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ABSTRACT

This paper introduces a novel theoretical framework to understand how diffusion
models can learn disentangled representations under the assumption of an L2 score
approximation. We also provide sufficient conditions under which such repre-
sentations are beneficial for domain adaptation. Our theory offers new insights
into how existing diffusion models disentangle latent variables across general dis-
tributions and suggests strategies to enhance their disentanglement capabilities.
To validate our theory, we perform experiments using both synthetic data gen-
erated from latent subspace models and real speech data for non-parallel voice
conversion - a canonical disentanglement problem. Across various classification
tasks, we found voice conversion-based adaptation methods achieve significant
improvements in classification accuracy, demonstrating their effectiveness as do-
main adaptors. Code will be released upon acceptance.

1 INTRODUCTION

Diffusion models (DMs) |[Sohl-Dickstein et al.[(2015); |Song & Ermon! (2019); Ho et al.| (2020) are
generative models capable of approximating probability distributions by learning noisy versions of
their gradients. While such approaches enjoy both empirical successes (e.g., [Ramesh et al.| (2022)
and theoretical guarantees |Chen et al.| (2023b)); |Pabbaraju et al.| (2023), they tend to represent the
latent structure of the underlying distribution implicitly. However, in learning tasks such as control-
lable generation, it is useful to represent the task-specific latent structure explicitly in the generative
model to reflect the inductive biases of the problems. One approach, known as conditional dif-
fusion models (CDMs), achieves this goal with DMs by labeling such variables and conditioning
the model on these labels [Wu et al.| (2023)); Yang et al.| (2023)); Hudson et al.| (2024). However, it
remains unclear whether and when CDMs can learn an explicit representation that captures the con-
ditional dependency relations between the variables, especially when some of them are unlabeled.
For example, for (approximately) independent latent variables, it is desirable to have a disentangled
representation with decomposable parts for each variable. Learning such a representation is called
disentanglement. An intriguing theoretical question then arises: what are the fundamental limits for
CDMs to learn disentangled representations? A theory capable of answering this question can po-
tentially lead to more powerful, compositional generative models for a wider range of applications.

To answer the question, we focus on one canonical example of the disentanglement problem —
voice conversion (VC) with non-parallel speech recordings. The choice is justified on three grounds.
First, the task involves a simple latent variable model but captures the essence of the disentanglement
problem. Second, it is practically useful, as many speech data, such as those from underrepresented
minorities and subjects with speech impairments, have neither paired target speech nor reliable
transcripts for a fully supervised VC. Given only unpaired utterances with speaker identity labels
for training, VC tries to change the identity of the source speech to that of the target speech, without
modifying other content during inference. To generalize from source-source conversion to source-
target conversion, the model has to learn a representation that disentangles the “content” variable
from the “speaker” variable in the speech signal during training. Lastly, DM-based VC models
(DMVC) have recently revolutionalized the field of VC [Popov et al.| (2022); |(Chot et al.| (2023);
Seed Teaml (2024) and provided new opportunities for generating realistic synthetic data for speech
classification tasks. However it is not fully understood how such models perform disentanglement
and improve downstream performance of speech classification systems.
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The main contribution of this paper is twofold. First, we develop a novel information-theoretic
description of the mechanisms behind DM-based disentanglement under a L? score approximation
assumption, and prove the benefits of using multiple imperfectly disentangled representation to im-
prove downstream classification tasks. Further, we validate our theory empirically by conducting
classification experiments under domain shift on both synthetic and realistic speech classification
datasets.

2 DIFFUSION-BASED CONTENT-SPEAKER DISENTANGLEMENT

We will use the intuitive terms of voice conversion to describe the general disentanglement problem.
In the content-speaker disentanglement problem, a learner is given a noisy speech signal X ~ ¢,
which is a function of three random variables Z, GG and =:

X = ¢(Z,G,2). (1)

The variable Z ~ q is the content of the speech that the learner would like to extract for a down-
stream classification task Y, such as emotion recognition. Further, G ~ -y is the speaker identity of
the speech, which is observable by the learner but contains little information to the downstream task
label Y. Finally, = is the hidden noise independent of Z and G that sets the limit on how well X
can predict Z and G. More precisely, we make the following independence assumptions.

Assumption 1. The generative process in Equation[I|possesses the following statistical properties:

1. Disentanglement: Z Il G;
2. Conditional disentanglement: Y — Z — X — G forms a Markov chain;
3. Bounded predictivity: 1(Z, G; X) < h(X) + e, — 1 log(2me)?ey, for some e, > 0.

The task of disentanglement is then to recover Z given X and G.

One way to approximate Equation [I] as done in the latest diffusion model-based VC systems, is
based on score matching |Song & Ermon| (2019). Given some training speech features X ~ ¢, =:
o0 and some auxiliary variables A = a(X) for some function a that contains mostly content infor-
mation, such as the average spectrogram in the DiffVC system [Popov et al.| (2022), and the speaker
feature G, a diffusion-based voice converter tries to learn do () by approximating its gradients dur-
ing training by a two-stage process. In the noising step, the model injects noise into the input speech
following a Markov random process { B }1c[0,77 ~ QJo,77:

dX, = f(X;7, A, 0)dt + v(t)dBy, Xo ~ Ga0s 2)

for some parameter-free functions f and v, wehe we will set process for better comparison with
prior works [Chen et al.| (2023bfa). Denote ¢, + as the distribution of X; and X~ := Xp_; and

Gy = g(X <) as the noisy speaker embeddings at time ¢, such as those from a speaker verification
system. In the denoising step, the model learns to recover the clean speech features from the noisy
features X7 and the auxiliary variable A by simulating the reverse process:

dX; = (f(Xf, A t) +v(T —)*V, log qT_t(Xf\A)) dt + v(T — t)dBs, X5 ~ a7 (3)

For the denoising step, the model learns a score function s : [0,T] x X x G — R to minimize the
score matching objective:

Linaen (8, 6) = Ev .., [|50(26,0(X0), Go, A,t) = Vi 10g ga o (X A%, 4)

where z4 (X)) =: 2,(Xy) =: Z, is some bottleneck representation aiming to keep only the content
information of X;. While in practice the gradients V log ¢, + are not available to the model, the
objective can be approximated using conditional score matching with V, log qq ¢ (2¢|70)’s:

2

Lematen (0, 8) = Er g, o Eq. o |[56(Ze, Gr, A t) + (X — Xo) (5)

1
o2(0)
for some time-dependent variance o (t) depending on the noising schedule. In our analysis, we found
that another related loss may be needed to reduce bias in the model during inference similar to the
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rectified flow technique [Liu et al.| (2023b)), where we minimize the score matching objective using
generated trajectory:

~ N N 2
Lrematch (07 ¢) = Et,éa,o SO(Zt; Gta A7 t) - Va: IOg QQ,t|O(X7<“_7t|A) H s (6)

where the generated trajectory follows the SDE

dX; = (f(f(;—, A t) + (T — t)2s9(Zs, G, A, t)) dt + (T — t)dBy, X& = Xp.  (7)

The overall training objective of the model is then

L(H, ¢) = Lcmatch(aa d)) + Lrematch(aa ¢) ®

During inference, the VC takes as input the source speech X! ~ ¢z o and the target speech X2 ~
qp,0 with a speaker embedding G2, and generates converted speech X172 =: X2 via

dth = _f(th7 A7t) + V(t)dBt7 XO ~ qﬂ’07 (9)
dXtQ(_l = (f(Xt%_lvAaT - t) + V(T - t)ZSé(t, ét(Xtm_l)a ét27A)dt + V(T - t)dB;_7 X(%_l = X711
(10)

One intriguing aspect of DMVC is that unlike in the AEVC |Qian et al.| (2019), there is more than
one bottleneck variable involved during inference in Equation [9] namely, the time-dependent X
and the time-independent A. Further, the noise contained in Xt is task-independent and does not
fully remove the speaker information in general. Nevertheless, we argue that combining X7 and A
indeed constrains the information flow, since the reverse process itself can constrain the information
flow due to both the constrained class of score function in each time step. To make the notion more
precise, we propose the following definition of implicit bottleneck.

