for estimating s in repeated experiments with more noisy data (σ = 0.2), where we observe
that as the sample size n increases, the estimation becomes accurate.

Estimation of s in classification. Now we consider the classification settings, where the popula-
tion is given by P(Y = 1|X = x) = (f∗(x) + 1)/2. Unlike regression problems, the variance of
the noise ϵ = y − f∗(x) is determined by f∗(x) and may not be negligible. Nonetheless, in clas-
sification problems, we can still estimate the smoothness parameter s using Truncation Estimation,
thanks to the fact that increasing the sample size can improve its performance. The results are shown
in Figure 2, where we can indeed make similar observations to those in Figure 1 (b) and (c).

As an application of Truncation Estimation, we estimate the relative smoothness of real data sets
with respect to the NTK defined in equation 11. The results are shown in Table 1. We can see
that with respect to the NTK, MNIST has the largest relative smoothness while CIFAR-10 has the
smallest one. This result aligns with the common knowledge that MNIST is the easiest dataset while
CIFAR-10 is the most difficult one of these three datasets.
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(a) (b)

Figure 2: Experiments for estimating the smoothness parameter s in classification settings. (a) The
experiment uses 5, 000 sample points and the truncation point is 100. (b) Truncation Estimation
across various values of sample size n, each repeated 50 times. The blue line represents the average
of estimates, the shaded area represents one standard deviation, and the true value is indicated by
the orange dashed line.

Kernel MNIST Fashion-MNIST CIFAR-10
NTK-1 0.4862 (0.0824) 0.4417 (0.0934) 0.1992 (0.0724)
NTK-2 0.4871 (0.0793) 0.4326 (0.0875) 0.2047 (0.0831)
NTK-3 0.4865 (0.0815) 0.4372 (0.0768) 0.1965 (0.0795)

Table 1: Truncation Estimation of the relative smoothness s of different real data sets with different
NTKs. NTK − L indicates the L-hidden-layer NTK. We only consider two classes of labels for
each dataset: Label 1 and 7 for MNIST, trousers and sneakers for Fashion-MNIST, cars and horses
for CIFAR-10. We randomly select 5,000 data points and choose the truncation point 100 to estimate
s. For each dataset and each kernel, we repeat 50 times and the standard deviation is in parentheses.

Limitations The misspecified spectral algorithms (assuming f∗ρ ∈ [H]s) are studied since 2009
(e.g., Steinwart et al. (2009); Dicker et al. (2017); Pillaud-Vivien et al. (2018); Fischer & Steinwart
(2020); Zhang et al. (2023)). However, to the best of our knowledge, there is barely any result on
the estimation of the smoothness s. This paper is the first to propose the s estimation method even
though the method is more susceptible to noise when the sample size is not enough or f∗ has more
complex structures. For example, if f∗ =

∑∞
j=1 fjej(x), where f2j = j−s1β−1 when j is odd and

f2j = j−s2β−1 when j is even (s1 > s2). For the kernel K with EDR β, f∗ρ ∈ [H]s2 instead of
[H]s1 or [H]s for some s ∈ (s2, s1). In this mixed smoothness case, our method tends to give an
estimation ŝ ∈ (s2, s1). A more detailed discussion of the limitations is presented in the appendix.
We will try to find more accurate s estimation methods for general situations in the near future.

6 DISCUSSION

In this paper, we study the generalization error of kernel classifiers in Sobolev space (the interpo-
lation of the Sobolev RKHS). We show the optimality of kernel classifiers under the assumption
that the ground true function is in the interpolation of RKHS with the kernel. The minimax optimal
rate is n−sβ/2(sβ+1), where s is the smoothness parameter of the ground true function. Building
upon the connection between kernel methods and neural networks, we obtain an upper bound on the
generalization error of overparameterized neural network classifiers. To make our theoretical result
more applicable to real problems, we propose a simple method called Truncation Estimation to esti-
mate the relative smoothness s. Using this method, we examine the relative smoothness of three real
datasets, including MNIST, Fashion-MNIST and CIFAR-10. Our results confirm that among these
three datasets, MNIST is the simplest for classification using NTK classifiers while CIFAR-10 is the
hardest.
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A APPENDIX

In this section, we first show the proof of the upper bound of the classification excess risk (A.1 and
A.2) and then present the minimax lower bound (A.3). Before the proof, We list again the standard
assumptions for general RKHS H in this section.
Assumption 4 (Source condition). For s > 0, there is a constant B > 0 such that f∗ρ ∈ [H]s and

∥f∗ρ ∥[H]s ≤ B.

