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A TECHNICAL PROOFS

A.1 PROOF OF THEOREM 3.1

We restate Theorem 3.1 below for easier reference.
Theorem A.1 (Theorem 3.1). Consider an infinitely wide neural network h as defined in Eq.(2) at
random initialization w0. The followings hold:

1. given two inputs x and z, if θd(x, z) ≪ 1, then θh(x, z) ≪ 1;

2. for any three inputs x, z and z′, if 0 < θd(x, z) < θd(x, z
′) < π

2 , then 0 < θh(x, z) <
θh(x, z

′) < π
2 .

Proof. First of all, we introduce some useful notations. We rewrite the (pre-activated) neural network
h as

α(0)(x) = x

α(l)(x) =

√
2√
ml

σ
(
W (l)α(l−1)(x)

)
, ∀l ∈ {1, 2, · · · , L}, (12)

h(x) = W (L+1)α(L)(x).

Given any two inputs x, z ∈ Rd and l ∈ {0, 1, · · · , L}, we also denote θ(l)(x, z) as the angle between

the l-th layer vectors α(l)(x) and α(l)(z), i.e., θ(l)(x, z) ≜ arccos
(

⟨α(l)(x),α(l)(z)⟩
∥α(l)(x)∥∥α(l)(z)∥

)
.

It was shown by Liu & Hui (2023) that the angle θh has the following relation with θ(l) and θd.

Theorem A.2 (modified from Liu & Hui (2023)). Consider the infinitely wide ReLU neural network
h of depth L, as defined in Eq.(2), at random initialization w0. Given two arbitrary inputs x and z,
the angle θh(x, z) satisfies

cos θh(x, z) =
1

L+ 1

L∑
l=0

[
cos θ(l)(x, z)

L−1∏
l′=l

(1− θ(l
′)(x, z)/π)

]
. (13)

Moreover, if define function g : [0, π) → [0, π) as g(z) = arccos
(
π−z
π cos z + 1

π sin z
)

and let gl(·)
be the l-fold composition of g(·), then

θ
(l)
h (x, z) = gl (θd(x, z)) . (14)

Furthermore, if θd(x, z) ≪ 1, then

cos θh(x, z) =

(
1− L

2π
θd + o(θd)

)
cos θd. (15)

When θd(x, z) ≪ 1, by Eq.(15), we have

1− cos θh(x, z) =
L

2π
θd(x, z) + o(θd) ≪ 1. (16)

This directly implies that θh(x, z) ≪ 1. We conclude the first statement of the theorem.

The second statement relies on the following lemma about the properties of function g.

Lemma A.3. The function g : [0, π) → [0, π) as defined in Theorem A.2 satisfies the following:

• if z ∈ (0, π
2 ), then g(z) ∈ (0, π

2 ).

• function g is monotonically increasing in (0, π
2 ).

Applying the above lemma onto Eq.(14), we have, when 0 < θd(x, z) < θd(x, z
′) < π

2 ,

0 < θ(l)(x, z) < θ(l)(x, z′) <
π

2
, ∀l ∈ {1, 2, · · · , L}. (17)

Applying this relation to Eq.(13), we get
cos θ(l)(x, z) > cos θ(l)(x, z′) > 0. (18)

Therefore, we have 0 < θh(x, z) < θh(x, z
′) < π

2 .
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A.2 PROOF OF LEMMA A.3

Proof. By definition of g,

cos g(z) =
π − z

π
cos z +

1

π
sin z. (19)

It is easy to see that, when z ∈ (0, π
2 ), the right hand side of the above equation is positive. Therefore,

g(z) stays in )0, π
2 ).

As for the monotonicity, we first investigate the R.H.S. of Eq.(19). We have

d(R.H.S.)

dz
= −

(
1− z

π

)
sin z, (20)

which is always negative for z ∈ (0, π/2). Combining the monotonicity of arccos(·), we have the
conclusion.