Definition 1. For any score function with reverse process { X~ }(o 1, the function ¢ : Xjg 1) — R
is an implicit bottleneck at time ¢ if there exists functions v : G X R?oxt] — R% andn : R% x R%
R such that

X7 =n(0(X5),7(G<t, BS)). (11)

Further, define (* := ( (X £4+) to be an implicit bottleneck variable, where t* is the largest time step
t such that there exists an implicit bottleneck at time t.

One way to design implicit bottleneck is to decompose the score function as
s0(Ze, G, A,t) =2 5 (2, A1) + 5 (G 1), (12)
Plugging this into Equation[7] the reverse SDE yields

t R R t . t
X =X5 +/ (F(X5,7) +v(T - 7)25§(ZT,T))dT+/ V(T —7)%s5 (G, T)dt +/ v(T — 7)dB, .
0 0 0

=1C(X(<_t =1’Y(G<t7B(<_t)

Using the implicit bottleneck, the converted speech features generated by the diffusion model-based
VC are then

X7 = p(C(X 24 ), G(XE), B9 =1 b (¢, GP BV ~ Gxan (), Ya, b € {1,2}. (13)

for some 1) deterministic function and independent random noise =,_,;’s introduced by the noising
process.

2.1 GENERAL CASE

To facilitate analysis, we would need the following definitions and assumptions.
Definition 2. Two variables X andY are e-disentangled if there exists € > 0 such that [(X;Y) < e.
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Definition 3. A VC is e-semantically matched if the target speech X2 and the converted speech
X172 obey max,cz dTV(QXl—’Q\leza QXQ\ZQ:z) <e.

Assumption 2. The following holds for the diffusion process in Equation[3|and the score matching
model trained with Equation 5}

1. There exists an implicit bottleneck variable * such that
(¢ X) < I(Z; X) + ez, (14)
where t* is the largest time step t such that there exists an implicit bottleneck at time t.

2. The speaker embedding representation G and the true speaker representation G satisfy
max{[|G — Gllz, [1(G; X) ~ I(G; X)|} < ec (15)
3. The constrained score function is able to approximate the true score function up to an

error:

nt;id)n Lcmatch(ev (b) + chmatch (97 (rb) = L* S chore' (16)

4. The content variable Z and the speaker variable G are ep-disentangled given the implicit
bottleneck C*:

I(Z;GI¢") < e (17)

5. Both the content pz and speaker distributions o, 3 have bounded support, and the speaker
distribution is isotropic.

6. The speech feature distribution g o has bounded second moment.

7. The true score function is Lipschitz in x, and the estimated score function s¢(z, g, a,t) is
Cscore-Lipschitz in t, z and g.

We are now ready to state the main result of this part.

Theorem 1. IfAssumptionhold, and f( X, Ajt) = @(u(/l, t)— X,) for some parameter-free
Sfunction p, then (* and Garee p-disentangled and the diffusion VC is O (/€ +€score ) -Semantically
matched for ep = O(ey, + €z + €q + log W) and ep; = O(y/er + €p).

Item 4 in Assumption [2] may seem artificial at first glance, but we provide a failure example in
Appendix [D]to show that it is indeed necessary to preserve the content of the source speech. Further,
without item 4, we prove a weaker version of Theorem [I]in Appendix

2.2 SPECIAL CASE: LINEAR SUBSPACE MODEL

One scenario our theory can be applied to is the latent subspace model (LSM), previously adopted
by classical speaker representation methods such as the i-vector model |Dehak et al.|(2011)) and held
approximately true for various self-supervised speech representations [Liu et al.| (2023a)).

Definition 4. A latent subspace model is the following generative process:

Z~pz, G, X = Az7 + AgG, (18)
where Ay € Rix*1z A, € R4xXX4s gre orthogonal matrices and the subspaces for the content
and speaker are orthogonal and span the whole space, i.e., R(Az)* = R(Ag) withdz +dg = dx,

where R(A) is the column space of matrix A. Further, let X; be the noisy feature variable at time t
of the diffusion process and define Zy := AL Xy, Gy = AL X;.

For LSM, we will prove that the model is able to learn a disentangles representation without any
auxiliary labels. To this end, we consider the following regularized score matching loss with a
decomposable score function as in Equation [I2}

Lmatch(9Z7 9G7 U) U/) V) = Et,qa,t ||USQZ (UITXt) + VSHG (Gt) - V:D log Qa,t(Xt) “%7 (19)
Lieg(06, V) := Ei g, , |Vs05 (Gt) = Vi 10g ga,t (Xo) 3, (20)
Z/match(0Z7 er U7 prOjOUa V) = Lmatch(HZa 903 U7 projOU7 V) + )‘Lreg(eG; V); (2])
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for some weighting A > 0, where U € R¥x*dv '/ ¢ Rixxde proj, . denotes the projection onto
set M and O is the Stiefel manifold of size d.
Further, we need the following assumption of the subspace score functions.

Assumption 3. The operator norms of the covariance of the content and speaker score functions
obey miIlUEo{”Et’qa’tvUTl. longTXt (UTXt)vUT_,L. longTXf, (UT)(t)T ||0p} = )\min > O

We show that the objective Equation [21|of LSM recovers the true content and speaker subspaces.
Theorem 2. For the linear subspace model {| and the objective in Equation and suppose dy <
dz, then any minimizer (U*,V*) of Equation[2|satsify R(U*) = R(Az) and R(V*) = R(Ag).
Remark 1. Assumption[3|is mild and similar assumption has been made in|Chen et al| (2023al).

Remark 2. L., is a novel regularizer that could lead to new disentanglement algorithms with
better convergence properties.

Remark 3. To learn the LSM, one can use an analogous simplified U-net architecture proposed in
Chen et al.|(2023a)), as done in our synthetic experiments.

Further, we analyze the training dynamics of gradient-based methods for LSM disentanglement by
considering the following system of gradient flow equations:
V = —Vy Lieg(05, V), (22)
U = =VuLmawen (07, 05, U, sg(projoU), V), 23)
where sg:. = V,log ay(Gy), Spy = VyT.logpyrx, and & denote the time derivative during the

gradient flow, sg denotes the stop-gradient operation, and & denotes a stationary point of the gradient
flow for &. The following theorem on the training dynamics requires an additional assumption.

Assumption 4. For nonzero any matrix U € O such that R(U) N R(Agz) # 0,

Bt V=logpz,(Z) Vi, logpyrx, (U X)) op > 0.
Theorem 3. Suppose glU < dz, the system of gradient flow equations in Equation converges
to a stationary point (U, V') such that R(U) = R(Az), R(V) = R(Ag).

Remark 4. Equation require access to a score function oracle along subspaces, which can be
learned using gradient-based methods up to small error for distributions such as GMM |Shah et al.
(2023). Analysis with noisy score estimation will be left as future work.

Remark 5. Once the content subspace U is learned using the unconditional score function, a
O(\/€rr + €score)-semantically matched VC can be obtained by training another conditional score

Sfunction A := UT Xg as auxiliary label, as guaranteed by Theorem

3  DOMAIN ADAPTATION USING IMPERFECTLY DISENTANGLED
REPRESENTATIONS

Learning a disentangled representation is especially beneficial for downstream tasks where there
is a domain mismatch in the speaker variable G during training and testing. This is a common
scenario in speech classification tasks such paralinguistic classification, where due to data scarcity,
the subjects used during training of the classifier never overlap with those in actual deployment of
the classifier. In other words, given speech features (X1,Y7),- - , (X, Y, ) paired with multi-class
labels Y7, - - - , Y}, where each recording-label pair (X, Y;) is sampled as follows:

1. Sample the content Z; ~ qz;
2. Sample the speaker G; ~ « and noise =; so that X; = ¢(Z;, G;, E;);
3. Sample a label Y; ~ gy |x=x,-

During inference, the recording-label pairs are sampled from the same type of process but with

a different speaker distribution § # «. A multi-class classifier A : X — {1,---,|)|} is then
evaluated using the zero-one loss defined as:
Lp(h) :==Ex y)~p, HR(X) # Y], 24
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where Ps(x,y) = q3(2)qy|x=2(y). We are particularly interested in how well the predictor gener-
alizes to unknown speaker distribution, or the loss during inference where X’ ~ ¢g.

