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Abstract
Chest X-rays (CXRs) play an integral role in driv-
ing critical decisions in disease management and
patient care. While recent innovations have led
to specialized models for various CXR interpre-
tation tasks, these solutions often operate in iso-
lation, limiting their practical utility in clinical
practice. We present MedRAX, the first versatile
AI agent that seamlessly integrates state-of-the-
art CXR analysis tools and multimodal large lan-
guage models into a unified framework. MedRAX
dynamically leverages these models to address
complex medical queries without requiring addi-
tional training. To rigorously evaluate its capa-
bilities, we introduce ChestAgentBench, a com-
prehensive benchmark containing 2,500 complex
medical queries across 7 diverse categories. Our
experiments demonstrate that MedRAX achieves
state-of-the-art performance compared to both
open-source and proprietary models, representing
a significant step toward the practical deployment
of automated CXR interpretation systems. Data
and code have been publicly available at https:
//github.com/bowang-lab/MedRAX.

1. Introduction
Chest X-rays have been widely used to make critical
decisions in disease detection, diagnosis, and monitoring,
comprising the largest proportion of over 4.2 billion
diagnostic radiology procedures performed annually
worldwide (United Nations Scientific Committee on
the Effects of Atomic Radiation, 2022). However, the
systematic evaluation of key anatomical structures places a
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significant time burden on radiologists, requiring hours of
careful analysis (Bahl et al., 2020; Adibi et al., 2025).

The gradual introduction of AI into clinical practice has
demonstrated promising potential to alleviate this burden.
Task-specific AI models have shown success in automating
various aspects of CXR interpretation, from classification
and segmentation to automated report generation (Yang
et al., 2017; Huang et al., 2023; Tanno et al., 2024; Ouis &
Akhloufi, 2024). When integrated into clinical workflows,
these tools have improved report turnaround times and in-
terobserver agreement (Baltruschat et al., 2021; Ahn et al.,
2022; Pham et al., 2022; Shin et al., 2023). However, the
fragmented nature of these solutions—each operating in iso-
lation—has hindered their widespread adoption in practical
clinical settings (Erdal et al., 2023; Fallahpour et al., 2024).

Foundation models (FMs), including large language mod-
els (LLMs) and large multimodal models, are promising
solutions to this fragmentation, enabling unified, scalable
AI-driven medical image-text reasoning. OpenAI’s GPT-4
established dominance of this approach with unprecedented
scale. Trained on enormous multimodal data, it demon-
strated exceptional medical understanding and reasoning
without explicit training (Nori et al., 2023; Yan et al., 2023;
Javan et al., 2024; Eriksen et al., 2024; Baghbanzadeh et al.,
2025). LLaVA-Med (Li et al., 2024b), trained on 15 mil-
lion biomedical figure-caption pairs, established new bench-
marks in medical visual question answering (VQA) with
strong zero-shot image interpretation. CheXagent (Chen
et al., 2024a) focused on CXR analysis, achieving GPT-4-
level performance with significantly fewer parameters.

While FMs have advanced the field, they face critical lim-
itations hindering direct clinical application. LMMs expe-
rience hallucinations and inconsistencies in reasoning, par-
ticularly concerning where medical accuracy is paramount.
They struggle with complex multi-step reasoning required
for diagnostic tasks, failing to systematically evaluate all
relevant anatomical structures or integrate findings across
different image regions. Their end-to-end architecture lacks
the transparency and specialization of purpose-built medi-
cal AI tools. These limitations suggest a more structured,
tool-based approach combining foundation model flexibility
with clinical AI system reliability.
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To bridge this gap, we present MedRAX, the first special-
ized AI agent framework for CXR interpretation. Our key
contributions include:

• MedRAX, a specialized AI agent framework that seam-
lessly integrates multiple CXR analysis tools without
additional training, dynamically orchestrating specialized
components for complex medical queries.

• ChestAgentBench, a comprehensive evaluation frame-
work with 2,500 complex medical queries across 7 cat-
egories, built from 675 expert-curated clinical cases to
assess multi-step reasoning in CXR interpretation.

• Experiments show that MedRAX outperforms both
general-purpose and biomedical specialist models,
demonstrating substantial improvements in complex rea-
soning tasks while maintaining transparent workflows.

• Development of a user-friendly interface, enabling flexi-
ble deployment options from local to cloud-based solu-
tions that address healthcare privacy requirements.

2. Related Work
2.1. LLM-based Agent Architectures

The emergence of AI agents built upon LLMs has funda-
mentally changed how we approach autonomous reason-
ing, planning, and tool use. Recent surveys on LLM-based
agents (Xi et al., 2025; Zhao et al., 2023; Masterman et al.,
2024) have outlined a generalizable agent framework com-
prising three core components: (1) a reasoning engine driven
by LLMs, (2) perceptual modules that process multimodal
inputs, and (3) action mechanisms that execute API calls,
retrieve information, or interact with external tools.

This paradigm shift has enabled AI agents to surpass tradi-
tional task-specific models by dynamically adapting to di-
verse applications without additional training. However, de-
spite these advances, there are very few LLM-based agents
that have been evaluated for domain-specific robustness,
particularly in high-stakes medical applications where hal-
lucinations, lack of systematic reasoning, and specialized
tool integration remain significant challenges.

2.2. Medical Agents

By enabling LMMs to operate in a collaborative, agentic set-
ting, frameworks such as MDAgents (Kim et al., 2024) have
demonstrated enhanced clinical reasoning through multi-
agent interaction. Similarly, MMedAgent (Li et al., 2024a)
explores tool integration across multiple medical imaging
modalities, allowing LMMs to leverage external machine
learning models for more robust decision-making.

However, MDAgents introduces significant computational
overhead due to multi-agent coordination, while MMedA-

gent’s broad focus across imaging modalities may dilute
its domain-specific expertise. Additionally, MMedAgent
requires retraining to integrate new tools, reducing its flexi-
bility for adapting to evolving clinical workflows.

