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“A woolen toy cat.”

“A tiger.”

“A cat, Van Gogh style.”
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Figure 1: Our method generates visually consistent videos that adhere to different types (style,
texture, and category) of textual prompts while faithfully preserving the motion in the source video.

ABSTRACT

Text-to-video editing aims to edit the visual appearance of a source video con-
ditional on textual prompts. A major challenge in this task is to ensure that all
frames in the edited video are visually consistent. Most recent works apply ad-
vanced text-to-image diffusion models to this task by inflating 2D spatial attention
in the U-Net into spatio-temporal attention. Although temporal context can be
added through spatio-temporal attention, it may introduce some irrelevant infor-
mation for each patch and therefore cause inconsistency in the edited video. In this
paper, for the first time, we introduce optical flow into the attention module in the
diffusion model’s U-Net to address the inconsistency issue for text-to-video edit-
ing. Our method, FLATTEN, enforces the patches on the same flow path across
different frames to attend to each other in the attention module, thus improving
the visual consistency in the edited videos. Additionally, our method is training-
free and can be seamlessly integrated into any diffusion-based text-to-video edit-
ing methods and improve their visual consistency. Experiment results on existing
text-to-video editing benchmarks show that our proposed method achieves the
new state-of-the-art performance. In particular, our method excels in maintain-
ing the visual consistency in the edited videos. The project page is available at
https://flatten-video-editing.github.io/.

*Work done during an internship at Meta AI.
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1 INTRODUCTION

Short videos have become increasingly popular on social platforms in recent years. To attract more
attention from subscribers, people like to edit their videos to be more intriguing before uploading
them onto their personal social platforms. Text-to-video (T2V) editing, which aims to change the
visual appearance of a video according to a given textual prompt, can provide a new experience for
video editing and has the potential to significantly increase flexibility, productivity, and efficiency. It
has, therefore, attracted a great deal of attention recently (Wu et al., 2022; Khachatryan et al., 2023;
Qi et al., 2023; Zhang et al., 2023; Ceylan et al., 2023; Qiu et al., 2023; Ma et al., 2023).

A critical challenge in text-to-video editing compared to text-to-image (T2I) editing is visual consis-
tency, i.e., the content in the edited video should have a smooth and unchanging visual appearance
throughout the video. Furthermore, the edited video should preserve the motion from the source
video with minimal structural distortion. These challenges are expected to be alleviated by using
fundamental models for text-to-video generation (Ho et al., 2022a; Singer et al., 2022; Blattmann
et al., 2023; Yu et al., 2023). Unfortunately, these models usually take substantial computational
resources and gigantic amounts of video data, and many models are unavailable to the public.

Spatio-temporal attention Flow-guided attention
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Figure 2: Illustration of spatial attention, spatio-
temporal attention, and our flow-guided attention.
The patches marked with the crosses attend to the
colored patches and aggregate their features. Fk

indicates the feature map of the k-th video frame.

Most recent works (Wu et al., 2022; Khacha-
tryan et al., 2023; Qi et al., 2023; Zhang et al.,
2023; Ceylan et al., 2023) attempt to extend
the existing advanced diffusion models for text-
to-image generation to a text-to-video editing
model by inflating spatial self-attention into
spatio-temporal self-attention. Specifically, the
features of the patches from different frames in
the video are combined in the extended spatio-
temporal attention module, as depicted in Fig-
ure 2. By capturing spatial and temporal con-
text in this way, these methods require only a
few fine-tuning steps or even no training to ac-
complish T2V editing. Nevertheless, this sim-
ple inflation operation introduces irrelevant in-
formation since each patch attends to all other
patches in the video and aggregates their fea-
tures in the dense spatio-temporal attention.
The irrelevant patches in the video can mislead the attention process, posing a threat to the con-
sistency control of the edited videos. As a result, these approaches still fall short of the visual
consistency challenge in text-to-video editing.

In this paper, for the first time, we propose FLATTEN, a novel (optical) FLow-guided ATTENtion
that seamlessly integrates with text-to-image diffusion models and implicitly leverages optical flow
for text-to-video editing to address the visual consistency limitation in previous works. FLATTEN
enforces the patches on the same flow path across different frames to attend to each other in the
attention module, thus improving the visual consistency of the edited video. The main advantage
of our method is that enables the information to communicate accurately across multiple frames
guided by optical flow, which stabilizes the prompt-generated visual content of the edited videos.
More specifically, we first use a pre-trained optical flow prediction model (Teed & Deng, 2020) to
estimate the optical flow of the source video. The estimated optical flow is then used to compute the
trajectories of the patches and guide the attention mechanism between patches on the same trajectory.
Meanwhile, we also propose an effective way to integrate flow-guided attention into the existing
diffusion process, which can preserve the per-frame feature distribution, even without any training.
We present a T2V editing framework utilizing FLATTEN as a foundation and employing T2I editing
techniques such as DDIM inversion (Mokady et al., 2023) and feature injection (Tumanyan et al.,
2023). We observe high-quality and highly consistent text-to-video editing, as shown in Figure 1.
Furthermore, our proposed method can be easily integrated into other diffusion-based text-to-video
editing methods and improve the visual consistency of their edited videos.