To perform speech classification using voice-converted speech, we propose a simple adapt-and-vote
scheme. In the adaptation step, we first use a zero-shot VC system to convert the original speech
corpus to multiple approximate single-speaker corpora with a random target speaker embedding
from some sub-gaussian distribution p:

X1 = 9(C(X),G,E) ~ ¢, X ~qy, G ~op, (XTCY) ~ PC 25)
To simplify notations, we will omit the dependence on v when the context is clear. Next, we train a
single-speaker, multi-class classifier on the converted training set as f(x) € arg min ren Lpa(f)-

Further, let fG(y|:E) be the estimated posterior probability of the model, and let f¢ gy\X ) =
Exc[fC(y|X9)|X], f¢(X) = arg max, FC(y| X) be the conditional expectaction of f&(y|X)
given the original speech.

When the VC system achieves perfect disentanglement, by Theorem I}
drv(Py, P§) < Bgy drv(axeciz, ax0.0)2) % 0, Lpg (f9) = Lpe (f©) ~ min Lpg (h).

However, in reality, converted speech from the VC suffers from target speaker-dependent distortions
and fails to fully close the train-test domain gap. We introduce the notion of speaker distortion
defined as follows to quantitatively describes this effect.

Definition 5. A random single-speaker classifier Y9 ~ f9'(:|X) is (k1, ko)-speaker distorted if
forallz € X and g € G, Dy, (£ (1) |£2(12)) > malg’ — g5

To cope with the distortion issue, we propose an additional majority voting step using predictions
from the single-speaker classifiers. We consider both the hard voting scheme and the soft voting

scheme:
hard soft

aard(x) = arg mngGNp]l[fG(x) =y, folt(z) ;= arg méiXEGprG(yM). (26)
Note that the soft voting scheme is a generalization to the hard voting scheme considered in the the-
ory[Theisen et al.[(2023), where they simply set f¢(y|z) = 1[f%(x) # y]. The soft majority voting
scheme is also more widely used in deep ensemble methods based on random initialization |Abe
et al.| (2022)). Therefore, we will focus our attention to the soft majority vote case. One can relate the
majority vote error rate to the average error rates of random classifiers with random predicted label
Y& ~ f9(-|X). We can also extend the definition of the error rate Lp(f¢) to random classifiers as

LE"(f9) == Exy)op,Byomse ) LYY #Y] =1 - E(x,y)up, f€ (Y] X). (27)
By definition we have L% (1[f¢(-) = -]) = Lp(f9).

To evaluate the of ability of 5 () and f224 to reduce the effect of speaker distortion, we adopt

mv \%

the ensemble improvement rate (EIR) Theisen et al.| (2023) in Appendix@

To relate EIR to the amount of speaker distortion, we first make the assumption that the estimated
posteriors f(y|z)’s have bounded magnitudes, as is the case in neural network classifiers with
softmax activations.
Assumption 5. For all speech features x € X, speaker embeddings g € G and labels y € Y, there
exists 61,02, 03 > 0 such that the estimated posteriors f€ (y|x) satisfy

n?xfc(y/|x) € “)' +61,1— 52} , fC(ylz) > ds. (28)
Now we provide the proof of upper bounds on EIR for the majority vote classifiers.
Theorem 4. If Assumption 2| and Assumption E] hold, and the single-speaker posteriors f€(Y|X)
and classifiers {C (x) are competent (see Appendix|G)) and (k1 , ks )-speaker distorted, then the EIRs
for the hard and soft majority vote classifiers, EIR™ Y and EIR*°™ sarisfy

gt < 3Y1 =4 2= 21— 2exp(=C'levig — (6 /r1) V)

IV IV E,Lp,(f%) ’
o 4a1|Y| —4da; — 1 2|Y| —2as + azexp(—C’|cv/dg — (6% /k1)/*2|?)
EIR*™" < =21 + :
- 1V Y E,Lp,(f<)
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where C', ¢ > 0 and

[yY|-1
1 1 -6 — (Y —-2)8
(1 —62)log < 6; +(|y| —(51)log Y 1= (V= 2)%
7 T 01

V] I % ,

1
ay = m +51 — 63, ag = 1 +51, az ‘= 2(1 — 52)2 +2(5§ — 4(1/|y‘ + (51)53.

o*

4 EXPERIMENT

(c) Final (2(X1'))

Auxiliary Label Variance Schedule
* none . v
. HXY * w

L
!
b
A+
v

F <
SOAS A H x
i ’

+ v

=
‘
*
\
X

-0.8
-1.00 -0.75 -0.50 -0.25 000 025 050 075
Hx1-2)

L
by
S
SN A A

-15 -10 -05 0.0 O.

(d) X*~?2 (None) (&) X172 (2(X1)) 62X vs. Z

Figure 1: Synthetic disentanglement experiments using 2-d LSGMM with 1-d content (Z) and
speaker () subspaces along x and y axes respectively. The gradient fields are computed using
the learned unconditional score network sf 7 and sg’jv and the recovered subspaces learned by both
types of score networks.

4.1 DISENTANGLEMENT EXPERIMENTS ON SYNTHETIC DATA

To evaluate our theory, we first perform disentanglement experiments on synthetic datasets. To this
end, we generate two synthetic dataset using LSGMMs. More details are included in Appendix [H]

Table 1: Datasets and VC-adapted classifiers used during realistic data experiments

| Y] Feature Classifier ~ #Classifiers Reference vC | DM-based Reference
IEMOCAP | 4  wav2vec 2.0 base MLP 8 TriAAN-VC No .1(2023
ADReSS 2 whisper-medium SVM 15 KNN-VC No
ALS-TDI 5  whisper-medium SVM 15 Diff-VC Yes

4.2  VOICE-CONVERSION ADAPTATION ON REALISTIC DATASETS

To further evaluate our theory, with a particular focus on our theory on VC adaptation, we per-
form VC adaptation experiments on a variety of realistic datasets with a variety of voice conversion
models, as listed in Table[T} The datasets cover diverse speech classification tasks including emo-
tion recognition (IEMOCAP [Busso et al.| (2008)) and speech biomarker impairment classification
such as Alzheimer detection (ADReSS [Luz et al.|(2020)) and Amyotrophic Lateral Sclerosis (ALS)
severity classification (ALS-TDI|Vieira et al.[(2022)). More details are included in Appendix [H]
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Table 2: Overall results on realistic datasets. More details can be found in Appendix [Hl All metrics
are between 0-100. A: single (average); B: single (best); MV: majority vote; SMV: soft majority

vote.
Impairment Emotion

VC type ALS-TDI, F11 ADReSS, F11 IEMOCAP, Acc. (5-fold)t

| A B MV SMV A B MV SMV A B MV SMV
No VC 549 549 549 549 706 706 706 706 715 715 715 715
Pitch shifting | 55.8 603 57.6 61.5 712 771 771 688 60.6 551 61.1 61.1
KNN-VC 55.8 61.7 648 499 715 792 792 833 704 693 714 715
TriAAN-VC | 557 60.7 61.7 533 724 750 77.1 833 651 641 668 672
Diff-vC 47.0 512 503 492 656 694 667 708 87.0 943 965 972

4.3 RESULTS ON SYNTHETIC DATASETS

We conduct experiments on latent subspace GMMs (LSGMM), which are LSM with each sub-
space being a Gaussian mixture models (GMM). First, we visualize the process of disentan-
glement of DM for the 2-D LSGMM with 1-D content and speaker subspaces by plotting the
gradient fields learned by the unconditional score function sZ,; and s, and the recovered
subspaces learned by both the conditional and unconditional models, as shown in Figure