A.3 PROOF OF THEOREM 4.4

Proof. First, note that the clean data has the same distribution as the noiseless (ground-truth-labelled)
data. Hence, L(w;Dclean) = L(w; D̂). By Lemma 4.2, the gradient descent minimizes L(w; D̂), as
long as the learning rate η is small enough to avoid over-shooting. Therefore, it is straightforward to
get that the gradient descent also decreases the clean segment loss L(w;Dclean).

Let’s consider the noisy segment Dnoise. Combining Assumption 4.1 and Eqs.(7) and (8), we get

∇L(wt; D̂) = −1− αt

αt

∑
c

g
(c)
noise(wt) = −1− αt

αt
∇L(wt,Dnoise). (21)

We note that the factor − 1−αt

αt
is negative, indicating that the gradient descent update, Eq.(9),

is in opposite direction of minimizing the noisy segment L(wt,Dnoise). Hence, we get that
L(wt+1,Dnoise) > L(wt,Dnoise).

A.4 PROOF OF THEOREM 4.5

Proof. First note that an infinitely wide feedforward neural network (before the activation function
on output layer) is linear in its parameters, and can be written as (Liu et al., 2020; Zhu et al., 2022):

h(w;x) = h(w0;x) +∇h(w0;x)
T (w −w0), (22)

where ∇h(w0;x) is constant during training. As is known, the logistic regression loss (for an
arbitrary S) on a linear model

L(w;S) =
∑

(x,y)∈S

−y log f(w;x)− (1− y) log(1− f(w;x)), (23)

is a convex function with respect to the parameters w, where f(w;x) = sigmoid(h(w;x)) =
1/(1 + exp(−h(w;x))). Hence, at any point w we have the Hessian matrix H(w;S) of the logistic
regression loss L(w;S) is positive definite.

Now, consider the point wt+1 = wt − ηL(wt;D) with a sufficiently small step size η. Using
Assumption 4.1 and Eq.(8), we can also write wt+1 as

wt+1 = wt − η(1− αt)L(wt;Dclean), or

wt+1 = wt + η
1− αt

αt
L(wt;Dnoise).

For Dclean, we have

∇L(wt+1;Dclean) = ∇L(wt;Dclean) +H(ξ;Dclean)(wt+1 −wt), (24)

with ξ being some point between wt and wt+1. Then,

∥∇L(wt+1;Dclean)∥2 = ∥∇L(wt;Dclean)∥2 − 2η(1− αt)∇L(wt;Dclean)
TH(ξ;Dclean)∇L(wt;Dclean) +O(η2).
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By the convexity of the loss function (i.e., the positive definiteness of Hessian H), we easily get

∥∇L(wt+1;Dclean)∥2 < ∥∇L(wt;Dclean)∥2.

Similarly for Dnoise,

∥∇L(wt+1;Dnoise)∥2 = ∥∇L(wt;Dnoise)∥2 + 2η
1− αt

αt
∇L(wt;Dnoise)

TH(ξ′;Dnoise)∇L(wt;Dnoise) +O(η2).

Hence, for small η, we get

L(wt+1;Dnoise)∥2 > ∥∇L(wt;Dnoise)∥2.

Noting that

∇L(wt;Dnoise) =
∑
c

g
(c)
noise(wt) = −αt

∑
c

g
(c)
clean(wt) = −αt∇L(wt;Dclean),

we obtain
αt+1 > αt. (25)

Therefore, we conclude the proof of the theorem.

The high-level idea of the above proof is that: (locally) decreasing a convex function L along
the opposite gradient direction, −∇L, results in shrinking the magnitude of the gradient; (locally)
increasing a convex function L along the gradient direction ∇L results in magnifying the gradient
magnitude.