The contributions of this work are as follows: (1) We propose a novel flow-guided attention (FLAT-
TEN) that enables the patches on the same flow path across different frames to attend to each other
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during the diffusion process and present a framework based on FLATTEN for high-quality and
highly consistent T2V editing. (2) Our proposed method, FLATTEN, can be easily integrated into
existing text-to-video editing approaches without any training or fine-tuning to improve the visual
consistency of their edited results. (3) We conduct extensive experiments to validate the effectiveness
of our method. Our model achieves the new state-of-the-art performance on existing text-to-video
editing benchmarks, especially in maintaining visual consistency.

2 RELATED WORK

Image and Video Generation Image generation is a popular generative task in computer vision.
Deep generative models, e.g., GAN (Karras et al., 2019; Kang et al., 2023) and auto-regressive
Transformers (Ding et al., 2021; Esser et al., 2021; Yu et al., 2022) have demonstrated their capacity.
Recently, diffusion models (Ho et al., 2020; Song et al., 2020a;b) have received much attention due to
their stability. Many T2I generation methods based on diffusion models have emerged and achieved
superior performance (Ramesh et al., 2021; 2022; Saharia et al., 2022; Balaji et al., 2022). Some of
these methods operate in pixel space, while others work in the latent space of an auto-encoder.

Video generation (Le Moing et al., 2021; Ge et al., 2022; Chen et al., 2023a; Cong et al., 2023;
Yu et al., 2023; Luo et al., 2023) can be viewed as an extension of image generation with ad-
ditional dimension. Recent video generation models (Singer et al., 2022; Zhou et al., 2022; Ge
et al., 2023) attempt to extend successful text-to-image generation models into the spatio-temporal
domain. VDM (Ho et al., 2022b) adopt a spatio-temporal factorized U-Net for denoising while
LDM (Blattmann et al., 2023) implement video diffusion models in the latent space. Recently, con-
trollable video generation (Yin et al., 2023; Li et al., 2023; Chen et al., 2023b; Teng et al., 2023)
guided by optical flow fields facilitates dynamic interactions between humans and generated content.

Text-to-Image Editing T2I editing is the task of editing the visual appearance of a source image
based on textual prompts. Many recent methods (Avrahami et al., 2022; Couairon et al., 2022; Zhang
& Agrawala, 2023) work on pre-trained diffusion models. SDEdit (Meng et al., 2021) adds noise
to the input image and performs denoising through the specific prior. Pix2pix-Zero (Parmar et al.,
2023) performs cross-attention guidance while Prompt-to-Prompt (Hertz et al., 2022) manipulates
the cross-attention layers directly. PNP-Diffusion (Tumanyan et al., 2023) saves diffusion features
during reconstruction and injects these features during T2I editing. While video editing can benefit
from these creative image methods, relying on them exclusively can lead to inconsistent output.

Text-to-Video Editing Gen-1 (Esser et al., 2023) demonstrates a structure and content-driven
video editing model while Text2Live (Bar-Tal et al., 2022) uses a layered video representation.
However, training these models is very time-consuming. Recent works attempt to extend pre-trained
image diffusion models into a T2V editing model. Tune-A-Video (Wu et al., 2022) extends a latent
diffusion model to the spatio-temporal domain and fine-tunes it with source videos, but still has
difficulties in modeling complex motion. Text2Video-Zero (Khachatryan et al., 2023) and Con-
trolVideo (Zhang et al., 2023) use ControlNet (Zhang & Agrawala, 2023) to help editing. They can
preserve the per-frame structure but relatively lack control of visual consistency. FateZero (Qi et al.,
2023) introduces an attention blending block to enhance shape-aware editing while the editing words
have to be specified. To improve consistency, TokenFlow (Geyer et al., 2023) enforces linear com-
binations between diffusion features based on source correspondences. However, the pre-defined
combination weights are not adapted to all videos, resulting in high-frequency flickering.