Assumption 5 (Eigenvalue Decay Rate (EDR)). The EDR of the eigenvalues {λj} associated to the
kernel K is β, i.e.,

cj−β ≤ λj ≤ Cj−β (14)

for some positive constants c and C and β > 1.
Assumption 6 (Embedding index). Suppose that there exists α0 > 0, such that

α0 = inf

{
α ∈ [

1

β
, 1] : ∥[H]α ↪→ L∞(X , µ)∥ <∞

}
,

and we refer to α0 as the embedding index of an RKHS H.

Define the sampling operator Kx : R → H, y 7→ yK(x, ·) and its adjoint operator K∗
x : H →

R, f 7→ f(x). Further, we define the sample covariance operator TX : H → H as

TX :=
1

n

n∑
i=1

KXi
K∗
Xi
.

Then we know that ∥TX∥ ≤ ∥TX∥1 ≤ κ2, where ∥ · ∥ denotes the operator norm and ∥ · ∥1 denotes
the trace norm. Further, define the sample basis function

gZ :=
1

n

n∑
i=1

KXi
Yi ∈ H.

We also introduce a more general framework known as spectra algorithm Rosasco et al. (2005);
Caponnetto (2006); Bauer et al. (2007). We define the filter function and the spectral algorithms as
follows:
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Definition 3 (Filter function). Let
{
φν :

[
0, κ2

]
→ R+ | ν ∈ Γ ⊆ R+

}
be a class of functions and

ψν(z) = 1− zφν(z). If φν and ψν satisfy:

• ∀α ∈ [0, 1], we have
sup

z∈[0,κ2]

zαφν(z) ≤ Eν1−α, ∀ν ∈ Γ; (15)

• ∃τ ≥ 1 s.t. ∀α ∈ [0, τ ], we have

sup
z∈[0,κ2]

|ψν(z)| zα ≤ Fτν
−α, ∀ν ∈ Γ, (16)

where E,Fτ are absolute constants, then we call φν a filter function. We refer to ν as the regular-
ization parameter and τ as the qualification.

Definition 4 (spectral algorithm). Let φν be a filter function index with ν > 0. Given the samples
Z, the spectral algorithm produces an estimator of f∗ρ given by

f̂ν = φν (TX) gZ . (17)

A.1 SOME BOUNDS

Throughout the proof, we denote

Tν = T + ν−1; TXν = TX + ν−1

where ν is the regularization parameter. In addition, we denote L2(X,µ) as L2, L∞(X,µ) as L∞

for brevity throughout the proof. We use an ≍ bn to denote that there exist constants c and C such
that can ≤ bn ≤ Can,∀n = 1, 2, · · · ; use an ≲ bn to denote that there exists an constant C such
that an ≤ Cbn,∀n = 1, 2, · · · In addition, denote the effective dimension as

N(ν) = tr
(
T
(
T + ν−1

)−1
)
=
∑
i∈N

λi
λi + ν−1

Lemma 1. Suppose ν > 1. If λi ≍ i−β , we have

N(ν) ≍ ν
1
β .

Proof. Since ci−β ≤ λi ≤ Ci−β , we have

N(ν) =

∞∑
i=1

λi
λi + ν−1

≤
∞∑
i=1

Ci−β

Ci−β + ν−1
=

∞∑
i=1

C

C + ν−1iβ

≤
∫ ∞

0

C

ν−1xβ + C
dx = ν

1
β

∫ ∞

0

C

yβ + C
dy ≤ C1ν

1
β

for some constant C1. Since ν > 1, the proof for the lower bound can be obtained similarly.

A.1.1 APPROXIMATION ERROR

Recall that we have defined the sample basis function gZ and the spectral algorithm f̂ν . We also
need the following notations: define the expectation of gZ as

g = EgZ =

∫
X
K(x, ·)f∗ρ (x)dµ(x) = S∗

kf
∗
ρ ∈ H,

and
fν = φν(T )g = φν(T )S

∗
kf

∗
ρ

The following conclusion based on Zhang et al. (2023) bounds the L2-norm of fν − f∗ρ for spectral
algorithm:
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Lemma 2. Suppose that Assumption 4 holds for 0 < s ≤ 2τ . Then for any ν > 0 , we have∥∥fν − f∗ρ
∥∥
L2 ≤ FτRν

− s
2 .

Proof. Because f∗ρ ∈ [H]s, we assume f∗ρ = L
s
2 g0 for some g0 ∈ L2(P ), so that ∥g0∥L2 ≤ B by

Assumption 4. By the definition of fν , we have:

∥fν − f∗ρ ∥L2 = ∥φν(T )S∗
kf

∗
ρ − f∗ρ ∥L2

= ∥(φν(L)L− Id)L
s
2 g0∥L2

≤ ∥(ψν(L)L
s
2 g0∥L2

≤ FrBν
− s

2 .