Both the unconditional and conditional score
networks are able to disentangle Z and G by ap-
proximating the correct subspaces and the cor-
responding content and speaker score functions
as shown in Figure [Tb] and Figure [Ic| respec-
tively. Further, Figure[l1d|and Figure [Ie|demon-
strate that both models are able to approximate
the target speech distribution X272 using the
converted speech X722 ~ gxi1-2 from the
mismatched content-speaker pair (21, G?), as
predicted by Theorem [f] However, as shown
in Figure [Tf] while the converted speech by
the unconditional model has content variables
evenly distributed across different mixtures,
the content variable of the conditional model
is strongly correlated with the source speech,
showing that the conditional model is able to
preserve semantic information while the uncon-
ditional model is not. This suggests at least the
standard noise schedule makes X1 alone a poor
information bottleneck for VC purposes, and
good auxiliary labels can be essential for learn-
ing semantically matched VCs as predicted by
Theorem 11

Further, Figure [2] shows the subspace recovery
error as a function of the number of columns
of the learnable matrix U. As predicted by
Theorem [2] the LSGMM achieves the smallest
subspace reconstruction error when the dimen-
sion of U matches the true content subspace at

g
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Figure 2: Subspace recovery error vs. learnable
subspace dimension for an LSGMM using vari-
ous variance schedules and two types of auxiliary
labels. The score function is a small multilayer
perceptron (MLP) described in Appendix [H} The
total dimension dx = 10, and the true content
dimension subspace dz = 5. The subspace re-
covery error is the distance between the projec-
tion matrix of two spaces normalized by dz, and
takes value between [0,2]. DM consistently re-
covers the correct content subspace and achieves
disentanglement when the learnable subspace di-
mension d;; matches d.

d; = 5, and the result is consistent across different variance schedules. Further, as all the score
networks are neural networks trained using gradient-based method, the result also provides empir-
ical support for Theorem [3] Also, we found that the conditional and unconditional models achieve
similar level of error, suggesting that the conditional model training is more effective for learning
the semantic correspondence between the source and target speech than refining the subspace.
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5 RESULTS ON REALISTIC DATASETS

The results on the realistic datasets are summarized in Table [2|and Figure

Each plot depicts the classification performance as a function of the number of target speakers used
to perform VC adaptation. For each target speaker number, we randomly select 4 speaker combina-
tions.

Adding target speakers reduces speaker distortion As shown in Figure [3] macro-F1 improves
steadily as the number of speakers increases, suggesting that having more target speakers can reduce
the effect of speaker distortion as predicted by Theorem[d] The trend is noisier for speech impairment
detection datasets such as ALS-TDI and ADReSS, which makes sense as they are relatively small
in size.

Different VC excels at different tasks However, we found that different VCs excel at different
tasks.

For ALS severity classification as shown in Ta-
ble 2 KNN-VC achieves the best performance

among the VCs, reaching 65% macro-F1 with - :Ztrg‘g ype e EENN\?? € :_ ;:;3; it
15 target speakers and hard majority voting, Soft —3%- THAANVC

compared to 54.9% when training without VC 10

adaptation and 61.7% with pitch shifting. For spER A
cognitive impairment detection as shown in Ta- 0.9 ==

ble[2] TriAAN-VC performed the best followed

by the KNN-VC method, both achieved 83.3% 5 |,

macro-F1 with soft majority voting, which is E 4

12.7% better than methods without VC adapta- & 0.7 ——0—0—0——0—

tion and 14.5% and 6.2% better than the pitch = '/, S ;

shifting adaptation using hard and soft majority 06 % o SR |
voting respectively. On IEMOCAP, we found ' N P e [

that Diff-VC performs the best, reaching an av- os —

erage of 97.2% accuracy, which is 25.7% bet-
ter than the no-VC classifier and 36.1% than Number of Speakers

the pitch shifting adaptation. Though a phe-

nomenon out of the scope of predictions by our  Figure 3: A closer look into classification perfor-
theory, we hypothesized that such “specializa- mance vs. number of target speakers for VC ada-
tion” of the VC methods is due to the different pation on IEMOCAP. Having more target Speak-

level of generalization ability of different VCs  ers for conversion consistently improves classifi-
to latent variables other than the speaker iden- cation results.

tity, such as recording conditions and health

conditions of the speaker. For instance, Diff-

VC does not perform well on ALS compared to KNN-VC, probably due to the domain mismatch
between the health conditions of its training set, which contains little pathological speech, com-
pared to KNN-VC which uses the WavLLM representation trained on much larger speech dataset
with diverse speech.

Tradeoff between classifier accuracy and diversity As to the advantage of hard vs. soft voting,
we observe different trends across different datasets and VC methods. On ALS-TDI, hard voting
works better than soft voting by 8.4% and 16% for the best two methods Diff-VC and KNN-VC,
though worse by 3.9% and 1.3% for pitch shifting and Diff-VC. On IEMOCAP, the gap between
soft and hard voting is negligible, with soft majority voting shows a 0.1%-0.7% edge over hard
majority voting across VC methods. On ADReSS, we found soft voting methods to be better than
hard voting for all the VC methods by 4.1% — 6.2%, while worse for the pitch shifting method by
8.3% (68.8% vs. 77.1%). Since soft voting uses a random classifier for voting, it tends to perform
well when the model is “confidently” correct and “hesitantly” wrong, as it puts more weights on
confident classifiers than hesitant ones. This suggests that the average confidence score estimated
in terms of the classifier posteriors on incorrect examples will be high for classifier ensembles that
perform well with hard voting than soft voting.
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6 RELATED WORKS

Disentangled representation learning The concept of disentanglement we adopt is first defined
explicitly as a generalization of statitical independence [Tishby et al| (1999) based on mutual in-
formation, though other definitions exist, e.g., |Higgins et al.|(2018)). Disentanglement is a crucial
concept for deep learning in fields such as representation learning|Bengio et al.|(2013)); Schmidhuber
(1992); | Tschannen et al.|(2018)) and voice conversion |Qian et al.|(2019); Wang et al.|(2021a)); Popov
et al.|(2022)), and neural network-based architectures have been proposed to learn disentangled rep-
resentation |Hsu et al.| (2017); |Higgins et al.| (2017); Kim & Mnih| (2018)); |(Chen et al.| (2016); (Wu
et al.|(2023); |Yang et al.| (2023)); Hudson et al.|(2024) among others, though theoretical understand-
ing of such models remain limited. To understand the learnability of disentangled representation,
Locatello et al.|(2019) proved a no-free-lunch theorem on disentanglement inspired by classical re-
sults in independent component analysis |Comon| (1994). Motivated by the task of VC,|Qian et al.
(2019) proves that for the content-speaker latent variable model, content-speaker disentanglement is
indeed possible when the speaker variable is observed, a result our theory extends to DMVCs and
generalizes to noisy, continuous content and speaker variables.

Diffusion model theory Early works on DMs focus on their ability to learn general data dis-
tributions, under different assumptions on statistical properties of the data distribution such as
log-Sobelev inequality [Lee et al.| (2022), and bounded moments [Block et al.| (2020); |(Chen et al.
(2023b) and score approximation accuracy in terms of L°°-accuracy [Bortoli et al.| (2021) and L?-
accuracy Lee et al.|(2022);Chen et al.|(2023b). Others attempt to understand the benefit of DM over
maximum-likelihood-based generative models [Pabbaraju et al.| (2023). More recent works have
started to analyze the ability of DM to learn latent low-dimensional subspace |Chen et al.| (2023a))
and manifold structure Bortoli et al.| (2022). Further, Fu et al.|(2024)) studies the convergence prop-
erties of CDMs for a variety of latent variable learning tasks and the role of classifier-free guidance
in such tasks.