Different from the aforementioned methods, we propose a novel flow-guided attention, which im-
plicitly uses optical flow to guide attention modules during the diffusion process. Our framework
can improve the overall visual consistency for T2V editing and can also be seamlessly integrated
into existing video editing frameworks without any training or fine-tuning.

3 METHODOLOGY

3.1 PRELIMINARIES

Latent Diffusion Models Latent diffusion models operate in the latent space with an auto-encoder
and demonstrate superior performance in text-to-image generation. In the forward process, Gaussian
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Editing Prompt: “A cat, Van Gogh style.”
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Figure 3: Overview of our framework. We inflate the existing U-Net architecture along the temporal
axis and combine flow-guided attention (FLATTEN) with dense spatio-temporal attention to avoid
introducing any new parameters. The outcome of dense spatio-temporal attention H is further
used for FLATTEN. The keys and values for FLATTEN are gathered from H based on the patch
trajectories sampled from the optical flow. The weights of the U-Net ϵθ are frozen.

noise is added to the latent input z0. The density of zt given zt−1 can be formulated as:

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI), (1)

where βt is the variance schedule for the timestep t. The number of timesteps used to train the
diffusion model is denoted by T . The backward process uses a trained U-Net ϵθ for denoising:

pθ(zt−1|zt) = N (zt−1;µθ(zt, τ , t),Σθ(zt, τ , t)), (2)

where τ indicates the textual prompt. µθ and Σθ are computed by the denoising model ϵθ.

DDIM Inversion DDIM can convert a random noise to a deterministic z0 during sampling (Song
et al., 2020a; Dhariwal & Nichol, 2021). Based on the assumption that the ODE process can be
reversed in the small-step limit, the deterministic DDIM inversion can be formulated as:

zt+1 =

√
αt+1

αt
zt +

√
αt+1

(√
1

αt+1 − 1
−
√

1

αt
− 1

)
ϵθ(zt), (3)

where αt denotes
∏t

i=1(1− βi). DDIM inversion is employed to invert the input z0 into zT , which
can be used for reconstruction and further editing tasks.

3.2 OVERALL FRAMEWORK

Our framework aims to edit the source video V according to an editing textual prompt τ and output
a visually consistent video. To this end, we expand the U-Net architecture of a T2I diffusion model
along the temporal axis inspired by previous works (Wu et al., 2022; Khachatryan et al., 2023; Zhang
et al., 2023). Furthermore, to facilitate consistent T2V editing, we incorporate flow-guided attention
(FLATTEN) into the U-Net blocks without introducing new parameters. To retain the high-fidelity
of the generated video, we employ DDIM inversion in the latent space with our re-designed U-Net to
estimate the latent noise zT from the source video. We use empty text for DDIM inversion without
the need to define a caption for the source video. Lastly, we generate an edited video using the
DDIM process with inputs from the latent noise zT and the target prompt τ . Our framework as
illustrated in Figure 3 is training-free, thus comfortably reducing additional computation.

4



Published as a conference paper at ICLR 2024

U-Net Inflation The original U-Net architecture employed in an image-based diffusion model
comprises a stack of 2D convolutional residual blocks, spatial attention blocks, and cross-attention
blocks that incorporate textual prompt embeddings. To adapt the T2I model to the T2V editing task,
we inflate the convolutional residual blocks and the spatial attention blocks. Similar to previous
works (Ho et al., 2022b; Wu et al., 2022), the 3×3 convolution kernels in the convolutional residual
blocks are converted to 1×3×3 kernels by adding a pseudo temporal channel. In addition, the spatial
attention is replaced with a dense spatio-temporal attention paradigm. In contrast to the spatial self-
attention strategy applied to the patches in a single frame, we adopt all patch embeddings across the
entire video as the queries (Q), keys (K), and values (V ). This dense spatio-temporal attention can
provide a comprehensive perspective throughout the video. Note that the parameters of the linear
projection layers and the feed-forward networks in the new dense spatio-temporal attention blocks
are inherited from those in the original spatial attention blocks.

FLATTEN Integration To further improve the visual consistency of the output frames, we in-
tegrate our proposed flow-guided attention in the extended U-Net blocks. We combine FLATTEN
with dense spatio-temporal attention since both attention mechanisms are designed to aggregate
visual context. Given the latent video features, we first perform dense spatio-temporal attention.
Specific linear projection layers are employed to convert the patch embeddings of the latent features
into the queries, keys, and values, respectively. The results of dense spatio-temporal attention are
denoted as H . To avoid introducing newly trainable parameters and preserve the feature distribu-
tion, we do not apply new linear transformations to recompute the queries, keys, and values. We
directly use H as the input of flow-guided attention. Note that no positional encoding is introduced.
When a patch embedding serves as a query, the corresponding keys and the values for FLATTEN are
gathered from the output of dense spatio-temporal attention H based on the patch trajectories sam-
pled from optical flow. More details are demonstrated in Section 3.3. After performing flow-guided
attention, the output is forwarded to the feed-forward network from the dense spatio-temporal at-
tention block. We activate FLATTEN not only during DDIM sampling but also when performing
DDIM inversion since using FLATTEN in DDIM inversion allows a more efficient inversion by
introducing additional temporal dependencies. More details are discussed in Appendix A.