Where the second equality holds by the definition of natural embedding inclusion operator Sk, and
Id denotes identity mapping. The first inequality holds because of the definition of ψν and the
second inequality holds for equation 16.

A.1.2 ESTIMATION ERROR

We rewrite the estimation error as follows∥∥∥f̂ν − fν

∥∥∥
L2

=
∥∥∥T 1

2

(
f̂ν − fν

)∥∥∥
H

=
∥∥∥T 1

2T
− 1

2
ν · T

1
2
ν T

− 1
2

Xν · T
1
2

Xν

(
f̂ν − fν

)∥∥∥
H

≤
∥∥∥T 1

2T
− 1

2
ν

∥∥∥
B(H)

·
∥∥∥T 1

2
ν T

− 1
2

Xν

∥∥∥
B(H)

·
∥∥∥T 1

2

Xν

(
f̂ν − fν

)∥∥∥
H
.

(18)

Step 1. The first part can be bounded by the following lemma, whose proof is simple and omitted.
Lemma 3. ∥∥∥T 1

2 (Tν)
−1/2

∥∥∥2 = sup
i≥1

λi
λi + ν−1

≤ 1.

For the second part, we recall a result (Fischer & Steinwart, 2020, Lemma 11).
Lemma 4 (Fischer & Steinwart (2020)). Suppose that the RKHS H has the embedding index α0.
Then for any α0 < α ≤ 1 and all δ ∈ (0, 1), with probability at least 1− δ, we have∥∥∥T− 1

2
ν (T − TX)T

− 1
2

ν

∥∥∥ ≤ 4M2
αν

α

3n
B +

√
2M2

αν
α

n
B,

where

B = ln
4N(ν)

(
∥T∥+ ν−1

)
δ∥T∥

.

Lemma 5. If the sample size n ≥ 8M2
αν

αB, we have:∥∥∥T 1
2
ν T

− 1
2

Xν

∥∥∥
B(H)

≤ 3

holds with probability at least 1− δ.

Proof. We calculate T
1
2
ν T

− 1
2

Xν directly, and combined with Lemma 4

TXν = TX + ν−1 = TX − T + T + ν−1

= (Tν)
1
2

[
Id− (Tν)

− 1
2 (T − TX)(Tν)

− 1
2

]
(Tν)

1
2 ,

By Lemma 4 when n ≥ 8M2
αν

αB, we have:∥∥∥T− 1
2

ν (T − TX)T
− 1

2
ν

∥∥∥ ≤ 4

3
· 1
8
+

√
1

4
≤ 2

3
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holds with probability at least 1− δ. So the Neumann series gives us the following bound

∥∥∥T 1
2
ν T

− 1
2

Xν

∥∥∥
B(H)

=

∥∥∥∥(Id− (Tν)
− 1

2 (T − TX)(Tν)
− 1

2

)−1
∥∥∥∥

B(H)

≤
∞∑
k=0

∥∥∥T− 1
2

ν (T − TX)T
− 1

2
ν

∥∥∥k
≤

∞∑
k=0

(
2

3

)k
= 3.

Step 2. For the third part in the last line of equation 18, we have∥∥∥T 1
2

Xν

(
f̂ν − fν

)∥∥∥
H

≤
∥∥∥T 1

2

Xνφν (TX) (gZ − TXfν)
∥∥∥
H
+
∥∥∥T 1

2

Xνψν (TX) fν

∥∥∥
H
. (19)

The second part of RHS in equation 19 is complicated to calculate, but its proof follows the same
argument as in Step 3 of Theorem 16 in Zhang et al. (2023). Therefore, we provide the following
result without proof:
Lemma 6 (Theorem 16 in Zhang et al. (2023)). If s < 2τ , we have:∥∥∥T 1

2

Xνψν (TX) fν

∥∥∥
H

≤ 6FτERν
− s

2 +∆1Is>2, (20)

where ∆1 denotes

∆1 = 32max

(
s− 1

2
, 1

)
EFτRκ

s−1ν−
1
2n−

min(s,3)−1
4 ln

6

δ
.

We need s < 2τ , because we use equation 16 to upper bound ∥T
s
2

Xψν(TX)∥ for every s.

To bound the first term of RHS in equation 19, we begin with a lemma, whose proof is postponed to
Section A.1.3.
Lemma 7. Suppose that Assumption 4, 5 and 6 hold for 1

β ≤ α0 < 1, and conditional probability
of Y is given by

P(Y = 1|X = x) =
1 + f∗ρ (x)

2
.