More recently, o1-powered AI agents (Jaech et al., 2024)
have been proposed as an alternative to traditional model-
based approaches, demonstrating strong multi-step reason-
ing and improved diagnostic consistency. However, these
systems also face critical challenges: (1) high computational
demands, making them impractical for real-time applica-
tions, (2) closed-source and proprietary nature, limiting
customization and adaptation to specific medical require-
ments, and (3) redundant reasoning in simpler tasks, leading
to inefficiencies in tool selection and execution.

Alongside these agentic frameworks, specific large vision-
language models like RaDialog (Pellegrini et al., 2025) have
been developed for radiology report generation and conver-
sational assistance. Furthermore, models such as M4CXR
(Park et al., 2024) are exploring the multi-task potentials of
multi-modal LLMs for chest X-ray interpretation.

2.3. Evaluation Frameworks

To systematically evaluate LLM-based agents, several
benchmarks have been introduced. AgentBench (Liu et al.,
2023) assesses multi-step reasoning, memory retention, tool
use, task decomposition, and interactive problem-solving,
revealing that even top-performing models like GPT-4o and
Claude-3.5-Sonnet struggle with long-term context reten-
tion and autonomous decision-making. Expanding on these
limitations, MMAU (Yin et al., 2024) evaluates agent capa-
bilities across five domains—tool use, graph-based reason-
ing, data science, programming, and mathematics. Results
highlight persistent weaknesses in structured reasoning and
iterative refinement.

In software engineering, SWE-bench (Jimenez et al., 2023)
presents 2,294 real-world GitHub issues to evaluate LLMs’
ability to modify large codebases. By January 2025, the
best-performing agent has solved less than 65% of issues,
underscoring the challenges of multi-file reasoning and iter-
ative debugging. These benchmarks collectively highlight
LLM agents’ deficiencies in contextual understanding, struc-
tured planning, and domain-specific tool use, reinforcing
the need for specialized, clinically validated AI frameworks
in high-stakes applications such as medical imaging.

Beyond general-purpose benchmarks, MedAgentBench
(Jiang et al., 2025) assesses LLMs’ ability to retrieve pa-
tient data, interact with clinical tools, and execute structured
decision-making in interactive healthcare environments. Re-
sults indicate that even the best-performing model, GPT-4o,
achieves only 72% accuracy, with substantial performance
variability across different medical tasks.
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Figure 1. Architecture of MedRAX. The framework implements
a ReAct loop that processes user queries by integrating short-
term memory (LangChain) and specialized medical tools for vi-
sual QA (CheXagent (Chen et al., 2024b), LLaVA-Med (Li et al.,
2024b)), segmentation (MedSAM (Ma et al., 2024; Kirillov et al.,
2023; Ma et al., 2025), ChestX-Det (Lian et al., 2021; Zhao et al.,
2017)), grounding (Maira-2 (Bannur et al., 2024)), report genera-
tion (model trained on CheXpert Plus (Irvin et al., 2019; Chambon
et al., 2024)), classification (TorchXRayVision (Cohen et al., 2022;
2020)), and image generation (RoentGen (Chambon et al., 2022)).

AgentClinic (Schmidgall et al., 2024) offers a comprehen-
sive multimodal agent benchmark to evaluate AI in sim-
ulated clinical environments, emphasizing interactive dia-
logue and active data collection processes. These findings
reinforce the critical need for domain-specific benchmarks
and highlight that while progress has been made, current
medical agents still face significant challenges in tool inte-
gration, efficiency, and flexibility.

3. MedRAX
We present MedRAX, an open-source agent-based frame-
work that can dynamically reason, plan, and execute multi-
step CXR workflows. Compared to previous approaches
(Chen et al., 2024b; Bansal et al., 2024), MedRAX integrates
multimodal reasoning abilities with structured tool-based
decision-making, allowing real-time CXR interpretation
without unnecessary computational overhead. By balanc-
ing computational efficiency with domain specialization
and eliminating the need for retraining when incorporating
new tools, MedRAX offers greater adaptability to evolving
clinical needs. Our framework integrates heterogeneous
machine learning models—from lightweight classifiers to
large LMMs—specialized for diverse downstream tasks, al-
lowing it to decompose and solve complex medical queries
by reasoning across multiple analytical skills (Figure 1).

Algorithm 1 MedRAX ReAct Framework
Input:
Q: User query
I: Set of input CXR images (can be empty)
T : Available medical AI tools
M : Memory buffer
tmax: Maximum allowed time
Output:
R: Final response to query
Initialize:
tstart = GetCurrentTime()
state = Observe(Q, I,M)
while GetCurrentTime()− tstart < tmax do

thoughts = Reason(state,M)
if RequiresUserInput(thoughts) then

return GenerateUserPrompt(thoughts,M)
end if
if CanGenerateResponse(thoughts) then

return GenerateResponse(thoughts,M)
end if
tools = SelectTools(thoughts, T,M)
results = ExecuteParallel(tools, state)
M = M ∪ {(thoughts, tools, results)}
state = Observe(state, results,M)

end while
return GenerateTimeoutResponse(state,M)

3.1. LLM Driven Agent

MedRAX employs a LLM as the core to drive a ReAct
(Reasoning and Acting) loop, which breaks down complex
medical queries into sequential analytical steps (Yao et al.,
2023). The system processes a user query through iterative
cycles of (1) observation - analyzing the current state and
query, (2) thought - determining required actions, and (3) ac-
tion - executing relevant tools and integrating findings from
previous steps to inform subsequent reasoning. Through-
out this process, the system maintains a short-term memory
of user interactions, tool outputs, and images to support
multi-turn interactions. The reasoning loop continues until
the system either generates a response or asks the user for
additional input (Algorithm 1). Further details of the core
methodology are provided in Appendix A.