Ensembling theory Our theory on combining multiple imperfectly disentangled representation
for domain adaptation is inspired by earlier works on the statistical learning theory of ensembling
methods |Langford & Shawe-Taylor (2002); |Germain et al.| (2015); Masegosa et al.| (2020); Theisen
et al| (2023), which has seen success in both machine learning Breiman| (1996; 2001) and deep
learning applications, e.g.,|Ovadia et al.| (2019); |[Fort et al.| (2019); |Ashukha et al.|(2020). Along this
direction, [Langford & Shawe-Taylor (2002)) gives a simple PAC-Bayes bound on the error rate of
majority vote classifier to be no more than twice of the average error of the individual classifiers.
Germain et al.[(2015) proposed the C-bounds for binary majority vote classifiers in terms of their
average pairwise disagreement, which could be much tighter than the simple bound. [Masegosa et al.
(2020) extends the C-bound to general multi-class setting and demonstrate that it is strictly better
than the average single-classifier errors under stronger conditions. [Theisen et al.[ (2023) relaxes
the condition in[Masegosa et al.|(2020) and improve their bound by a factor of 2. Others have used
different loss functions such as cross entropy |Abe et al.|(2022) and challenge the connection between
the diversity of classifiers and the success of ensemble methods.

7 CONCLUSION

In this work, we propose a theory for understanding the ability of diffusion model to disentangle
latent variables and how imperfect disentanglement in general can benefit classification tasks. By
studying the roles of diffusion noise, auxiliary variables, score network design and training dynam-
ics, our theory provides a unified framework for DM-based disentanglement. Rigorous synthetic
experiments as well as extensive experiments on realistic datasets provide evidence to support our
theory. Our experiment also demonstrates the limitations of current DMVC models, such as the
robustness against certain domain shifts not prevented by disentanglement during training. Future
works include thoroughly understanding the training dynamics of the DM-based disentanglement
and apply our theory to design more powerful DMVCs.
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A PROOF OF THEOREMI]

To prove Theorem [I] we first prove the following theorem.

Theorem 5. Suppose Assumption[I}2] the following holds

. 1. 2TCé€2
max{I(C*;G),I(C*;G)}Smax{e¢+ez+eg+§log$,
P

2TC, (chore + 2\/icscoreeGﬁscore + Czcoree%?T)
2
€
Y

1
e¢+ez+§log }=rep.

Provided that Theorem [3]is true, we can then prove Theorem|[T]as follows.

First, by Assumption[T} Equation[T7]and Theorem 5

I(Z,¢G) = 1(¢CG1Z) = 1(Z;GICT) + 1(CT5 G) < er +ep.
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Therefore, by Pinsker’s inequality and the fact that pz, a both have bounded support by Assump-

tion

1
d < =D . .
Zerrﬁ»l’a_;]}(e TV(pC *|z, gy P+ |z) = ZE%?;']XE \/2 KL(pC |7«79||p< ‘Z)

$1(¢*:G|Z)
T mingez gegpz(2)alg)
Ver +ep
T V2mingez gegpz(z)aly)

=l €MNM-
Fixing Z'! = 72 = 2,G' = ¢',G? = ¢, and apply data processing inequality for drv and
Pinsker’s inequality again,

dry (QXHQ\z,glﬁgQ (), ax2-2)z,92 (x))

:dTV </p41|2791 (ﬁ)pX1ﬁ2|évg2(x)d2,/p<2|z7g2( )pXZHQ\z gz(x)d2/>

<A1y (Petfz,005Pc21295) < ATV (P12, 005 Dct)z) + A1y (Pe2)z,g00 Pc2)2)

V/Dxv(pe-1z,llpe+12) /2 < V2em

minz,ng(z)a(g) - minz,gEngpZ(Z)a(g)'

<2

Marginalizing over g', g? and use Jensen’s inequality and triangle inequality yields

drv (gx1-2)2122, Ax2|2=2) < dov (x1-2)2122, Ax2-2| 222 ) Hdv (Gx2-2) 2122, QX2 22=2)

VEM + €score
T V2min; gezugpz(z)alg)  V2miniezpz(z)

B PROOF OF THEOREM

We will need the following lemma to lower bound (¢, G X ).

Lemma 1. Given Assumption the following inequalities hold for the VC system trained on
Equation|[8}
I(¢*,G; X) > h(X) — 51og(27r.e)dx2Tclesm, (30)

for some Cy > 0.

B.1 PRroOF oF LEMMA[I

In this proof, we omit the dependence of distribution on v let dx = d and v(t) = /2 for notational
and analytical simplicity, and Equation [3|becomes:

AX; = (X7 — (A1) + 2V, log gr_ (X7 A))dt + v2dBf~. (31)

Define the perturbed version of X, ~ g0 = N((1 — €')z,e*Iy) for 1 — € := V1 — €. By the
true distribution qq is sub-gaussian with Lipschitz score function, as guaranteed by item 5 and 6 of
Assumption[2] we can show that the drift term

Ay = V2(sp(Ze, Gy, Ast) — Vi log gr g (X5))

satisfies the Novikov’s condition using an analysis similar to Lemma 11 and 13 of|Chen et al.|(2023a))
for the undiscretized and discretized cases respectively. Therefore, we can apply Girsanov’s theo-
rem |Chen et al.| (2023b) to the SDE in Equation E]under a different measure P[o,T] defined as

Bt ~ Pt = Qt exp </ <A7—,dB / ||A H dT> s (32)

17
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is the same as the following SDE
AX;” = (X7 — (A t) +280(Z7, Gy, A t))dt +V2dBy, X5~ = X, (33)
where 3, := B — fg A,d7’s form a Brownian motion. Let the distribution of X;| X, = X4 ,| X

be g¢|o and the distribution of the whole process be Q[e,T]\o, then the theorem suggests

t—e

Dct(aupolldio) = / Eq ., [[1A]2] X0 =] (34)
T

Further, by the property of the O-U process,
T—e
X X = X - / e~ T=DAd7r ~ gu0. (35)
0

Now, by Assumption 2]

N 2
«—
EQ0 110 {HXTE B :EH

XOZLL':|

T—e¢ T—e
:]EQ[O o HX%_E —z— / e” T dr + / e" MDA dr|| | Xo =2
’ 0 0
~ T—e¢ 2
§2 ]qu\U [||X6 - xHQ’ XO = -’I:i| + ]EQA[[)YTHU A e_(T_e_T)ATdT XO =X
T—e¢ 2
S21[5@[0 T]l0 (/ A dT) Xo=z| + 2¢*
’ 0

T—e¢
AT -9 [ Bay (1817 Xo = o] dr 426+ 262 (36)

0

where the first inequality uses the inequality (z + y)? < 2(z? + y?), and the second inequality uses
the triangle inequality, and the last inequality uses Cauchy’s inequality.
Marginalizing Equation [36|over ¢o and applying Equation [I6] yields

T—e¢

T—e
2 2
]EQO / ]EQTm |:||AT|| ‘XO} dr = / ]EQT ||AT|| dr < Ebz'core'
0 0
Moreover, use the fact that ¢g has bounded second moment,

. 2
Qoo [¥T— XOH < 26% +26%Co + 2(T = €)€zpe < 2TChéS (37)

score — score’

by choosing max{e, € } < €score for some Cy, C; > 0.
To proceed, using the maximum entropy inequality:
N 1 N
A(Xi|Xo) < lim - log 2me [ X5, — X,
e—
1 . 1
= 5 log(2me)” In Ey By g, [||X;_E - XE||2|XO} do = 5 log(2me) 2T C1 €l (38)

Lastly, by the data processing inequality:

score”

R X 1
I(C*, G5 Xo) > I(X4; Xo) > h(Xo) — 3 log(2me)?2TCy €2 (39)

B.2 MAIN PROOF

Using Lemma we are able to prove that the noisy content variable Z, and the speaker identity G

are approximately disentangled. By definition, the conditional independence relations (* — Xo — G

18
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and * — Xy — G hold and

where the last inequality uses Assumption 2} Further, by Lemma T]and Assumption[T](3),
I(¢G) < I(Z,G5X) — I(C*, G5 X) + ez + e
<h(X) +ep — %log(Zﬂ'e)defp - (h(X) - ;log(Qwe)dQTC’lefcore) +ez+eq
:€w+6Z+€G+%log%
»
Similarly,
I(¢", G X) = I(¢" X) + 1(G; X) = I(C7;G) < I(Z,G; X) — I(C7; G) + ez,
Let A; = ||sg- (27, G, t) — V. log a,t)0(X¢|X0)l|2, and from Assumption(Equationand ,
Iso- (27, G, A1) = Vi 10g g 1jo (Xt Xo) 3
< (l1s9-(27.0.1) ~ V108 610 (Xl Xo0) 2+ Creorell G — Gl2)” = (At + Cuconeccs)?
As aresult,
Et,ga0Bau, 00|80+ (27, G, 1) = V2108 Ga 110 (Xe| Xo) |1*
<Et g0 0Bqa o [A? 4+ 2Cscoreca At + C2. €]
<L* + 2Cscore€ V" + Crcore T€G < €core + 2Cscore€Gscore + Co

score

qa,t|0
54,0

2T, (40)

where we use the Lipschitz property of sg on Ginitem 5, Assumption Then applying Lemmaon
Z, G and Equation @in place of Z, G and Assumption (3) yields the desired bound on I(¢*; G).