Then given ν > 0, and n ≥ 1, for any δ > 0 and α > α0, the following bound is satisfied with
probability not less than 1− δ∥∥∥(Tν)−1/2

((gZ − TXfν)− (g − Tfν))
∥∥∥2
H

≤
128

(
log 2

δ

)2
n

(
N(ν) +

4M2
αν

α

n

)
.

The next lemma provides a bound on the first term of RHS in equation 19.
Lemma 8. Suppose that Assumption 4, 5 and 6 hold for 1

β ≤ α0 < 1. If the sample size n ≥
8M2

αν
αB, where B is defined in Lemma 4 and ν > 0, then for any δ > 0 and α > α0, the following

bound is satisfied with probability at least 1− δ:∥∥∥T 1
2

Xνφν (TX) (gZ − TXfν)
∥∥∥
H

≤ C

[(
log

2

δ

)(
N(ν)

1
2

√
n

+
2Mαν

α
2

n

)
+
∥∥f∗ρ − fν

∥∥
L2

]
,

where C is an absolute constant.

Proof.∥∥∥T 1
2

Xνφν (TX) (gZ − TXfν)
∥∥∥
H

=
∥∥∥T 1

2

Xνφν (TX)T
1
2

Xν · T
− 1

2

Xν T
1
2
ν · T− 1

2
ν (gZ − TXfν)

∥∥∥
H

≤
∥∥∥T 1

2

Xνφν (TX)T
1
2

Xν

∥∥∥
B(H)

·
∥∥∥T− 1

2

Xν T
1
2
ν

∥∥∥
B(H)

·
∥∥∥T− 1

2
ν (gZ − TXfν)

∥∥∥
H
.

(21)
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The first term can be upper bounded as∥∥∥T 1
2

Xνφν (TX)T
1
2

Xν

∥∥∥
B(H)

= ∥(TX + ν−1)φν (TX) ∥B(H)

≤ ∥TXφν (TX) ∥B(H) + ν−1∥φν (TX) ∥B(H)

≤ 2E

because we have zφν(z) ≤ E by equation 15 and φν(z) ≤ Eν by equation 16. Using Lemma 5,
the second term can be bounded as ∥∥∥T− 1

2

Xν T
1
2
ν

∥∥∥
B(H)

≤ 3.

It remains to bound the third term. Lemma 7 shows that∥∥∥(Tν)−1/2
((gZ − TXfν)− (g − Tfν))

∥∥∥2
H

≤
128

(
log 2

δ

)2
n

(
N(ν) +

4M2
αν

α

n

)
. (22)

Thus, we have∥∥∥T− 1
2

ν (gZ − TXfν)
∥∥∥
H

≤
∥∥∥T− 1

2
ν [(gZ − TXfν)− (g − Tfν)]

∥∥∥
H
+
∥∥∥T− 1

2
ν (g − Tfν)

∥∥∥
H

≤ 8
√
2

(
log

2

δ

)(
N(ν)

1
2

√
n

+
2Mαν

α
2

n

)
+
∥∥∥T− 1

2
ν S∗

k

∥∥∥
B(L2,H)

∥∥f∗ρ − fν
∥∥
L2

≤ 8
√
2

(
log

2

δ

)(
N(ν)

1
2

√
n

+
2Mαν

α
2

n

)
+
∥∥f∗ρ − fν

∥∥
L2 ,

where the second term is approximation error that has been referred to in Lemma 2.

Step 3. Now we combine the bounds for the three parts of estimation error in equation 18: the
first two parts are corresponding to Lemma 3 and 5 respectively, and the third part is corresponding
to equation 19, equation 20, and Lemma 8. Then based on Assumptions the same as Lemma 8,
combined with s < 2τ , we conclude that for any δ > 0, it holds with probability at least 1− δ∥∥∥f̂ν − fν

∥∥∥
L2

≤ C

(
log

2

δ

)(
N(ν)

1
2

√
n

+
2Mαν

α
2

n

)
+
∥∥f∗ρ − fν

∥∥
L2 + FτERν

− s
2 +∆1Is>2,

(23)

where C is an absolute constant.

A.1.3 PROOF OF LEMMA 7

Lemma 9 (Lemma 13 in Fischer & Steinwart (2020)). Let (X , B) be a measurable space, H be a
separable RKHS on X w.r.t. a bounded and measurable kernel k, and µ be a probability distribution
on X . Then the following equality is satisfied, for ν > 0,∫

X

∥∥∥(Tν)−1/2
K(x, ·)

∥∥∥2
H
dµ(x) = N(ν).