B EXPERIMENTAL SETUP DETAILS

B.1 EXPERIMENTAL SETUP FOR FIGURE 2 AND 3

For the experiment in Figure 2, we consider six neural networks: three linear networks with 2, 3 and
5 layers, respectively; and three ReLU networks with 2, 3 and 5 layers. Each hidden layer of each
neural network has 512 neurons. For each network, we compute the model derivatives ∇h on the
1-sphere S1 = {(cos θd, sin θd) : θd ∈ [0, 2π)}, at the network initialization. Figure 2 shows the
relations between the angle θh and θd.3

For Figure 3, we consider the following synthetic dataset (also shown in the left panel of Figure
3): two separated data clusters in a 2-dimensional space. We use a 3-layer ReLU network of width
m = 512 at its initialization to compute the sample-wise model derivatives ∇h. The right panel of
Figure 3 shows the distributions of angle θh for data pairs from the same cluster (“within”) and from
different clusters (“between”). It can be easily seen that the “within” distribution has smaller angles
θh than the “between” distribution, which is expected as the data from the same clusters are more
similar.

B.2 EXPERIMENTAL SETUP FOR CLASSIFICATION PROBLEMS

Binary classification on two class of MNIST. We extract two classes, the images with digits “7”
and “9”, out from the MNIST datasets, and injected 30% random label noise into each class in the
training dataset (i.e., labels of 30% randomly selected samples are flipped to the other class), leaving
test set intact. We employ a fully connected neural network with 2 hidden layers, each containing
512 units and using the ReLU activation function, of the classification task. We use mini-batch SGD
with batch size 256 to train this network.

Figure 5, Figure 6 and right panel of Figure 4 are based on the above setting.

3The curves for the three linear networks are almost identical and not visually distinguishable, we only
present the one for 2-layer linear network in Figure 2.
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Multi-class classification on MNIST. We use the following CNN to classify the 10 classes of
MNIST. Specifically, this CNN contains two consecutive convolutional layers, with 32 and 64
channels, respectively. Both convolutional layers uses 3× 3 kernel size and are with stride 1. On top
of the convolutional layers, there is one max pooling layer, followed by two fully connected layers
with width 64 and 10, respectively.

We injected 30% random label noise into each class of MNIST training set. We use mini-batch SGD
with batch size 512 to training the neural network.

Top row of Figure 7, left panel of Figure 8, and Figure 9 are based on this setting.

Multi-class classification on CIFAR-10. For the CIFAR-10 dataset, we use a standard 9-layer
ResNet (ResNet-9) to classify 4. We injected 40% random label noise into each class of CIFAR-10
training set. We use mini-batch SGD with batch size 512 to training the neural network.

Bottom row of Figure 7 and right panel of Figure 8 are based on this setting.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ANGLE θg DISTRIBUTION FOR MULTI-CLASS CLASSIFICATION

We experimentally verify the directional distributions of single-logit sample-wise gradients on MNIST
dataset. We use the same CNN as in Figure 7, and evaluate the angle θg distributions at the network
initialization. Specifically, given c ∈ {0, 1, · · · , 9}, we consider the c-th output logit. Note that,
according to the one-hot encoding, only class c has label 1 and all the rest classes have label 0 on this
logit. Hence, the binary classifier at logit c is essentially a one-versus-rest classifier. For each of these
binary classifiers, we look at the angle θg distributions of the corresponding single-logit sample-wise
gradients.

As shown in Figure 9, each sub-plot corresponds to one logit. We can see that, for each c:

• The clean segment of class c (green) has its single-logit sample-wise gradients concentrated
at small angles θg .

• The noisy segment of class c (red) has its single-logit sample-wise gradients in the opposite
direction of clean ones, concentrating at large angles and being symmetric to the clean
segment. The noisy segment gradient g(c)noisy(w0) (red dash line) is sharply opposite to

g
(c)
clean(w0), with θg almost 180◦.

• The distribution of “other” segment (blue), which contains the clean samples of all other
classes, is clearly separated from the class c distributions. Moreover, the component
of segment gradient g(c)other(w0) that is orthogonal to g

(c)
clean(w0) clearly has non-trivial

magnitude (as the sin θg ∼ Θ(1)).