3.2. Flexible Tool Integration

MedRAX integrates state-of-the-art models for various
downstream CXR interpretation tasks:

• Visual Question Answering (VQA).
Answering free-form questions about CXR images by
combining visual understanding with medical knowledge.

Models: CheXagent, a vision-language foundation model
trained on CheXinstruct, with over 8.5M samples across
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35 tasks, capable of fine-grained visual reasoning and
CXR interpretation (Chen et al., 2024b).

LLava-Med, a biomedical 7B VLM, trained on 600K
biomedical image-caption pairs from PMC-15M and 60K
instruction-tuning data (Li et al., 2024b).

• Segmentation.
Partitioning CXR images into semantically meaningful
regions by assigning each region to anatomical structures.

Models: MedSAM, a state-of-the-art biomedical segmen-
tation model trained on 1,570,263 medical image-mask
pairs, covering 10 imaging modalities and over 30 cancer
types (Ma et al., 2024; 2025).

PSPNet model trained on ChestX-Det dataset, consisting
of 3,578 images from NIH ChestX-14, annotated with
13 common categories of diseases or abnormalities (Lian
et al., 2021; Zhao et al., 2017).

• Grounding.
Localizing specific visual regions in medical images that
correspond to given textual descriptions or findings.

Model: Maira-2, a 7B VLM trained on MIMIC-CXR,
PadChest, and USMix datasets, excellent in grounding
specific phrases or generating findings of a radiology
report with or without grounding (Bannur et al., 2024).

• Report Generation.
Writing radiology reports with findings and impressions.

Model: A SwinV2 Transformer with a two-layer BERT
decoder trained on 223K expert-annotated reports from
CheXpert Plus dataset to generate findings and impres-
sions (Irvin et al., 2019; Chambon et al., 2024).

• Disease Classification.
Detecting and classifying pathologies and abnormalities.

Model: A DenseNet-121 model from the TorchXRayVi-
sion library, trained on NIH ChestX-ray, CheXpert,
MIMIC-CXR, and PadChest datasets. It can predict 18
pathology classes including Pneumonia, Pneumothorax,
Edema, Effusion, and Nodule (Cohen et al., 2022; 2020).

• Chest X-ray Generation.
Synthesizing realistic CXR images from text descriptions
of anatomical features and pathologies.

Model: RoentGen, a medical vision-language model
adapted from Stable Diffusion, trained on the MIMIC-
CXR dataset, generates diverse, high-fidelity chest X-rays
given text prompts (Chambon et al., 2022).

• Utilities.
Processing DICOM images, generating custom plots, and
visualizing figures to user.

The agent continuously monitors tool outputs and errors,
incorporating these results into its reasoning loop to inform

Figure 2. MedRAX Interaction Flow. An example of how
MedRAX handles a multi-turn conversation through its ReAct
loop (<thought>, <action>, <observation>) along with tool out-
puts and final response. For clarity, the production interface shows
only tool outputs and agent responses.

subsequent tool selection. Through its memory, MedRAX
caches tool outputs to prevent redundant computations, op-
timizing performance in multi-step analyses that might ref-
erence the same intermediate results.

The framework supports parallel execution of independent
tools and flexible deployment configurations - tools can be
quantized for efficiency and distributed across CPU or GPU.
Figure 2 shows an example user interaction with MedRAX.

3.3. Modularity

MedRAX is built on the LangChain and LangGraph frame-
works. The reasoning engine can be any LLM, accommo-
dating both text-only and multimodal models, from open-
source to proprietary. This flexibility enables deployments
ranging from local installations to cloud-based solutions,
addressing diverse healthcare privacy requirements. Our
reference implementation uses GPT-4o with vision, while
supporting integration of alternative models.
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Each tool operates as an independent module with defined
loading and inference. Tools can be modified, replaced,
or repurposed for multiple tasks without affecting other
components. Integration of new tools requires only a class
definition specifying the tool’s input/output formats and
capabilities, with the LLM learning its usage without any
training. The framework decouples tool creation from agent
instantiation, enabling multiple agents to share tools and
allowing each to access its own customized set of tools.

3.4. User-friendly Interface

MedRAX includes a production-ready interface built with
Gradio that facilitates seamless deployment in clinical set-
tings. The interface supports uploading of radiological im-
ages in all standard formats, including DICOM, and main-
tains an interactive chat session for natural multi-turn inter-
actions. The interface further provides transparency into tool
execution by tracking and displaying intermediate outputs.
This end-to-end implementation enables quick integration
of MedRAX into existing clinical workflows.

4. ChestAgentBench
While MedRAX offers a powerful framework for complex
CXR interpretation, existing medical VQA benchmarks typ-
ically focus on simple, single-step reasoning tasks, mak-
ing them insufficient for evaluating its full capabilities. In
contrast, ChestAgentBench offers several distinctive advan-
tages:

• It represents one of the largest medical VQA benchmarks,
with 2,500 questions derived from expert-validated clini-
cal cases, each with comprehensive radiological findings,
detailed discussions, and multi-modal imaging data.

• The benchmark combines complex multi-step reasoning
assessment with a structured six-choice format, enabling
both rigorous evaluation of advanced reasoning capabili-
ties and straightforward, reproducible evaluation.

• The benchmark features diverse questions across seven
core competencies in CXR interpretation, requiring inte-
gration of multiple visual findings and reasoning to mirror
the complexity of real-world clinical decision-making.

4.1. Dataset

We utilize Eurorad, the largest peer-reviewed radiological
case report database maintained by the European Society of
Radiology (ESR). This database contains detailed clinical
cases consisting of patient histories, clinical presentations,
and multi-modal imaging findings. Each case includes de-
tailed radiological interpretations across different modalities,
complemented by in-depth discussions that connect findings
with clinical context, and concludes with reasoned interpre-
tations, differential diagnosis list and a final diagnoses.