If, in addition, Mα < ∞ is satisfied, then the following inequality is satisfied, for ν > 0 and
µ-almost all x ∈ X , ∥∥∥(Tν)−1/2

K(x, ·)
∥∥∥2
H

≤M2
αν

−α.

we also consider Cx : H → H the integral operator w.r.t. the point measure at x ∈ X ,

Cxf := f(x)K(x, ·) = ⟨f,K(x, ·)⟩HK(x, ·),

And we have the operator norm:∥∥∥(Tν)−1/2
Cx (Tν)

−1/2
∥∥∥

B(H)
=
∥∥∥(Tν)−1/2

K(x, ·)
∥∥∥2
H

≤M2
αν

α.
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Lemma 10 (Bernstein’s Inequality in Caponnetto & De Vito (2007)). Let (Ω, B, P ) be a probability
space, H be a separable Hilbert space, and ξ : Ω → H be a random variable with

EP [∥ξ∥2H] ≤ σ2,

∥ξ(ω)∥H ≤ L

2
, a.s.

Then, for τ ≥ 1 and n ≥ 1, the following concentration inequality is satisfied

Pn
(ω1, . . . , ωn) ∈ Ωn :

∥∥∥∥∥ 1n
n∑
i=1

ξ (ωi)− EP ξ

∥∥∥∥∥
2

H

≥ 32
τ2

n

(
σ2 +

L2

n

) ≤ 2e−τ .

Proof of Lemma 7. Consider the random variable ξ : X × {−1, 1} → H:

ξ(x, y) = (Tν)
−1/2

(y − fν(x))K(x, ·).

Denoted by D the empirical measure corresponding to the sample {Xi, Yi}ni=1. It holds that

1

n

n∑
i=1

(ξ (Xi, Ui)− EP ξ) = EDξ − Eξ

= (Tν)
−1/2

((gZ − TXfν)− (g − Tfν)) .

By Lemma 9, it holds that

∥ξ(x, y)∥H ≤ 2
∥∥∥(Tν)−1/2

K(x, ·)
∥∥∥
H

≤ 2Mαν
α
2

for µ-almost all x ∈ X , and it holds that

E(∥ξ(x, y)∥2H) =

∫
X

∥∥∥(Tν)−1/2
K(x, ·)

∥∥∥2
H

 ∑
i=1,−1

|i− fν(x)|2 P (Y = i | X = x)

 dµ(x)
≤ 4N(ν).

We let σ2 = 4N(ν) and L = 4Mαν
α
2 and apply the Bernstein inequality in Lemma 10 to complete

the proof.

A.2 UPPER BOUND ON EXCESS RISK

Theorem 3 (L2-risk upper bound). Suppose that Assumption 4, 5 and 6 holds, and that 0 < s ≤ 2τ .
Let f̂ν be the estimator defined by equation 17. Then by choosing ν ≍ n

β
sβ+1 , for any fixed δ ∈ (0, 1)

and any 1 ≥ α > α0, when n is sufficiently large, with probability at least 1− δ, we have∥∥∥f̂ν − f∗ρ

∥∥∥2
L2

≤
(
ln

6

δ

)2

Cn−
sβ

sβ+1 ,

where C is a constant independent of n and δ.

Proof. We decomposed L2-risk into the sum of the approximation error and the estimation error as
as

∥f̂ν − f∗ρ ∥L2 ≤ ∥fν − f∗ρ ∥L2 + ∥f̂ν − fν∥L2 .

Using Lemma 2 for the appoximation error and equation 23 for the estimation error, we have

∥f̂ν − f∗ρ ∥L2 ≤ C

(
log

2

δ

)(
N(ν)

1
2

√
n

+
2Mαν

α
2

n

)
+ Fτ (E + 1)Rν−

s
2 +∆1Is>2.

Choosing ν ≍ n
β

sβ+1 , we can obtain the following rates:
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• By Lemma 1,

N(ν)
1
2

√
n

≍ ν
1
2β

√
n

= n−
1
2

sβ
sβ+1 (24)

•
Fτ (E + 1)Rν−

s
2 ≍ n−

1
2

sβ
sβ+1 (25)

• Following Theorem 16 in Zhang et al. (2023), for any s > 2, we have

∆1 ≲

(
ln

6

δ

)
n−

1
2

sβ
sβ+1 (26)

• Since α0 = 1
β for Sobolev RKHS, we can choose some α in (α0, s+

2
β ). It follows that

ν
α
2

n
≲ n−

1
2

sβ
sβ+1 (27)

Combining the above equation 24, equation 25,equation 26 and equation 27, we complete the proof.