All the above observation are align with our analysis for binary classifiers in Section 3 (compare with
Figure 4 for example).

C.2 SEGMENT LOSS DYNAMICS

Here, we show the dynamics for the segment losses, i.e., clean segment loss L(w;Dclean) and noisy
segment loss L(w;Dnoisy). Figure 10 shows the curves of these segment losses under different
experimental settings: binary classification (same setting as in Figure 5); multi-classification for
MNIST dataset (same setting as in top row of Figure 7); and multi-classification for CIFAR-10 dataset
(same setting as in bottom row of Figure 7).

Obviously, under each experimental setting, the noisy segment loss L(w;Dnoisy) becomes worse
(increases) in the early stage and decreases in the later stage, which is align with the clean-priority
learning dynamics.

4For the detailed architecture, we use the implementation in https://github.com/cbenitez81/
Resnet9/blob/main/model_rn.py.
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Figure 9: The distributions of θg for single-logit sample-wise gradients. MNIST dataset (label noise
δ = 0.3) on CNN. Dash lines represent segment gradients.
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Figure 10: Training losses on clean and noisy segments. Left: for binary classification on two class
MNIST (“7” and “9”, noise level δ = 0.4). Middle: for multi-class classification on MNIST (noise
level δ = 0.3). Right: for multi-class classification on CIFAR-10 (noise level δ = 0.4).

C.3 EFFECT OF WIDTH

We extract two classes, the images with digits “7” and “9”, out from the MNIST datasets, and injected
40% random label noise into each class in the training dataset (i.e., labels of 40% randomly selected
samples are flipped to the other class), leaving test set intact. We employ a fully connected neural
network with 2 hidden layers. We sweep the number of neuran per layer from 32 to 2048 with ReLU
activation function, of the classification task. We use mini-batch SGD with batch size 256 to train
this network. It can be see in Figure 11 that the clean-priority learning is consistent with all widths.
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Figure 11: Learning dynamics on two classes (“7” and “9”) of MNIST (noise level δ = 0.4) with FC
networks with different widths. Left: in the early stage (before the vertical dash line), clean segment
error decreases, while noisy segment error increases. Middle: In the early stage, the clean segment
average residual E(x,y)∈Dclean

[|f(w;x)− y|] decreases, i.e., on average the network outputs of clean
segment move towards the labels, indicating a “learning” on the clean segment. One the other hand,
the noisy segment average residual, E(x,y)∈Dnoise

[|f(w;x)−y|], monotonically increases, indicating
that the noisy segment is not-learned. Right: total test error and total training error.

C.4 EFFECT OF NOISE LEVEL

We use the following CNN to classify the 10 classes of MNIST. Specifically, this CNN contains two
consecutive convolutional layers, with 32 and 64 channels, respectively. Both convolutional layers
uses 3 × 3 kernel size and are with stride 1. On top of the convolutional layers, there is one max
pooling layer, followed by two fully connected layers with width 64 and 10, respectively.

We injected different level of random label noise from 0.1 to 0.4 into each class of MNIST training
set. We use mini-batch SGD with batch size 512 to training the neural network. Figure 12 shows that
clean priority is consistent for all noise levels.
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Figure 12: Learning dynamics on multi-class classification. Left: in the early stage (before the
vertical dash line), clean segment error decreases, while noisy segment error increases. Middle: In
the early stage, the clean segment average residual E(x,y)∈Dclean

[∥f(w;x)− y∥] decreases, i.e., on
average the network outputs of clean segment move towards the labels, indicating a “learning” on the
clean segment. One the other hand, the noisy segment average residual, E(x,y)∈Dnoise

[∥f(w;x)−y∥],
monotonically increases, indicating that the noisy segment is not-learned. Right: total test error and
total training error.
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