From its chest imaging section, we curated 675 patient cases
with associated chest X-rays and complete clinical docu-
mentation. These cases cover 53 unique areas of interest
including lung, thorax, and mediastinum. Figure 3 provides
an overview of the benchmark, showing (a) the creation
pipeline, (b) patient gender distribution, (c) age distribution,
and (d) most frequent anatomical areas of interest. The
dataset encompasses diverse clinical settings and a broad
spectrum of pathologies, with detailed breakdowns provided
in Appendix B.

4.2. Benchmark Creation

ChestAgentBench comprises six-choice questions, each de-
signed to evaluate complex CXR interpretation capabilities.

We first established seven core competencies alongside rea-
soning that are essential for CXR interpretation:

• Detection: Identifying specific findings. (e.g., “Is there a
nodule present in the right upper lobe?”)

• Classification: Classifying specific findings. (e.g., “Is
this mass benign or malignant in appearance?”)

• Localization: Precise positioning of findings. (e.g., “In
which bronchopulmonary segment is the mass located?”)

• Comparison: Analyzing relative sizes and positions.
(e.g., “How has the pleural effusion volume changed com-
pared to prior imaging?”)

• Relationship: Understanding relationship of findings.
(e.g., “Does the mediastinal lymphadenopathy correlate
with the lung mass?”)

• Diagnosis: Interpreting findings for clinical decisions.
(e.g., “Given the CXR, what is the likely diagnosis?”)

• Characterization: Describing specific finding attributes.
(e.g., “What are the margins of the nodule - smooth, spic-
ulated, or irregular?”)

• Reasoning: Explaining medical rationale and thought.
(e.g., “Why do these findings suggest infectious rather
than malignant etiology?”)

These competencies are combined into five question types,
each designed to evaluate specific combinations of core
competencies while requiring medical reasoning:

• Detailed Finding Analysis: detection, localization, and
characterization

• Pattern Recognition & Relations: detection, classifica-
tion, and relationships

• Spatial Understanding: localization, comparison, and
relationships
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Figure 3. Overview of ChestAgentBench. (a) Benchmark creation pipeline that uses GPT-4o to generate 2,500 six-choice questions from
675 Eurorad clinical cases. (b) Gender distribution, showing 55.4% male, 44.1% female, and 0.45% unknown. (c) Age distribution, a
bimodal with a mean age of 46.0 years (SD=20.4, median=47.0 years). (d) Distribution of anatomical areas of interest across cases, with
lung (51.2%), thorax (42.8%), and mediastinum (15.8%) representing the most frequently examined regions from 53 unique areas.

• Clinical Decision Making: classification, comparison,
and diagnosis

• Diagnostic Characterization: classification, characteri-
zation, and diagnosis

For each clinical case and question type, we first prompted
GPT-4o to analyze the case and generate a six-choice ques-
tion that would best assess the target analytical skills of
that question type. We then instructed it to ensure the ques-
tion has the necessary context from the clinical case and its
correct answer could be explicitly verified from the case’s
radiological findings and discussion.

We performed automated quality verification using GPT-
4o to evaluate each question for: (1) structural consistency
(six-choice format with one correct answer), (2) explicit
grounding in the clinical and radiological context, and (3)
clear verifiability from the original Eurorad case material.
Questions failing these criteria were automatically excluded.

The benchmark uses a straightforward accuracy metric (per-
centage of correct answers) to enable easy evaluation across
different agent architectures. All questions underwent qual-
ity check, during which we removed questions that exhibited
issues such as ungrounded answers or missing information.

5. Experiments
5.1. Implementations

MedRAX uses GPT-4o as its backbone LLM, and we deploy
it on a single NVIDIA RTX 6000 GPU using the same con-
figuration as described in Section 3. It integrates CheXagent
(Chen et al., 2024b) and LLaVA-Med (Li et al., 2024b) for
visual QA, Maira-2 for grounding (Bannur et al., 2024), a
model trained on ChestX-Det for segmentation (Lian et al.,
2021), TorchXRayVision for classification (Cohen et al.,
2022), and a model trained on CheXpert Plus for report
generation (Chambon et al., 2024).

MedRAX implements tool execution with structured JSON
API calls, where the agent formulates precise requests with
required arguments (e.g., image paths, text prompts) to call
target tools. We evaluate all baseline models using their
official implementations and recommended configurations.

We process model responses using regex to extract letter
choices. For unclear responses, errors, or timeouts, we retry
up to three times. Responses that remain invalid or do not
choose a single choice are marked incorrect.
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Table 1. Model Performance on ChestAgentBench. Accuracy (%) of five vision-language models (LLaVA-Med (Li et al., 2024b),
CheXagent (Chen et al., 2024a), Llama-3.2-90B, GPT-4o, and MedRAX) compared across seven categories of our 2,500-question
benchmark. MedRAX significantly outperforms both general-purpose models and specialized biomedical models across all categories.

Categories LLaVA-Med CheXagent Llama-3.2-90B GPT-4o MedRAX

Detection 32.4 38.7 58.1 58.7 64.1
Classification 30.8 34.7 56.5 54.6 62.9
Localization 30.2 42.5 59.9 59.0 63.6
Comparison 30.6 38.5 57.5 55.5 61.8
Relationship 31.8 39.8 59.3 59.0 63.1
Diagnosis 29.3 33.5 55.9 52.6 62.5
Characterization 28.8 34.2 58.0 56.1 64.0

Overall 28.7 39.5 57.9 56.4 63.1

Table 2. Model Performance on CheXbench. Accuracy (%) of five vision-language models (LLaVA-Med (Li et al., 2024b), CheXagent
(Chen et al., 2024a), Llama-3.2-90B, GPT-4o, and MedRAX) compared on 238 Visual QA (Rad-Restruct and SLAKE) and 380
Image-Text Reasoning questions (OpenI). MedRAX excels in VQA while achieving the best overall performance.