We also implement the feature injection following the image editing method (Tumanyan et al., 2023).
For efficiency, we do not reconstruct the source video but inject the features from DDIM inversion
during sampling. With these adaptations, our framework establishes and enhances the connections
between frames, thus contributing to high-quality and highly consistent edited videos.

3.3 FLOW-GUIDED ATTENTION

Optical Flow Estimation Given two consecutive RGB frames from the source video, we use
RAFT (Teed & Deng, 2020) to estimate optical flow. The optical flow between two frames denotes
a dense pixel displacement field (fx, fy). The coordinates of each pixel (xk, yk) in the k-th frame
can be projected to its corresponding coordinates in the (k + 1)-th frame based on the displacement
field. The new coordinates in the (k + 1)-th frame can be formulated as:

(xk+1, yk+1) = (xk + fx(xk, yk), yk + fy(xk, yk)). (4)

In order to implicitly use optical flow to guide the attention modules, we downsample the displace-
ment fields of all frame pairs to the resolution of the latent space.

Patch Trajectory Sampling We sample the patch trajectories in the latent space based on the
downsampled fields (f̂x, f̂y). We start iterating from the patches on the first frame. For a patch with
coordinates (x0, y0) on the first frame, its coordinates on all subsequent frames can be derived from
the displacement field. The coordinates are linked, and the trajectory sequence can be presented as:

traj = {(x0, y0), (x1, y1), (x2, y2), · · · , (xK , yK)}, (5)

where K denotes the frame number of the source video. For a latent space with the size H×W , there
is ideally a trajectory set denoted as {traj1, traj2, ..., trajN}, where N = HW . However, certain
patches disappear over time, and new patches appear in the video. For each new patch that appears in
the video, a new trajectory is created. As a result, the size of the trajectory set N is generally larger
than HW . To simplify the implementation of flow-guided attention, when an occlusion happens,
we randomly select a trajectory to continue sampling and stop the other conflicting trajectories. This
strategy ensures that each patch in the video is uniquely assigned to a single trajectory, and there is
no case where a patch is on multiple trajectories.
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Flow-guided AttentionPatch Trajectory Sampling

query key

Multi-head Attention
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Optical Flow Estimation

Figure 4: Illustration of FLATTEN. We use RAFT to estimate the optical flow of the source video
and downsample them to the resolution of the latent space. The trajectories of the patches in the
latent space are sampled based on the displacement field. For each query, we gather the patch
embeddings on the same trajectory from the latent feature as the corresponding key and value. The
multi-head attention is then performed, and the patch embeddings are updated.

Attention Process Flow-guided attention is performed on the sampled patch trajectories. The
overview of FLATTEN is illustrated in Figure 4. We gather the embeddings of the patches on
the same trajectory from the latent feature z. The patch embeddings on a trajectory traj can be
presented as:

ztraj = {z(x0, y0), z(x1, y1), z(x2, y2), · · · , z(xK , yK)}, (6)

where z(xk, yk) indicates the patch embedding at the coordinates (xk, yk) in the k-th frame. We per-
form multi-head attention with the patch embeddings on the same trajectory. For a query z(xk, yk),
the corresponding keys and values are the other patch embeddings on the same trajectory traj. No
additional position encoding is introduced. Our flow-guided attention can be formulated as follows:

Q = z(xk, yk), (7)
K = V = ztraj − {z(xk, yk)}, (8)

Attn(Q,K,V ) = Softmax(
QKT

√
d

)V , (9)

where
√
d is a scaling factor. The latent features z are updated by flow-guided attention to eliminate

the negative effects from feature aggregation of irrelevant patches in dense spatio-temporal attention.
Importantly, we ensure that each patch embedding on the latent feature is uniquely assigned to a
single trajectory during patch trajectory sampling. This assignment resolves conflicts and allows for
a comprehensive update of all patch embeddings.

