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1. Introduction 
    The integration of density functional theory (DFT) 
with dynamic modeling has led to a framework 
where the adsorption energies of intermediates in 
complex catalytic reactions are interconnected via 
scaling relations[1–4]. When the microscopic kinetic 
equilibrium of the reaction is taken into account, 
these scaling relations emerge as volcano plots[1,5,6]. 
Since the introduction of volcano plots, the rational 
design of catalysts has primarily focused on 
identifying the peak of the volcano, which 
corresponds to optimal catalytic activity, and 
understanding how this activity is influenced by the 
adsorption energies of intermediates[2–4,7]. As a result, 
the ideal characteristic for optimal catalytic materials 
has been defined as the adsorption strength of key 
intermediates, which should be neither too strong 
nor too weak[8,9]. However, this paradigm has 
imposed limitations on the discovery of catalysts with 
superior activity and selectivity[4,10–15]. Consequently, 
overcoming the constraints of traditional empirical 
design strategies to develop catalysts with enhanced 
efficiency and selectivity has become essential for 
advancing catalysis and addressing critical energy 
and environmental challenges[16–18]. 
    A promising approach to overcoming these 
limitations involves increasing the configurational 
complexity of catalyst surfaces, such as through the 
development of high-entropy materials, which create 
diverse active sites that facilitate the rapid migration 
and transformation of intermediates, thus breaking 
linear scaling relations[3,4]. However, increasing 
configurational complexity leads to exponential 
growth in both the design space and the 
computational complexity of first-principles 
calculations, which significantly hinders rational 
design efforts. To address this challenge, we propose 
a novel artificial intelligence (AI) framework based 
on topological intelligence, which aims to alleviate 
the computational bottlenecks inherent in first-
principles methods. This framework offers intelligent 
support for the rational development and 
optimization of high-dimensional, complex catalytic 
systems, while also facilitating the mechanistic 
interpretation of catalytic reactions. Ultimately, this 
approach holds promise for advancing the 
application of high-entropy alloys in environmental 
remediation. 
 
2. Substantial section 
    The proposed framework utilizes three equivariant 
encoders[19–22], which are pre-trained through self-
supervised learning[23–26], to capture the geometric 
structural information of the adsorbates, the bulk 
catalyst, and the conjugated catalyst-adsorbate 
surface, respectively. These three encodings interact 
through a ternary attention block, simulating the 
adsorbate-catalyst binding process, and ultimately 
produce a fused encoding that combines weighted 
contributions from different components of the 

catalytic system. This fused encoding is then fed into 
a feedforward neural network, where the model is 
trained using the adsorption energies derived from 
first-principles calculations as the training labels. 
Through this approach, the model effectively learns 
the structure-activity relationships between the 
microscopic structure of the catalytic system and its 
adsorption energies. 
 

 
 

Fig. 1: Illustration of the Topological Intelligence Network  
 

    The modular design of the framework is 
particularly innovative, as it allows for controlled 
fine-tuning of the three pre-trained encoders, 
facilitating effective knowledge transfer from 
established material databases to data-scarce 
scenarios, such as high-entropy material systems. 
This strategy mitigates the risk of catastrophic 
forgetting and improves the model's predictive 
accuracy in low-data environments. Although certain 
aspects of the research are still ongoing, we have 
already optimized the screening process for several 
potential catalytic materials using this AI framework. 
For instance, the framework achieves a mean 
absolute error (MAE) of 0.06 eV when predicting the 
adsorption energies of oxygen species (O, OH, OOH) 
on high-entropy alloy surfaces. 
    We anticipate that this framework will not only 
accelerate the screening of heterogeneous 
environmental catalysts but will also leverage the 
attention mechanisms to analyze the interactions 
between catalyst surface sites and reactants. This 
capability will enable automated mechanistic 
interpretation across various catalytic systems, 
providing valuable insights for the rational design of 
catalysts. In the future, we plan to synthesize and 
experimentally validate the high-entropy alloy 
candidates identified by this framework to assess 
their performance in real-world environmental 
remediation applications. 
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