Categories LLaVA-Med CheXagent Llama-3.2-90B GPT-4o MedRAX

Visual QA
Rad-Restruct 34.9 57.1 62.6 53.9 68.7
SLAKE 55.5 78.1 74.0 85.4 82.9

Fine-Grained Reasoning 45.8 59.0 49.2 51.1 52.6

Overall 45.4 64.7 61.9 63.5 68.1

5.2. Experimental Setup

We evaluate MedRAX against four core models: LLaVA-
Med, a finetuned LLaVA-13B model for biomedical vi-
sual question answering (Li et al., 2024b), CheXagent, a
Vicuna-13B VLM trained for CXR interpretation (Chen
et al., 2024b), along with GPT-4o and Llama-3.2-90B Vi-
sion as popular closed and open-source multimodal LLMs
respectively. Additionally, we compare against baseline
models from recent literature including RadFM (Wu et al.,
2023), a generalist foundation model for radiology, MAIRA-
1 (Hyland et al., 2024), a specialized multimodal model for
radiology report generation, LLaVA-Rad (Zambrano Chaves
et al., 2024), a radiology-adapted version of LLaVA, and
Med-PaLM M 84B (Tu et al., 2023), a large-scale biomed-
ical foundation model, with performance values obtained
from M4CXR paper (Park et al., 2024).

We evaluate models on four complementary benchmarks:

(1) ChestAgentBench, our proposed benchmark described
in Section 4, which assesses comprehensive CXR reasoning
through 2,500 six-choice questions across seven categories:
detection, classification, localization, comparison, relation-
ship, characterization, and diagnosis. Model performance is
measured by accuracy across all questions.

(2) CheXbench, a popular benchmark that evaluates seven
clinically-relevant CXR interpretation tasks. We specifically
focus on the visual question answering (238 questions from
Rad-Restruct (Pellegrini et al., 2023) and SLAKE (Liu et al.,
2021) datasets) and fine-grained image-text reasoning (380
questions from OpenI dataset) subsets, as they most closely
mirror complex clinical workflows that require precise dif-
ferentiation between similar findings.

(3) MIMIC-CXR Radiology Report Generation, which
evaluates single-image chest X-ray findings generation of
3,858 images from the MIMIC-CXR test set. This bench-
mark assesses clinical accuracy of generated reports using
micro-averaged F1 scores (mF1-14, mF1-5) and macro-
averaged F1 scores (MF1-14, MF1-5) for 14 medical ob-
servation labels and 5 key findings (cardiomegaly, edema,
consolidation, atelectasis, pleural effusion), respectively.

(4) SLAKE VQA, which evaluates medical visual ques-
tion answering using 114 chest X-ray test samples with
close-ended questions in English, filtered from the original
SLAKE test set of 2,094 samples. Performance is mea-
sured by accuracy (exact matches) and recall (proportion of
ground truth words present in generated responses).

For more information on preparation and evaluation on
benchmarks 3 and 4, see M4CXR paper (Park et al., 2024).
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Table 3. Single-image performance on MIMIC-CXR test set. Clinical accuracy (%) of generated radiology findings, evaluated using
CheXbert F1 scores for 14 medical observations. mF1-14/mF1-5: micro-averaged F1 scores for all 14/5 key labels (cardiomegaly, edema,
consolidation, atelectasis, pleural effusion); MF1-14/MF1-5: macro-averaged F1 scores for all 14/5 key labels. MedRAX is compared
with CheXagent (Chen et al., 2024b), MAIRA-1 (Hyland et al., 2024), LLaVA-Rad (Zambrano Chaves et al., 2024), Med-PaLM M 84B
(Tu et al., 2023), and M4CXR (Park et al., 2024). Performance values for baseline models obtained from Park et al. (Park et al., 2024).

Model mF1-14 mF1-5 MF1-14 MF1-5

Med-PaLM M 84B 53.6 57.9 39.8 51.6
CheXagent 39.3 41.2 24.7 34.5
MAIRA-1 55.7 56.0 38.6 47.7
LLaVA-Rad 57.3 57.4 39.5 47.7
M4CXR 60.6 61.8 40.0 49.5

MedRAX 79.1 64.9 34.2 48.2

Table 4. Medical VQA performance on SLAKE benchmark.
Accuracy (%) and recall (%) of vision-language models on 114
chest X-ray visual question answering samples with close-ended
English questions. MedRAX achieves state-of-the-art performance
compared to RadFM (Wu et al., 2023), CheXagent (Chen et al.,
2024b), and M4CXR (Park et al., 2024). Performance values for
baseline models obtained from Park et al. (Park et al., 2024).

Model Accuracy Recall

RadFM 68.4 69.7
CheXagent 71.1 73.2
M4CXR 85.1 86.0

MedRAX 90.35 91.23

5.3. Quantitative Analysis

ChestAgentBench. Shown in Table 1, MedRAX achieves
consistently state-of-the-art performance (63%) across all
seven categories, a significant improvement over the base-
line models. There is a clear performance hierarchy among
models, with GPT-4o (56.4%) and Llama-3.2-90B (57.9%)
performing notably better than specialized medical models
like CheXagent (39.5%) (Chen et al., 2024a) and LLaVA-
Med (28.7%) (Li et al., 2024b). Interestingly, general-
purpose VLMs outperform domain-specific ones across all
categories, with particularly large gaps in characterization
and diagnosis tasks.