We utilize optical flow to connect the patches in different frames and sample the patch trajectories.
Our flow-guided attention facilitates the information exchange between patches on the same trajec-
tory, thus improving visual consistency in video editing. We integrate FLATTEN into our framework
and implement text-to-video editing without any additional training. Furthermore, FLATTEN can
also be easily integrated into any diffusion-based T2V editing method, as shown in Section 4.4.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets We evaluate our text-to-video editing framework with 53 videos sourced from LOVEU-
TGVE*. 16 of these videos are from DAVIS (Perazzi et al., 2016), and we denote this subset as
TGVE-D. The other 37 videos are from Videvo, which are denoted as TGVE-V. The resolution of
the videos is re-scaled to 512 × 512. Each video consists of 32 frames labeled with a ground-truth
caption and 4 creative textual prompts for editing.

Evaluation Metrics As per standard (Wu et al., 2022; Qi et al., 2023; Ceylan et al., 2023; Geyer
et al., 2023), we use the following automatic evaluation metrics: For textual alignment, we use
CLIP (Radford et al., 2021) to measure the average cosine similarity between the edited frames and
the textual prompt, denoted as CLIP-T. To evaluate visual consistency, we adopt the flow warping
error Ewarp (Lai et al., 2018), which warps the edited video frames according to the estimated optical

*https://sites.google.com/view/loveucvpr23/track4
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Table 1: Quantitative results on TGVE-D and TGVE-V.

Method TGVE-D TGVE-V
CLIP-F ↑ PickScore ↑ CLIP-T ↑ Ewarp ↓ Sedit ↑ CLIP-F ↑ PickScore ↑ CLIP-T ↑ Ewarp ↓ Sedit ↑

Tune-A-Video 91.05 20.58 27.33 29.23 9.35 96.30 20.20 25.84 15.38 16.80
Text2Video-Zero 92.39 20.32 27.86 22.07 12.62 96.84 20.43 26.53 11.55 22.97

ControlVideo 91.68 20.56 27.72 6.81 40.70 96.55 20.36 25.92 6.32 41.01
FateZero 92.58 20.45 27.06 5.79 46.74 96.64 20.09 25.72 5.10 50.43

TokenFlow 92.45 20.93 26.91 5.36 50.21 96.72 20.61 25.57 3.15 81.17
FLATTEN (ours) 92.49 20.95 28.05 4.92 57.01 96.75 20.63 26.70 3.16 84.49

flow of the source video and measures the pixel-level difference. Using these metrics independently
cannot comprehensively represent editing performance. For instance, Ewarp reports 0 errors when
the edited video is exactly the source video. Therefore, we propose Sedit as our main evaluation
metric, which combines CLIP-T and Ewarp as a unified score. Specifically, the editing score is
calculated as Sedit = CLIP-T/Ewarp. Following the previous work (Wu et al., 2022), we also adopt
CLIP-F and PickScore, which computes the average cosine similarity between all frames in a video
and the estimated alignment with human preferences, respectively. For brevity, the numbers of
CLIP-F/CLIP-T/Ewarp shown in this paper are scaled up by 100/100/1000.
Implementation Details We inflate a pre-trained text-to-image diffusion model and integrate
FLATTEN into the U-Net to implement T2V editing without any training or fine-tuning. To es-
timate the optical flow of the source videos, we utilize RAFT (Teed & Deng, 2020). We find that
applying flow-guided attention in DDIM inversion can also improve latent noise estimation by in-
troducing additional temporal dependencies. Therefore, we use flow-guided attention both in DDIM
sampling and inversion. More details are shown in Appendix A. We implement 100 timesteps for
DDIM inversion and 50 timesteps for DDIM sampling. Following the image editing method (Tu-
manyan et al., 2023), the diffusion features are saved during DDIM inversion and are further injected
during sampling. To efficiently perform the dense spatio-temporal attention in the modified U-Net,
we use xFormers (Lefaudeux et al., 2022), which can reduce GPU memory consumption.

4.2 QUANTITATIVE COMPARISON

We compare our approach with 5 publicly available text-to-video editing methods: Tune-A-
Video (Wu et al., 2022), FateZero (Qi et al., 2023), Text2Video-Zero (Khachatryan et al., 2023),
ControlVideo (Zhang et al., 2023), and TokenFlow (Geyer et al., 2023). In these methods, Tune-A-
Video requires fine-tuning the source videos. Both Tune-A-Video and FateZero need the additional
caption of the source video, while our model does not. Text2Video-Zero and ControlVideo use Con-
trolNet (Zhang & Agrawala, 2023) to preserve the structural information. Edge maps are used as the
condition in our experiments, which have better performance than depth maps. TokenFlow linearly
combines the diffusion features based on the correspondences of the source video features.