Proof of Theorem 2 . The classification excess risk can be rewritten as

E(f̂) = L(f̂)− L∗

=EX [(1− η(X))(I{f̂(X) ≥ 0} − I{2η(X)− 1 ≥ 0}) + η(X)(I{f̂(X) < 0} − I{2η(X)− 1 < 0}))]
=EX(|2η(X)− 1|I{f̂(X)(2η(X)− 1) < 0})
=EX(|f∗ρ (X)|I{f̂(X)f∗ρ (X) < 0}).

(28)

Based on equation 28 and the classic upper classification upper bound by Devroye et al. (2013), we
have:

E(f̂ν) = EX(|f∗ρ (X)|I{f̂ν(X)f∗ρ (X) < 0})

≤
∫
X

∣∣∣f∗ρ (X)− f̂ν(X)
∣∣∣ dν(X)

≤ ∥f̂ν − f∗ρ ∥L2

The remaining proof directly follows from Theorem 3.

A.3 MINIMAX LOWER BOUND

Proposition 2 (Theorem 2.5 in Tsybakov (2009)). Assume thatM ≥ 2 and suppose that Θ contains
elements θ0, θ1, . . . , θM and Pθ0 , Pθ1 , . . . , PθM are the probability measures such that

(i) d(θi, θj) ≥ 2s > 0, ∀0 ≤ i ≤ j ≤M ;

(ii) Pθj ≪ Pθ0 , ∀j = 1, . . . ,M and

1

M

M∑
j=1

KL(Pθj , Pθ0) ≤ a logM (29)

with 0 < α < 1/8.

Then

inf
θ̂

sup
θ∈Θ

Pθ(d(θ̂, θ) > s) ≥
√
M

1 +
√
M

(1− 2α−
√

2α

logM
) > 0 (30)
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Lemma 11 (Varshamov-Gilbert Bound). Given m ≥ 8, there exist M ≥ 2m/8 different elements on
ω(0), ..., ω(M) on {−1, 1}m and ω(0) = (0, ..., 0) such that

m∑
k=1

|ω(i)
k − ω(j)| ≥ m

4
, 0 ≤ i < j ≤M. (31)

Lemma 12. For r > d
2 , Hr(X ) is a separable RKHS with respect to a bound kernel and the

corresponding EDR is

β =
2r

d
.

Let u : R+ → R+ be a nonincreasing infinitely differentiable function such that u = 1 on [0, 1/4]

and u = 0 on [1/2,∞). We can take u(x) =
(∫ 1/2

1/4
u1(z)dz

)−1 ∫∞
x
u1(z)dz where

u1(x) =

{
exp

{
− 1

(1/2−x)(x−1/4)

}
, for x ∈ (1/4, 1/2),

0, otherwise.
(32)

Given an integral q = q(n) ≥ 1, we define the regular grid on Rd as

Gq =

{(
2k1 + 1

2q
, ...,

2kd + 1

2q

)
: ki ∈ {0, ..., q − 1}, i = 1, ..., d

}
. (33)

We consider the partition X1, ...,Xqd of [0, 1]d canonically defined using the grid Gq . x ∈ Xk if
zk ∈ Gq is the closest point to x ∈ [0, 1]d. If there exist several points in Gq closest to x we define
x ∈ Xk if zk is closest to 0.

Lemma 13. ψ(x) = Cψq
−sr∑qd

k=1 ϕ(q[x− zk]) ∈ Hsr(X ), where ϕ(x) = u(∥x∥2).

Proof of Lemma 13. By the definition of ϕ, we have ϕ ∈ Hsr for any fixed sr > 0. Thus, ∥ϕ∥2Hsr

is bounded.

Denote ψk(x) = ϕ(q[x − zk]) and φ(x) = ψk(x + zk) = ϕ(qx). It is easy to find that: i)
∥ψk∥[Hsr] = ∥φ∥Hsr ; ii) ⟨ψi, ψj⟩Hsr = 0 for i ̸= j.

∥ψ∥2Hsr = C2
ψq

−2sr∥
qd∑
k=1

ψk∥2Hsr (34)

= C2
ψq

−2sr

 qd∑
k=1

∥ψk∥2Hsr + 2
∑
i̸=j

⟨ψi, ψj⟩2Hsr

 (35)

= C2
ψq

d−2sr∥φ∥2Hsr (36)

Denote the Fourier transform of ϕ and ψ as ϕ̂ and ψ̂

φ̂(ξ) =

∫
B(0, 1

2q )

ϕ(qx)e−2πiξxdx (37)

= q−d
∫
B(0, 12 )

ϕ(y)e−2πi ξq ydy (38)

= q−dϕ̂(
ξ

q
) (39)
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Since u(x) is infinitely differentiable function on [0, 1]d, then ∥ϕ∥Hs is bounded for any fixed s > 0.
Then

∥φ∥2Hsr = q−2d

∫
Rd

|ϕ̂(ξ
q
)|2(1 + ∥ξ∥22)sdξ (40)

= q−2d

∫
Rd

|ϕ̂(z)|2(1 + q2∥z∥22)srqddz (41)

≤ q2sr−d
∫
Rd

|ϕ̂(z)|2(1 + ∥z∥22)srdz (42)

= q2sr−d∥ϕ∥2Hsr . (43)

Thus, ∥ψ∥2Hsr ≤ C2
ψ∥ϕ∥2Hsr .