CheXbench. Shown in Table 2, we observe distinct per-
formance patterns across different task types. On visual
QA tasks, MedRAX demonstrates strong performance on
Rad-Restruct (68.7%) and SLAKE (82.9%). This notably
surpasses both domain-specific CheXagent (57.1%, 78.1%)
(Chen et al., 2024a) and larger general-purpose models like
GPT-4o (53.9%, 85.4%), suggesting that our tool-based ap-
proach particularly excels at fine-grained visual understand-
ing. However, on image-text reasoning tasks, we observe a

significant performance drop across all models, with even
the best-performing CheXagent achieving only 59.0% accu-
racy, almost equal to random performance (50% baseline).

MIMIC-CXR Radiology Report Generation. Shown in
Table 3, MedRAX achieves the highest micro-averaged
F1 scores with mF1-14 of 79.1% and mF1-5 of 64.9%,
substantially outperforming the next-best M4CXR (60.6%,
61.8%) and other baselines. However, MedRAX shows
lower macro-averaged performance, with M4CXR achiev-
ing the highest MF1-14 of 40.0% and Med-PaLM M 84B
leading MF1-5 at 51.6%. This suggests MedRAX’s stronger
performance on more prevalent conditions.

SLAKE VQA. Shown in Table 4, MedRAX demonstrates
clear superiority in medical visual question answering,
achieving 90.35% accuracy and 91.23% recall. This repre-
sents significant improvements over M4CXR (85.1% accu-
racy, 86.0% recall) and CheXagent (71.1% accuracy, 73.2%
recall). The consistent performance gains across both met-
rics indicate MedRAX’s tool-based approach effectively
handles diverse medical VQA tasks while maintaining high
precision in response generation.

5.4. Case Studies

We present two representative cases that compare MedRAX
to GPT-4o (Figure 5.3).

Medical Device Identification (Eurorad Case 17576).
This question asks the model to determine the type of tube
present in the CXR. GPT-4o incorrectly suggests an endotra-
cheal tube based on the central positiong of the tube alone.
MedRAX, integrated findings from multiple tools like re-
port generation and visual QA, and correctly identifies a
chest tube despite one tool (LLaVA-Med (Li et al., 2024b))
suggesting otherwise. This demonstrates MedRAX’s abil-
ity to resolve conflicting tool outputs through systematic
reasoning.
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Figure 4. MedRAX and GPT-4o Case Study. (Case 17576) Correct answer is chest tube. GPT-4o incorrectly identifies as endotracheal
tube based on position, while MedRAX correctly identifies chest tube by integrating multiple tool outputs, even resolving conflicting tool
suggestions. (Case 16703) Correct answer is left pneumothorax. GPT-4o misdiagnoses as right-sided pneumonia/edema, while MedRAX
correctly identifies left pneumothorax through sequential tool application for disease detection and comparative lung analysis.

Multi-step Disease Diagnosis (Eurorad Case 16703).
This questions asks about diagnosing and comparing dis-
ease severity across lungs. GPT-4o misinterprets the
CXR as showing pneumonia with right lung predominance.
MedRAX, through sequential tool application of report gen-
eration for disease identification and segmentation for lung
opacity analysis, correctly determines left pneumothorax as
the main finding. This demonstrates MedRAX’s ability to
break down complex queries into targeted analytical steps.

6. Discussion
MedRAX achieves state-of-the-art performance in com-
plex CXR interpretation tasks, outperforming both general-
purpose and specialized medical models. We discover valu-
able insights about structured tool use in medical AI, sug-
gesting that a hybrid approach—leveraging both large-scale
reasoning capabilities and domain-specific expertise—offers
superior performance over purely end-to-end models.

Task Decomposition. MedRAX shows that the ReAct
loop dynamically composes complex reasoning chains while
maintaining computational efficiency. The performance gap
suggests that explicit decomposition provides advantages
that scale alone cannot achieve. The process produces clear
decision traces, enhancing transparency with implications
beyond medical imaging for model-tool integration.

Generalists Versus Specialists. A key insight is the
superior performance of general-purpose models (GPT-
4o, Llama-3.2-90B) over specialized medical models
(LLaVA-Med (Li et al., 2024b), CheXagent (Chen et al.,
2024a)). This suggests medical specialization may sacrifice
broader reasoning capabilities from large-scale pretraining.
MedRAX bridges this gap by integrating domain-specific
tools while maintaining generalist reasoning.

Limitations. While MedRAX excels in structured reason-
ing, it sometimes struggles with resolving contradictory tool
outputs, particularly in fine-grained visual tasks when classi-
fication and segmentation tools provide conflicting interpre-
tations. Additionally, the system’s computational overhead
from running multiple specialized tools can impact response
times compared to end-to-end models. The framework also
lacks robust uncertainty quantification mechanisms.

Future Work. Key areas for advancement include formally
analyzing optimal tool utilization balance, as neither full
reliance nor complete absence yielded best results. This
involves exploring trade-offs between accuracy gains and
computational costs, speed, error propagation, and spurious
correlations in pretrained models. Systematic investigation
of prompting techniques for critical tool evaluation is needed
to optimize LLM-tool interactions. Reinforcement learning
approaches could enhance reasoning capabilities and reduce
hallucinations, following advances in models like DeepSeek-
R1 (Guo et al., 2025). Comprehensive clinical validation
remains essential for establishing real-world utility.

7. Conclusion
MedRAX establishes a new benchmark in AI-driven CXR
interpretation by integrating structured tool orchestration
with large-scale reasoning. Our evaluation demonstrates its
superiority over both general-purpose and domain-specific
models, reinforcing the advantages of explicit stepwise rea-
soning in medical AI. These findings highlight the potential
of combining foundation models with specialized tools, a
principle applicable to broader healthcare domains. Future
work should focus on optimizing tool selection, uncertainty-
aware reasoning, and expanding capabilities to multimodal
medical imaging for greater clinical impact.
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Impact Statement
MedRAX aims to improve chest X-ray interpretation, en-
hancing diagnostic accuracy and efficiency as an AI co-pilot
designed to augment, not replace, clinical expertise. We
acknowledge AI risks, including model bias, hallucinations,
and data privacy, and emphasize the need for robust val-
idation before any clinical deployment to ensure patient
safety.