Table 1 shows the quantitative comparisons of TGVE-D and TGVE-V. Our approach outperforms
other compared methods in terms of CLIP-T, PickScore, and editing score Sedit on both datasets. In
terms of the warping error Ewarp, our method is slightly 0.1 × 10−3 lower than TokenFlow. While
considering textual faithfulness, our CLIP-T score is significantly higher. As a result, our method
has a higher editing score overall. Text2Video-Zero has high CLIP-F and CLIP-T, but performs
weakly in terms of visual consistency. Although FateZero has the highest CLIP-F on TGVE-D, its
output video is sometimes very similar to the source video due to the hyperparameter setting issue.
Our approach demonstrates superior performance on all evaluation metrics.

4.3 QUALITATIVE RESULTS

The qualitative comparison is presented in Figure 5. The source video at the top is from TGVE-
D, and the source video at the bottom is from TGVE-V. Tune-A-Video generates videos with high
quality per frame, but it struggles to preserve the source structure, e.g., the wrong number of trucks.
FateZero sometimes cannot edit the visual appearance based on the prompt, and the output video is
almost identical to the source, as shown in the top example. Both Text2Video-Zero and ControlVideo
rely on pre-existing features (e.g., edge maps) provided by ControlNet. If the source condition
features are of low quality, for example, due to motion blur, this leads to an overall decrease in
video editing quality. TokenFlow samples keyframes and performs a linear combination of features
to keep visual consistency. However, the pre-defined combination weights may not be appropriate
for all videos. In the example at the bottom, a white sun intermittently appears and disappears in the
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Editing Prompt: “ Wooden trucks drive on a racetrack.”

Tune-A-VideoSource video ControlVideoText2Video-ZeroFateZero TokenFlow FLATTEN (ours)

Editing Prompt: “A ship sails on the sea during sunset, 2D vector art.”

Tune-A-VideoSource video ControlVideoText2Video-ZeroFateZero TokenFlow FLATTEN (ours)

Figure 5: Qualitative comparison between advanced T2V editing approaches and our method. The
first column shows the source frames from TGVE-D (top) and TGVE-V (bottom), while the other
columns present the corresponding frames edited by different methods. The complete videos are
provided in the supplementary material.

frames edited by TokenFlow. In contrast, our method can generate consistent videos based on the
prompt with flow-guided attention. More qualitative results are shown in Appendix B.

4.4 PLUG-AND-PLAY FLATTEN

Source video ControlVideo ControlVideo+FLATTEN

“Several goldfish swim in a pond.”

Figure 6: FLATTEN can also improve vi-
sual consistency for other methods.

FLATTEN can be seamlessly integrated into other
diffusion-based T2V editing methods. To verify its
compatibility, we incorporate FLATTEN into the U-
Net blocks of ControlVideo (Zhang et al., 2023). The
visual consistency of the videos edited by ControlVideo
with FLATTEN is significantly improved, as shown in
Figure 6. The fish (cyan box) in the bottom frame
edited by the original ControlVideo disappears while
using FLATTEN ensures a consistent visual appear-
ance. We evaluate the ControlVideo with FLATTEN
on TGVE-D. After integrating FLATTEN, the warping
error Ewarp decreases remarkably from 6.81 to 4.78,
while CLIP-T slightly decreases from 27.72 to 26.97.
The editing score Sedit is improved from 40.70 to
56.42, which shows that FLATTEN can improve visual consistency for other T2V editing methods.

4.5 ABLATION STUDY

To verify the contributions of different modules to the overall performance, we systematically deac-
tivated specific modules in our framework. Initially, we ablate both dense spatio-temporal attention
(DSTA) and flow-guided attention (FLATTEN) from our framework. The dense spatio-temporal
attention is replaced by the original spatial attention in the pre-trained image model. This is viewed
as our baseline model (Base). As shown in Figure 7, the edited structure is sometimes distorted.
We individually activate DSTA and FLATTEN. They both can reason about temporal dependen-
cies and enhance structural preservation and visual consistency. As a further step, we combine
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Base+DSTA

Base

Source video with the editing prompt 

Base+DSTA+FLATTEN (I)

“ A colored wolf.”

Base+DSTA+FLATTEN (II)

Base+FLATTEN

Figure 7: Qualitative results on the effectiveness of flow-guided attention (FLATTEN) and dense
spatio-temporal attention (DSTA). We also explore two combinations of FLATTEN and DSTA. To
easily compare visual consistency, we zoom in on the area of nose in different frames. In the lower
right frames, both the structure as well as the colorization is temporally consistent.

Table 2: Ablation results for dense spatio-temporal atten-
tion (DSTA), flow-guided attention (FLATTEN), and their
combinations on TGVE-D.