C PROOF OF A WEAKER VERSION OF THEOREM [I] WITHOUT ITEM 4 OF
ASSUMPTION

Theorem 6. Under Assumption[I{2) except Assumption2}4, the target speaker distribution {x= and
the converted speaker distribution §x1—2 satisfy

2€D

. N + —=6€score- 41
ming a(g) /2 “h

drv(gxi-2,qx2) <

By data processing inequality,

dTV (qx2~>27qX1~>2)
:dTv </pc1gl(é)px;|27g2($)dé,/p41gz(é)p}z;|27g2($)d2>

<drv (perjgr perigr) < drv (Perjgrs per) +drv (perjge, per)

<2\/DKL(p<*GHp<*Oé)/2: V2 (42)

min, a(g) min, a(g)

where the second to last equality uses the fact that ¢!, G! has identical distribution as (2, G? and
X1721¢t, G? and X272|(?, G? are identically distributed.
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Lastly, by applying Assumption[I]and Girsanov’s theorem |Chen et al.| (2023b),
dTV(qX27 quﬂQ) < 6score/\/i- (43)
Combining Equation |42|and Equation 43| and using triangle inequality:

~ ~ N N N N 26D 1
drv(dxi-2,qx2) < drv(dxi-2,dx2-2) + drv(dxe—2,qx2) < m + \ﬁéscore-

D FAILURE EXAMPLE

Consider the following example.

Example 1. Under the same independence relations in Assumption I} let X = [X(1), X (2)] =
[Z+E(1),G+E(2)] with Z ~ N(0,1), G ~ Unif{—1,1}, 2(1),Z(2) ~ N(0,€). Further, let the
inputs to the score function be G = X (2) + B¢, Z; = X;(1)sign(G),Za ~ N(0,€), and we let
the noising schedule o (t)’s unspeciﬁe Then it can be shown that G and Z, satisfy all conditions

except 4 in Assumptionbut I1(Z7;G|Z) £oM=0,
Then it can be shown that
sign(G®) ~ Unif{—1,1}, Z& ~ N (0,1 + €2 + (1)), Z*|G® ~ N'(0,1 + €2 4 o(t)?),
and that (* = Z7 and G are independent:
I(Zp;G) = W(Zp) — h(Z7|G) = %log 2me(1 + €2 + o (T)?) — %log 2me(l + € +o(T)?) =0
Further, Z7 and G can be proved to contain most information of X:
I(Zr,G; X) = h(X) = h(X|Zr,G) = WX (1)) + M(X(2)) — h(X|Zr, G)

> %log 2me(1 + €%) + %log omee® — h(Xo(1)| X7 (1)) — h(Xo(2)|G)

1 1 1 1 1 1
= —log2me(1 + €?)e® — - log 2 - — ~ log 47ee?
5 log me(l 4 €“)e 5 log 7re/<1+62 +0(T)2 1+62+0(T)2> 5 log 4mee

= %log 201+ (1+€)/a*(T) — (1 + ) /(1 + € + o*(T))),

which goes to oo as €, o(T') — 0. The inequality uses the fact that h(X +Y") > h(X) for continuous
random variable X and independent variable Y.

Now, during the VC inference for source and target speech
X' =[Z+E1),-1+E=42)], X? = [Z+=2%(1),1 +E*(2)] (44)
it can be shown that the maximum likelihood estimator of X2 given Z2, G2 is X272 =

[22G2,G?) = [X2(1),G?], which is not worse than the diffusion VC learned using Equation
However, the converted speech Xi-2 using the same estimator is

Y12 [X%(l) Sjgn(él) sign(éz), GQ} 45)

Notice that the truncated conditional means for the first coordinate of the estimator and the true
target speech are

E [XH2(1)1|)2H272|§J(T)‘ Z}
=(1-2Q(1))Z - Esign(Z' — 1)Esign(Z + 1) = 2Q(1)(1 — 2Q(1))?Z,
E [X2(1)]1‘XH2_Z|§U(T)‘ z} —(1-20Q(1)Z.

"While neither Z nor G are bounded in this example, they can be made so by truncating their tails, though
we will not do so to make the calculations simple.
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As a result, by the variational characterization of drv:

dTV— sup IEq 2f( ) qulazf(X)Z

[fI<1/2
X2(1 1201
= 1 oty e -zem) 2] B | gy s eemserm) ) =
(1— 2Q(1))(21|Z— 3_622(;3(;)_ 2Q(1))Z o(1)—0 (1/2— Q)1 —20(1)(1 — 20(1) ~ 0.27,

where Q(+) is the tail distribution of a standard Gaussian variable.

Note that in this case, our choice of ZT fails to be disentangled from G when the true content
variable Z is known, since

1(Z1;G|Z) = By [M( 21| Z = 2) = W(Z7|G, Z = 2)] > W(Z1|Z = 2) — M(Z1|G, Z = 2)
> Ep( [k (Z \G Z = 2) +dg(N(=2,® +o(T)?)|IN(z, € + a(T)?)) — h(ZT\G, Z=2z)=
1 1 log €2+ 0%2(T) e.0(T)—0 o

e +o2(T) T2 % o)

where dg(p, q) := —log [ \/p(x)q(z)dx is the Bhattacharyya distance and the lower bound on the
entropy of mixture models in |Kolchinsky & Tracey| (2017) is used.

E PROOF OF THEOREM 2]

To further the analysis, we make use of the following lemmas.
Lemma 2. For any differentiable probability density q,

E,Vzlogg(X)=0. (46)
Proof. By definition, E,V, log ¢(X) = E, V;(‘gg‘ ) =V, [, a(x)dz = 0. O

Lemma 3. The regularizer Equationis minimized by (V, Hg ) if and only if
R(V) = R(4q), Vseg (g9,t) = AgV4log au(g).

E.1 PROOF OF LEMMA[3]
Let 0 := 8¢ and grad(G;) := V4 log oy (Gy), grad(Z;) := V. log pz, (Z;) for notional ease. Then
by definition,
Lyeg (6, V)
=Ei .. 1Vs0(Gt) — Aggrad(Gy) — Aggrad(Zy)||?
=Er g0 14242V 50(Ge) — Azgrad(Z,)|” + Ev g, [|1A242Vs0(Gr) — Aggrad(Gy)||?
=E+ ..., IPr0jp(a,) V50(Gr) — Azgrad(Zy)||* + Eu g, , [IProjpiag) Vse(Gr) — Acgrad(Gy) .
For the first term, use the fact Z; 1l G,

Et ga.. IPr0j 4,V 50(Gr) — Azgrad(Z,)|®
>Ey ., |E[Azgrad(Z,)| Gi] — Azgrad(Z,)|* =
=Ey g |lgrad(Z,)|%,

by Lemmaand with equality iff A}V sg(g) = 0,Vg : ay(g) > 0.
For the second term, simply notice that it is nonnegative and equal to 0 iff

ALV sy(Gy) = grad(Gy), Vg : afg) >0

ot

|y, .grad(Z:) — grad(Zy)||?