Proof of Theorem 1 . Denote m = qd, we define X0 = Rd \
⋃m
i=1 Xi. Thus, X0, ...,Xm form a

partition of Rd.

Define the hypercube C = {Pω : ω = (ω1, ..., ωm) ∈ {−1, 1}m} of probability distribution Pω of
(X,Y ) on Z = Rd × {0, 1} as follows.

For any Pω , the marginal distribution of X does not depend on ω and has a density µ w.r.t.
the Lebesgue measure on Rd defined in the following way. Denote v = m−1. Let µ(x) =
v/λ[B(0, (4q)−1)] for x ∈ B(z, (4q)−1), z ∈ Gq and µ(x) = 0 otherwise.

By Lemma 11, there exist M ≥ 2m/8 different elements on ω(0), ..., ω(M) on {−1, 1}m and ω(0) =
(0, ..., 0). We take

fi(x) = ω
(i)
k ψ(x), x ∈ Xk, i ∈ [M ] (44)

and fi(x) = 0 for x ∈ X0. f0 = 0 for x ∈ X . We will assume that Cψ ≤ 1 to ensure that
ηi(x) = (1 + fi(x))/2 take values in [0, 1].

By Lemma 13, we have fi ∈ Hsr = [H]s, i = 0, ...,M . Since ηi(x) = (1 + fi(x))/2, we have
KL(ρni , ρ

n
0 ) = nKL(ρi, ρ0) (45)

= n

m∑
k=1

∫
Xk

(
1 + ω

(i)
k ψ(x)

2
ln(1 + ω

(i)
k ψ(x)) +

1− ω
(i)
k ψ(x)

2
ln(1− ω

(i)
k ψ(x))

)
µ(x)dx

(46)

≤ 1

2
nm

∫
B(x0,(4q)−1)

v

λ[B(0, (4q)−1)]

(
ln(1− ψ2(x)) + ψ(x) ln

(
1 + ψ(x)

1− ψ(x)

))
dx (47)

≤ 1

2
nm

∫
B(x0,(4q)−1)

v

λ[B(0, (4q)−1)]

(
ψ(x) ln

(
1 + ψ(x)

1− ψ(x)

))
dx (48)

≤ Cnmvq−2sr (49)

The last inequality is because with sufficiently large n, ψ(x) = Cψq
−sr < 1/2 for x ∈

B(x0, (4q)
−1). To satisfy the second condition of Proposition 2, we need Cψnmvq−2sr ≤ am8 ln 2.

We can take nvq−2sr = Θ(1). Thus, q = n1/(2sr+d).

For the first condition, we have
d(fi, fj) = Ex[|fi(x)|1fi(x)fj(x)<0] (50)

= Ex

[
m∑
k=1

ψ(x)1
σ
(i)
k σ

(j)
k <0

1x∈Xk

]
(51)

≥ Cψq
−srmv

4
(52)

= Cn−sr/(2sr+d) (53)

for some constant C > 0. By Proposition 2, we have the minimax rate n−sr/(2sr+d). Since r =

βd/2, we have the minimax rate n−
sβ

2(sβ+1) .
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A.4 EMBEDDING INDEX OF SOBOLEV AND DOT-PRODUCT KERNELS

A.4.1 SOBOLEV KERNEL

The interpolation space of Hr(X ) under Lebesgue measure is given by

[Hr(X )]s = Hrs(X ). (54)

By the embedding theorem of (fractional) Sobolev space (Theorem 4.27 in Adams & Fournier
(2003)), letting θ = r − d

2 > 0, we have

Hr(X ) ↪→ C0,θ(X ) ↪→ L∞(X ), θ = r − d

2
.

Combined with equation 54, for a Sobolev RKHS H = Hr(X ), r > d
2 and any α > 1

β = d
2r , we

have
[Hr(X )]

α
= Hrα(X ) ↪→ C0,θ(X ) ↪→ L∞(X ).

Therefore α0 = 1
β for the embedding index of a Sobolev RKHS.