Method CLIP-T ↑ Errorwarp ↓ Sedit ↑
Base 28.36 13.40 21.16

Base + DSTA 27.97 6.65 42.06
Base + FLATTEN 28.02 6.27 44.69

Base + DSTA + FLATTEN (I) 27.96 5.60 49.93
Base + DSTA + FLATTEN (II) 28.05 4.92 57.01

Table 3: User study of different T2V
editing methods. The numbers indicate
the average user preference rating (%).

Method Semantic Consistency Motion
Tune-A-Video 18.43 7.42 8.18

Text2Video-Zero 11.01 4.49 4.21
ControlVideo 12.36 7.42 3.97

FateZero 8.09 13.26 17.76
TokenFlow 18.65 26.74 24.30

FLATTEN (ours) 31.46 41.12 41.59

DSTA and FLATTEN in two distinct ways and explore their effectiveness: (I) The output of dense
spatio-temporal attention is forwarded to the linear projection layers to recompute the queries, keys,
and values for FLATTEN; (II) The output of DSTA is directly used as queries, keys, and values
for FLATTEN. We find that the first combination sometimes results in blurring, which reduces the
editing quality. The second combination performs better and is adopted as the final solution. The
quantitative results for the ablation study on TGVE-D are presented in Table 2.

4.6 USER STUDY

We conduct a user study since automatic metrics cannot fully represent human perception. We
collect 180 edited videos and divide them into 30 groups. Each group consists of 6 videos edited by
different methods with the same source video and prompt. We asked 16 participants to vote on their
preference from the following perspectives: (1) semantic alignment (2) visual consistency, and (3)
motion and structure preservation. The average user preference rating is shown in Table 3. Our
method achieves higher user preference in all perspectives. More details are shown in Appendix C.

5 CONCLUSION

We propose FLATTEN, a novel flow-guided attention to improve the visual consistency for text-to-
video editing, and present a training-free framework that achieves the new state-of-the-art perfor-
mance on the existing T2V editing benchmarks. Furthermore, FLATTEN can also be seamlessly
integrated into any other diffusion-based T2V editing methods to improve their visual consistency.
We conduct comprehensive experiments to validate the effectiveness of our method and benchmark
the task of text-to-video editing. Our approach demonstrates superior performance, especially in
maintaining the visual consistency for edited videos.
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A DDIM INVERSION WITH FLATTEN

Flow-guided attention (FLATTEN) can also improve the DDIM inversion process, which is critical
in our T2V editing framework. We have validated the effectiveness of FLATTEN for the editing task
in the ablation study (see Table 2). To further demonstrate that FLATTEN can contribute to high-
quality latent noise estimation, we perform DDIM inversion on the source videos and reconstruct
them using the U-Net with and without FLATTEN, respectively. When activating FLATTEN during
DDIM inversion, more details in the source video can be restored, such as the eyes of the goldfish
in Figure 8. Quantitatively, using FLATTEN results in higher scores for reconstruction metrics,
with PSNR (peak signal-to-noise ratio) and SSIM (structural similarity index measure) reaching
the values of 33.89dB and 0.9159, respectively. In contrast, PSNR and SSIM of the reconstruction
without FLATTEN drop to 32.74dB and 0.8974. The quantitative results are shown in Table 4.

Table 4: The results of DDIM inversion and reconstruction with and without FLATTEN.

Method PSNR ↑ SSIM ↑
w/o FLATTEN 32.74dB 0.8974
w/ FLATTEN 33.89dB 0.9159

Source video
DDIM Inversion and 

Reconstruction without FLATTEN
DDIM Inversion and 

Reconstruction with FLATTEN

Figure 8: Using FLATTEN during DDIM inversion helps to improve the quality of the estimated
latent noise. This is reflected in video reconstruction. The fish eyes and other details in the third
column are successfully reconstructed, while in the second column, some details are missing.

B ADDITIONAL QUALITATIVE RESULTS

The additional qualitative results are shown in Figure 9 and Figure 11. With flow-guided attention,
our training-free framework enables high-quality and highly consistent T2V editing.

To further demonstrate the visual consistency of videos generated by our approach, we provide
the additional qualitative comparisons, which are shown in Figure 10. The videos produced by
FLATTEN exhibit superior quality, characterized by a remarkable level of visual consistency and
semantic alignment.