Our development utilized the de-identified Eurorad database,
and its use, along with ChestAgentBench creation, strictly
adheres to the CC BY-NC-SA 4.0 license; ChestAgentBench
will be released under the same terms. To address data
privacy, especially for datasets like MIMIC-CXR requiring
stricter handling, we employed the Azure OpenAI Service
configured to opt-out of data logging, following Physionet
recommendations.

MedRAX also supports local LLM deployment for max-
imum data control. Our public code release will include
guidelines for these privacy-preserving configurations, un-
derscoring our commitment to responsible AI integration in
healthcare.
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A. MedRAX Core Methodology
This appendix provides detailed exposition of Algorithm 1, which forms the core operational framework of MedRAX. The
algorithm implements a ReAct (Reasoning and Acting) loop that enables dynamic tool orchestration for complex CXR
interpretation tasks through iterative cycles of reasoning, acting, and observing.

A.1. The ReAct Cycle: Foundational Concept

MedRAX operates on a cyclical Reason-Act (ReAct) principle, distinguishing it from traditional one-shot input-output
models. The agent iterates through three core phases:

• Reason: Analyze the current situation (user query, conversation history, previous results) and decide on the next step

• Act: If necessary, perform an action, typically using a specialized tool to gather more information or perform a specific
task

• Observe: Incorporate the results of the action back into its understanding of the situation and repeat the cycle

This iterative process enables the agent to tackle complex problems requiring multiple steps or external information sources,
such as analyzing CXRs using various diagnostic tools sequentially or in parallel.

A.2. Essential Components and Architecture

MedRAX relies on four interconnected components to execute the ReAct cycle:

A.2.1. CORE REASONING ENGINE (LLM)

A powerful multimodal Large Language Model (e.g., GPT-4o) capable of understanding text, images, and crucially, using
tools. The LLM performs the ”Reason” step by analyzing the situation and deciding whether to answer directly or request
tool execution. The chosen LLM must demonstrate proven multimodal understanding and reliable tool-calling adherence.

MedRAX employs the following system prompt to guide the reasoning engine:

You are an expert medical AI assistant who can answer any medical questions and analyze medical images similar
to a doctor. Solve using your own vision and reasoning and use tools to complement your reasoning. Make
multiple tool calls in parallel or sequence as needed for comprehensive answers. Critically think about and
criticize the tool outputs. If you need to look up some information before asking a follow up question, you are
allowed to do that.

A.2.2. SPECIALIZED TOOLBOX

A collection of pre-trained AI models for specific CXR tasks including classification, segmentation, VQA, grounding, and
report generation. The framework encapsulates each specialized model in a software interface that enables LLM interaction
through standardized tool wrappers.

Tool Interface (Wrappers): Each tool wrapper defines four critical components:

• name: A unique identifier (e.g., ”cxr classifier”)

• description: A natural language explanation detailing what the tool does, its inputs, and outputs (e.g., ”Takes a CXR
image reference and returns likely pathologies and their probabilities”). This description acts as implicit prompting,
guiding the LLM on when to use the tool

• input schema: A structured definition of required inputs (e.g., image identifier)

• execution logic: Code to run the tool with given inputs and return results

The description field within each wrapper is paramount—it serves as the primary mechanism for the LLM to understand tool
capabilities and appropriate usage contexts. Detailed tool descriptions used by MedRAX to understand utility and calling
procedures are available in our public GitHub repository.
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A.2.3. WORKFLOW ORCHESTRATOR

Manages the overall ReAct cycle, directing information flow between the LLM, Toolbox, and Memory. Key functions
include:

• Calling the LLM for the ”Reason” step

• Parsing LLM responses to check for tool requests

• Calling appropriate tools from the Toolbox for the ”Act” step

• Updating Memory with LLM responses and tool results

• Deciding when the cycle is complete

A.2.4. AGENT MEMORY (STATE)

Stores the complete interaction history as a sequence of structured messages including user input, LLM thoughts/responses,
and tool results. The memory provides necessary context for LLM reasoning at each step, ensuring the agent ”remembers”
previous findings and interactions throughout multi-turn conversations.

A.3. Detailed Algorithm Execution Flow

A.3.1. STEP 0: INITIALIZATION AND STATE PREPARATION

The Observe(Q, I, M) function consolidates three critical information sources: the user query (Q), input CXR images
(I), and the agent’s memory buffer (M ). The predefined system prompt is loaded to establish the agent’s role and reasoning
approach.

Image data is represented within Memory/Messages using URIs, IDs, or embedded data like base64. The chosen LLM must
process these image representations alongside text, while tool wrappers operating on images must access image data based
on references passed in their arguments.

A.3.2. STEP 1: LLM-DRIVEN REASONING PROCESS

Prompt Construction: The Orchestrator prepares comprehensive input for the LLM including:

• The system prompt defining the agent’s role and approach

• The entire message history from Memory, formatted chronologically

• Tool definitions: name, description, and input schema for all available tools, formatted according to the LLM provider’s
API requirements

LLM Decision Process: The Reason(state, M) function generates structured thoughts through comprehensive
analysis. The LLM’s decision to respond directly or use tools stems from training on vast datasets including instruction
following and tool-use examples, combined with specific context. The LLM analyzes:

• Whether current message history and internal knowledge sufficiently answer the query according to system prompt
instructions

• Available tools (via descriptions) to determine if any tool can provide more accurate or efficient information than internal
knowledge (e.g., precise classification probabilities, segmenting specific regions)

• Whether to ask clarifying questions if the query is ambiguous or lacks information

Response Generation: Based on its decision, the LLM can:

• Answer/Clarify Directly: Generate only text response (final answer or clarifying question back to user)

• Use Tools: Generate structured Tool Call Request(s), potentially requesting multiple different tools or the same tool
multiple times with different arguments for parallel information gathering
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A.3.3. STEP 2: CONDITIONAL DECISION MAKING

The Orchestrator examines the LLM’s response to determine the next action:

User Input Requirements: The RequiresUserInput(thoughts) condition is implicitly evaluated during rea-
soning. When the LLM’s thoughts indicate ambiguity or insufficient information that cannot be resolved by tools,
GenerateUserPrompt(thoughts, M) formulates a natural language question based on its thoughts and context in
memory to elicit needed information.