A.4.2 DOT-PRODUCT KERNEL

Let k be a dot-product kernel on X = Sd, the unit sphere in Rd+1, and µ = σ be the uniform
measure on Sd. Then, it is well-known that k can be decomposed as

k(x, y) =

∞∑
n=0

µn

an∑
l=1

Yn,l(x)Yn,l(y), (55)

where {Yn,l} is a set of orthonormal basis of L2
(
Sd, σ

)
called the spherical harmonics. an is

multiplicity and satisfies

an :=

(
n+ d

n

)
−
(
n− 2 + d

n− 2

)
We let µn ≍ n−dβ for some β > 1 and also we have an ≍ nd−1 and

∑n
i=1 ai ≍ nd, we prove

embedding index α0 = 1
β .

Proof. By the Theorem 9 in Fischer & Steinwart (2020), we only need to prove that for any α > 1
β ,∑∞

n=0 µ
α
n

∑an
l=1 Yn,l(x)

2 <∞.

∞∑
n=0

µαn

an∑
l=1

Yn,l(x)
2 ≤

∞∑
n=0

µαnan

≤
∞∑
n=0

Cnd−1n−αdβ

= C

∞∑
n=0

n−1−d(αβ−1) <∞

B DETAILED DISCUSSION FOR f WITH COMPLEX STRUCTURES

In this section, we illustrate some f∗ with the complex structure and analyze the feasibility of our
theories and method on these cases:
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Mixed smoothness: Suppose f∗ =
∑∞
j=1 fjej(x) and {fj}j∈N has different different decay

rates. A simple example is the two-smoothness case, where {fj}j∈N has two different decay rates,
where f2j = j−s1β−1 when j is odd and f2j = j−s2β−1 when j is even (s1 > s2). For the kernel K
with EDR β, by the definition of the interpolation space, we have

∥f∗∥[H]s =

∞∑
j=1

f2j
λsj

=
∑

{j:j is odd}

jsβ−s1β−1 +
∑

{j:j is even}

jsβ−s2β−1 (56)

Thus, for s < s2, we have ∥f∗∥[H]s is bounded, meaning that f∗ρ ∈ [H]s where s can be arbitrary
close to s2. In this case, our theory can still be applied to find the generalization ability of the kernel

classifiers (n−
s2β

s2β+1 ). This can be also applied to multi-smoothness cases.

However, in this case, Truncation Estimation, introduced in Section 5, is inaccurate. With a suf-
ficient sample size, Truncation Estimation will find the smoothness s between s1 and s2 for the
two-smoothness case while we need to find s = s2. In this case, the method can be improved by
performing linear regression on top of p̃j = supk≥j pj even though this improvement method tends
to underestimate s. We will find new s estimation methods for general situations in the near future.

Sobolev space of low intrinsic dimensionality There is a popular assumption on the real data,
called manifold assumption, assuming that f∗ is supported on a submanifold. More specifically,
for x ∈ Ω ⊂ RD, they assume that f∗ belongs to the space of the low intrinsic dimensionality d
and d < D. In this case, Hamm & Steinwart (2021); Ding et al. (2023) have come up with some
definitions of the low intrinsic dimension assumption:
Assumption 7 (Low intrinsic dimension). There exist positive constants c1 and d ≤ D such that
for all δ ∈ (0, 1), we have

NlD∞
(δ,Ω) ≤ cδ−d (57)

where lD∞ is the RD space equipped with l∞ norm and NlD∞
(δ,Ω) is the covering number.

On the Sobolev space with smoothness r With the assumption of low intrinsic dimension, Hamm
& Steinwart (2021); Ding et al. (2023) improved their results from n−

2r
2r+D to n−

2r
2r+d (regression

problems). Though our theories can not solve this case, we believe that the technology can be
applied to classification problems and this will be our future work.

Well-separated data The well-separated assumption is another popular assumption on the real
data (like MNIST, CIFAR-10, and so on) since the testing accuracy of some neural network mod-
els is near 100%. The well-separated assumption, in our settings, means that f∗(x) ∈ {1,−1},
violating the continuity of f∗. However, we can use a continuous function to approximate such a
discontinuous function. For example, x ∈ [0, 1] and f∗(x) = 1 if x > 1/2 and f∗(x) = −1 if
x ≤ 1/2 (two regions). Then we can use an infinitely differentiable function (s = ∞) to approx-
imate f∗ and thus the estimator finds out that the function is arbitrarily smooth. This idea can be
extended to the cases with finite regions.

However, for the real data, normally with a super large dimension, the number of regions may depend
on the dimension. In this situation, our theories need more effort to explain the generalization ability
of the kernel classifier (like extending our theories to the high dimensional settings).
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