C USER STUDY DETAILS

We randomly sampled 30 source videos from TGVE-D and TGVE-V then edit them with 6 text-
to-video editing approaches, including Tune-A-Video (Wu et al., 2022), FateZero (Qi et al., 2023),
Text2Video-Zero (Khachatryan et al., 2023), ControlVideo (Zhang et al., 2023), ControlNet (Zhang
& Agrawala, 2023), TokenFlow (Geyer et al., 2023) and our FLATTEN. For each group, we asked
16 participants to vote on their preference for 6 edited videos from the following perspectives:

• Semantic Alignment: The edited videos should match the given editing prompt.
• Visual Consistency: The adjacent frames in the edited videos should be smooth.
• Motion and Structure Preservation: The motion/structure of the edited videos should align

with the source video.
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Figure 9: Additional qualitative results. The complete videos are provided in the supplementary
material.
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Editing Prompt: “Ski lift chairlifts moving up and down with a desert background..”

Tune-A-VideoSource video ControlVideoText2Video-ZeroFateZero TokenFlow FLATTEN (ours)

Editing Prompt: “Cows graze together in a yellow meadow..”

Tune-A-VideoSource video ControlVideoText2Video-ZeroFateZero TokenFlow FLATTEN (ours)

Figure 10: Qualitative comparison between advanced text-to-video editing approaches and FLAT-
TEN.
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““A husky.”
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““A metal sculpture.”

“A dirty tiger.”

“A cute pig.”

Figure 11: Our approach can output highly consistent videos conditional on different textual
prompts.

An example of our user study interface is shown in Figure 12.

D LIMITATIONS

Our approach is designed for highly consistent text-to-video editing utilizing optical flow from the
source video. Therefore, our approach excels in style transfer, coloring, and texture editing but is
relatively limited in dramatic structure editing. A failure case is demonstrated in Figure 13. The
shape of sharks is completely different from quadrotor drones. The model changes the original
sharks into “mechanical sharks”, but not drones.

E TRAJECTORY VISUALIZATION

The flow estimator, Raft (Teed & Deng, 2020), has demonstrated its superior performance in many
applications, being able to accurately predict the flow field of dynamic videos. To demonstrate the
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Figure 12: An example of our user study interface. Given a source video with an editing prompt,
users should select their preferred video from 6 videos edited by different T2V editing methods from
different perspectives (e.g., visual consistency).
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Source video

“ Two quadrotor drones swim in the blue ocean on a coral reef.”

Edited video

Figure 13: Our approach is relatively limited in dramatic structure editing, e.g., turning sharks into
drones.

Figure 14: Visualization of the patch trajectories. The trajectories are computed based on the
downsampled flow fields (64× 64) and the patches on the trajectories are marked with red dots.

robustness of the flow field estimation, we sample several predicted trajectories for video examples
with large motion and visualize the trajectories in Figure 14. RAFT is robust even for videos with
large and abrupt motions. Note that our approach does not rely on any specific flow estimation
module. The trajectory prediction could be more precise with better flow estimation models in the
future.

F ROBUSTNESS TO FLOWS

One notable advantage of our method is the integration of the flow field into the attention mecha-
nism, significantly enhancing adaptability and robustness. To further demonstrate the robustness of
FLATTEN to the pre-computed optical flows, we add random Gaussian noise to the pre-computed
flow field and use the corrupted flow field for video editing. The qualitative comparison is shown in
Figure 15. The corrupted flow field results in a few artifacts in the edited video (3rd row). However,
the editing result is still better than the output of the baseline model without using optical flow as
guidance.
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Moreover, we replace the optical flow from RAFT in flow-guided attention with the flow estimated
by another flow prediction model, GMA (Jiang et al., 2021). The comparison is shown in Figure 16.
There is no obvious difference between the output videos and it shows that our method is robust to
small differences in patch trajectories.
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Figure 15: Video editing results from the baseline model (1st row), FLATTEN with the Raft flow
(2nd row), and FLATTEN with the noised flow (3rd row).

Figure 16: Comparison between using the optical flow from Raft (left) and GMA (right).
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G RUNTIME EVALUATION

To compare the computational cost of different text-to-video editing models, we measure the runtime
required to edit a single video (with 32 frames) by the different models. The runtime of the different
models at different stages on a single A100 GPU is shown in Table 5. Our model has a relatively
short runtime in the sampling stage and there is scope for further improvement.

Table 5: Runtime evaluation of different T2V editing models.

Method Finetuning DDIM Inversion Sampling
Tune-A-Video (Wu et al., 2022) 11min15s 3min52s 3min34s

Text2Video-Zero (Khachatryan et al., 2023) - - 3min17s
ControlVideo (Zhang et al., 2023) - - 4min36s

FateZero (Qi et al., 2023) - 4min56s 4min49s
TokenFlow (Geyer et al., 2023) - 3min41s 3min29s

FLATTEN (ours) - 3min52s 3min45s
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