Tool Execution Path: If Tool Call Requests are present, the system proceeds to tool execution. If absent, the system routes
to response generation where the LLM synthesizes the final answer.

A.3.4. STEP 3: DYNAMIC TOOL SELECTION AND EXECUTION

Tool Processing: The SelectTools(thoughts, T, M) and ExecuteParallel(tools, state) functions
handle each Tool Call Request by processing them potentially concurrently if designed for parallelism:

• Identify Tool: Look up requested tool name in Toolbox to find corresponding Tool Wrapper object/class

• Validate & Extract Arguments: Parse arguments dictionary provided by LLM for that specific call, checking if
arguments match the tool’s defined input schema. If validation fails, an error is generated

• Invoke Tool: If arguments are valid, call the specific execution function/method within the Tool Wrapper, which contains
actual code to interact with the specialized model (load model, preprocess input, run inference, postprocess output)

• Receive Result: Capture return value from tool’s execution logic (typically string or structured JSON data representing
findings or error message if execution failed)

• Format Result: Package result into structured Tool Result Message including result content and unique ID corresponding
to the Tool Call Request

The system supports parallel execution of independent tools while providing flexible deployment configurations—tools can
be quantized for efficiency and distributed across CPU or GPU resources.

A.3.5. STEP 4: MEMORY MANAGEMENT AND LOOP CONTROL

Memory Update: The operation M = M ∪ {(thoughts, tools, results)} maintains comprehensive records of the agent’s
reasoning process. This critical step logs the LLM’s thoughts that led to tool calls, the identity of tools used, and results
obtained. This persistent memory serves multiple functions:

• Provides context for subsequent reasoning cycles

• Enables reference to previous findings when synthesizing complex analyses

• Supports multi-turn conversations by preserving interaction history

• Caches tool outputs to prevent redundant computations in multi-step analyses that might reference the same intermediate
results

Loop Control: If coming from tool execution, the system loops back to Step 1 (Reasoning) where the LLM receives updated
Memory including Tool Result Messages. The LLM can now observe and rethink, processing tool outputs by:

• Synthesizing tool results with previous context

• Correcting understanding if tools returned unexpected information

• Deciding if more reasoning or different tool calls are needed

• Formulating final answers based on gathered evidence

When CanGenerateResponse(thoughts) evaluates to true, the LLM synthesizes the final response drawing upon
concluding thoughts and information in memory.
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A.4. Error Handling and Robustness Mechanisms

MedRAX incorporates several critical mechanisms to ensure robust operation:

Timeout Management: The tmax parameter enforces maximum execution time, preventing indefinite loops while allowing
sufficient time for complex multi-step analyses via GenerateTimeoutResponse(state, M).

Tool Failure Recovery: When tool execution fails, error messages are formatted as Tool Result Messages clearly indicating
the error. When the flow loops back to reasoning, the LLM sees this error message and can decide how to proceed based on
its instructions (e.g., try different tool, ask user for clarification, inform user of limitations).

A.5. Implementation Architecture

Node and Edge Structure: The workflow orchestrator is implemented using libraries like LangGraph that provide structures
for state machine implementation:

• Nodes (Processing Steps): Python functions or class methods representing processing steps (ReasoningStep, ActionStep).
Each function accepts current agent Memory/State object as input, performs specific logic, and returns dictionary
containing updates to Memory/State

• Standard Edges: Unconditional transitions configured by stating flow between nodes

• Conditional Edges: Decision points implemented with routing functions that take current Memory/State as input, apply
logic, and return string indicating next node name to execute

This comprehensive methodology establishes MedRAX as a flexible, robust, and transparent framework for AI-assisted
CXR interpretation, capable of dynamic adaptation to diverse clinical scenarios while maintaining clear decision traces
throughout the reasoning process.

B. ChestAgentBench: Comprehensive Benchmark Statistics
B.1. Clinical Setting Distribution

Table 5. Complete Distribution of various Chest X-ray Findings in
ChestAgentBench (Frequency % across 675 clinical cases)

Finding (%) Finding (%)

Mass 26.3 Interstitial findings 6.9
Effusion 24.6 Bronchiectasis 5.9
Pleural Effusion 21.5 Atelectasis 4.9
Consolidation 21.3 Fibrosis 4.1
Nodule 17.2 Edema 3.9
Calcification 10.7 Cavitation 3.9
Pneumothorax 7.6 Fracture 3.0
Lymphadenopathy 7.6 Tuberculosis 2.6
Pneumonia 7.2 Metastasis 2.6
Emphysema 7.1 Cardiomegaly 1.5

ChestAgentBench’s 675 cases represent diverse clinical
environments:

• Emergency Room (ER): 19.7% (133 cases)

• Intensive Care Unit (ICU): 4.9% (33 cases)

• Other hospital settings: 75.4% (509 cases)

B.2. Pathology Distribution

The benchmark encompasses 20 distinct pathological find-
ings with frequencies ranging from 26.3% (Mass) to 1.5%
(Cardiomegaly), as detailed in Table 5. This distribution
reflects real-world clinical prevalence patterns, with struc-
tural abnormalities (masses, nodules) and fluid collections
(effusions) representing the most common findings, while
cardiac and infectious conditions appear less frequently.
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