)Qfx t

ot
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As a result, for any minimizer (97 V),
Vsy(Gy) = AGALV s5(Gy) + Az AL Vs, (Gy) = Agerad(Gy).

Further, notice that

0=Eyq,,[Vss(Ge) — Azgrad(Zy)||? 47)
= Et,qa,t [Hvsé(Gt) - prOjR(V)Aggrad(Gt)HQ + ||pr0jN(VT)Aggrad(Gt)||%] (48)
> Et g, [IProj iy Acgrad(Go)lI3] = Awmin[[proj yry Ac I, (49)

by Assumption Therefore [|projy - Acllr = 0, which implies R(Ag) € R(V). Further,

consider the fact that rank (V) < rank(A¢), we conclude R(V) = R(Ag).

E.2 MAIN PROOF

First, set \ large enough so that Lnatch ~ AL;cg, then by Lemma any minimizer (ég, V) of Lyeg
satisfies

VSQ*G (Gt) = AGvg lOg Qi (Gt)
Plug this into Ly a¢cn yields
Lmatch(gZa éGv Ua prOjOUa V)
=Eiq..|Use, (projoU " X;) — Azgrad(Z)|3

=Erq,.,[|Uso, (projoU " X¢) — projpn Azgrad(Z,)|?

+ [|lprojn () Azgrad(Zy)|%]
> Tr[projN(Ur)Azgrad(Zt)grad(Zt)TAzprojN(UT)]
ZAmianrojN(UT)AZ”% Z O’

where the second-to-last inequality uses Assumption [3} Further, notice that the last equality is
achieved by (U, 0z) iff
Uséz (projoU " X;) = Proj gy Azgrad(Zy), [lprojy ) Azllr =0 = R(Az) C R(D).

Combined with the fact rank(U) < rank(Az), we have R(U) = R(Az). Using this fact, we then
conclude that

Uséz (projoU T X;) = proj g Azgrad(Z;) = Azgrad(Zy).

F PROOF OF THEOREM 3]

To begin, notice that the gradient flow equation for the speaker subspace in Equation [22]is simply
V= ~VvEt g, [[(V - Ag)grad(Gy)||> = —2(V — AG)Et,qatgrad(Gt)grad(Gt)T.
Let B(r) := [|[V(") — Ag||%, then
B(r) =2 TX[V(V — Ag)T]

= —4Tr[(V — Ag)Ey,q,, grad(Gy)grad(Gy) " (V — Ag) ']

< —Anin|V = Acl[F = —4Amin E(r),
where the inequality uses Assumption[3] As a result, we have

r—00

E(r) < E(0) exp(—4AminT) —5 0 =V = Ag.

Plug V into the Equationand let Z; = sg(projo(U) T X;) and grad(Z;) := V: longt(Zt), we
obtain

U=-VyEig,, 1Usgy (sg(projo (U )T X1)) — Azgrad(Zy)|3
= —2B, 4., (Usgy(Z1) — Azgrad(Z1))seu (Z1)"
= —2E, ., (Ugrad(Z;) — Azgrad(Z;))grad(Z;) .
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Consider the function F(r) :=E, ,_, |UMgrad(Z") — Azgrad(Z,)||%, and notice that
F(r) =2Tr[grad(Z,) "U T (Ugrad(Z;) — Azgrad(Z,))]
= - 4]Et,t/,qa,t,qa,t,grad(Zt)Tgrad(Zt/) Tr[(Ugrad(Zt) - Azgrad(Zt))T(Ugrad(Zt/) — Azgrad(Zy))]
= — 4[|UEyq,  grad(Z)grad(Z,) " — AzRy, ,grad(Z,)grad(Z:) " |7
By Assumption 3]
HUIEt’qMgrad(ZA,g)glrad(ZA,g)—r - AzEt,qa,tgrad(Zt)grad(Zt)T||F
ZHUIE],;%Jgrad(ZA,g)grad(ZA,g)—r - AZA}—UIEWMgrad(Zt)grad(Zt)T||F
> Amin[[Projyaz)Ul e
Therefore, any stationary point of Equation 23] satisfies
Iprojn(a,) Ul = 0= R(U) C R(Az) = R(projoU) N R(U) # 0.
Therefore, by Assumption ]
IUE: . grad(Z;)grad(Z,) " — AzEyq, grad(Z,)grad(Z:) ||
>|projpuny AzEe . ,grad(Zy)grad(Z,) " — AzEy,, erad(Z)grad(Zy) " |
> pumin[[Proj y Ty Az | P,
for some pnin > 0. Consequently, for such any stationary point U,

F(r) = 0 = |[projygryAzlla = 0 = R(Az) C R(U).

Combining with the fact that R(U) C R(Az) yields R(U) = R(Ayz).

G PROOF OF THEOREM {4

Since the majority vote classifier makes a mistake only if more than half of the single-speaker prob-
ability weights are not on the correct label, then the classifier loss on the test set (X', Y’) ~ Pg
is

L) = Prlf (X7) # Y') < Pr[En, f€(Y/|X') < 1/2] = PrWPH (X', V) > 1/(?5]6)

where WSO& (z,y) := 1 — Eg~,f@(y|x) is the proportion of probability weights assigned to in-
correct labels. We need the concept of competenceTheisen et al.| (2023) to random classifiers in
Appendix [G] We provide the following generalized definition of competence and the definition of
EIR.

Definition 6. For speaker embedding distribution p and the test set (X,Y) ~ Pg, single-speaker
classifiers are competent if for any t € [0,1/2],

PV (X, Y) € [1,1/2)] > PIWM(X.¥) € [1/2,1— 1], (51)
B B8

Definition 7. For data distribution P and single-speaker classifiers f¢, G ~ p such that
Eg~,Lp(f€) # 0, the ensemble improvement rate is defined as

_ EgyLp(f9) — Lp(fuv)

EIR(fuy) = Fo Lo(/0) . (52)

Using Assumption [6] and replacing the hard votes with soft ones in the proofs of Lemma 2 and part
of Theorem 2 in|Theisen et al.| (2023)), we can prove the following lemma.

Lemma 4. If random classifier Y¢ ~ f&(Y|X) is competent for speaker embedding distribution
p and the test distribution Pg,

IIZr[Wj"ft(X, V) >1/2] < 2Ep, W3 (X,Y)?]. (53)
B
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We proceed to bound the second moment of W;Oft via the following lemma, analogous to Lemma 4
in|Theisen et al.| (2023).

Lemma 5. If random classifier Y& ~ f&(Y|X) is competent for speaker embedding distribution
p and test data distribution Pg,

2(|J|;y| 1) (EGNpLSOft(fG) . *]EGNp oo Dsoft(fG fG ))

where D (h, h') = EX~P]EY/~}L(.|X),Y//~h(.\x)R[Y # Y] is the disagreement rate between ran-
dom classifiers Y and Y.

Ep, WX, Y)?) <

Proof. Let (X,Y) ~ Pg be a ground truth feature-label pair from the test set and hy (X) :=
Eg~p[f¢(Y|X)]. Moreover, let ¢&(:|X) be the true posterior probability of Y given the original
speech X. Then for G = g, the conditional error rate of the random classifier Y9 is

Pr(Y? # Y|X] =1~ Eyy (v fO(V1X),

and the conditional disagreement rate of two independent random classifiers Y9 and Y9 "is

llilf[Yg#Yg |X] —I—ZthIX )F (1 X) = ZfG GIX)(@ = £ X)).

Then by definition of W,
W2(X,Y) =1—hy(X) —hy(X)(1 - hy(X))
= 1=y (X) =Y hy(X)(1 = hy(X))+ Y he(X9)(1 = he(X)).

(1') J k£Y
(2 (3)
Taking the expectation over X, Y for the first term yields
1—Ep,hy(X)=1- EGNP]EPﬂch(Y\X)
— 1 _ G _ _ G
=1—-Eg~p EE[Y =Y]= EE[Y #Y].

To lower bound term (2), simply notice that

D hs(X)(1 = 1j(X)) = Bgmpcrmp fEGIX) (1 = 1€ (11X)) = Bamprmp DI, 1) X].

Finally, to bound term (3), we can apply a similar bound in Theisen et al|(2023) by maximizing
over hy (X %) to conclude that

(3) < Sy by (X)) 4 ey (X)(1 = Ay (X))
As a result, we have
® - < =26 )+ Sl % () - 9) - BamnamaDU, 1)
=W Y) = (1) - @)+ () < 225 s (1) - FBavp D 1INT)
Marginalizing over X, Y yields the result. O

Note that constraining & (Y| X) to be deterministic recovers Lemma 4 of [Theisen et al.| (2023).

Now, consider the case for the hard majority vote classifier where the single-speaker classifiers are
deterministic and competent. To this end, applying Lemmal 4)and |5} IW1th fCylz) = 1[f%(z) = y]
yields

Ay -1

LPB (fmv) < |y‘ ) (EGNPLPﬁ(fG) - %EGNPyG’NP ]P;r[fG(X) 7é fG/ (X)]> . (54)
B
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To lower bound Pr[f¢(X) # f¢'(X)], notice

Pr{fE(X) # /% (X)
s
~ D g 9(01) £ argmgx 1 (1)
B Yy Y
=1- IP;r [argmaxfc(j|X) = argmaXfG(j/X)} .
B J J’

Further, by Assumption and suppose without loss of generality, argmax; feGIxX) =
arg max, feE1X) =1,

e A, L
Fex) E——
! [Y|-1
. ¢ (j]1X) 1= f9 (kIX) v 1— (Y —2)d03
Vi >1, |lo <lo <lo .
5> 1 o i | < e 5 = %
As a result,

D (f9 (11X)]1 14 (11X))

, - , VIl 5 — (V- 2)8
<6 1X)log T2 4 (1 £ 1130 tog - P
1M 1

_ _ PI=1 50y 9§
<(1 —d2)log } 02 + (|y| 1 —51> log —% 1= (V-2 =6".
o VI

Moreover, since random classifiers f¢ (Y| X) are (1, k2)-speaker distorted,

Pr argmafo(j|X) = argmafo(j'|X)}
5 . :

<P1"[DKL(fG AX)IFC (X)) < 6% = Ifi;[mHG’ — G2 <07]

]
5* 1/k2
=Pr ||G’—G||2§ <> .
Pg K1
Let H := |G — G'||2, since G, G’ are independent, identically-distributed, isotropic sub-gaussian

random vectors by Assumption 2] H — EH is a sub-gaussian random variable with sub-gaussian
norm

IH —EH|s, < C,

for some constant C' > 0 independent of the dimension of G according to Theorem 6.3.2 in [Ver-
shynin| (2018). Further, by the properties of sub-gaussian random variables,

5* 1/k2 5* 1/k2
Pr |||G' — G2 < () <Pr |H —EH| > |EH — ( )
Pg K1 R1
5* 1/“2 2
<2exp | —C' |EH — </€ > = 2exp(—C'|ev/dg — (6% /1) "2)?),
1

for some dimension-independent constants C’, ¢ > 0. Pr[f¢(X) # f¢(X)] can be then lower
bounded by

1—2eXp(—Cl|C\/d>—(5*/H1)1/52|2),
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which can be plugged into equation[54]to obtain

LP;a (h}r;fgd) - EPLPB (fG)

EIRhard —
E LPB(fG)
3|y\ 2|y\ *21*26Xp(70/|c\/d7f(5*/K1)1//<;2|2)
a |y| 1V E,Lp,(f9) :

For the soft majority vote classifier, we proceed again to bound the terms in Lemma [5] separately.
Fix any G and by Assumption[3]

L3 (f9) =1-Ep, f9(Y|X)
=1 —Ep, fOY|X)1[fC(X) = Y] - Ep, fC(Y|X)1[fF(X) # Y]

<1— (1] +60)(1 = L, (f5)) — s Ls(f) = ('y' ! ) ; <|;v| o -4 ) Ls(f9)

N
V=1
Y

=a1 L(f9) +
Similarly, for the disagreement rate,
DM (G, F9) =1~ Ep, Y FEGIX)fC (GIX)
J

=1=Ep, > FOGIX)IT GROTFEX) # £9 (0] =B, Y FGIX) 9 GO X) = £(X)
21— 2(1/IY| 4 018 Pr{fE(X) # £ (X)] = (1= 82)° + 63) Prlf€(X) = /¥ (X)]

=1 = 201/ Y]+ 81)85 = (1= 82)° + 85 — 2(1/|¥] + 61)3) Pr(f(X) = €' (X)]

=1 201/ Y]+ 81)85 — (21— 82)° + 205 = 4(1/|V] + 61)d5) exp(—C"|ev/dg — (6" /mn) /")

=1 2(1/Y| + 81)05 — az exp(~C'lev/dg — (57 /) V2 ?),

where the last equality use the upper bound on Pr[f¢(X) = fC'(X)] derived earlier. Plug the
bounds on Lsﬁﬁft( f) and D= (G G into Lemma 5| and follow similar steps for EIR", we

obtain the bound on EIR*°™.

H EXPERIMENT DETAILS

H.1 SYNTHETIC EXPERIMENT

For visualization purposes, we choose the content and speaker subspace to be dz = dg = 1
and both the content GMM to be £ N(—0.5,0.01) + $A/(0.5,0.01) and the speaker GMM to be

AN(-1,0.01) + £N(1,0.01). We choose a small number of mixtures to avoid bad local optima
during training. We adopt a similar for disentanglement experiments but increase the dimension to 5.
More details are included in Appendix [H} For the disentanglement experlment we choose the sub-
space dimension to be dz = dg = 5 and sample the content variable via Z ~ 7./\/' (ul ,0.01-1,,)+

AN (uZ,0814,) and the speaker variable via G ~ SN (uf, 0 - 1a,) + N(Mz ,08 - 1a,), where
we randomly sample the mixture centers via uZ ~ Unif[—0.5,0.5]%2 and u ~ Unif[-2.5, 2.5]4¢
and set o0y = 0.01. We generate 2000 samples for both datasets.

We then train a unconditional and a conditional score networks to learn to perform disentanglement
and zero-shot voice conversion on the synthetic data. For the unconditional score network, we use a

26



Under review as a conference paper at ICLR 2025

simple neural net with residual connection:

z):=U'z, (55)
. 1
SLZL,U(Za t) == m[tamh(a(i)uTz/(a2(t)a§ + 0% (t)p — 2], (56)
. 1
85y (g.t) = m[tanh(a(t)uTg/(ag +0%(t))v — gl, (57)

§#7V7U=V(2(x)797t) = [UéfU(zA(x)vt) + VégV(gvt)] ) (58)

o?(t)
where UTU = I, and V'V = I, are matrices with orthogonal columns. The neural net
is parameterized to match the score function of GMM [Shah et al.| (2023) in both subspaces.
We train the models for 10,000 steps with an

Adam |Kingma & Ba|(2015) optimizer with learning rate Name | al0) (1)

1073 and batch size equal to the entire training set. To

) X VE 1 B
enforce the orthogonality constraint, we define a cus- VP o 0.05t— 19752 1762,‘(;’_%5;’{,_9“2
tomized layer using the geoopt package for Rieman- QUB-VP | @-005t-4.975 (] _ o=0.1-0.95¢% )2
nian optimization on the Stiefel manifold. To ensure con- VP (cosine) | e~ 2-%5n(5) | —e~t=%sin(3)

vergence, we pretrained the speaker score network §¢
We experiment with various noising schedules, including Table 3: The default noise schedule
the variance exploding (VE), vanilla variance preserving hyperparameters for the synthetic data
(VP) Ho et al.|(2020), sub-VP|Song et al[(2021)) and co- experiments. Continuous time (t &
sine VP Nichol & Dhariwall (2021). The detailed sched- [107?,1]) is used in the expression.

ule hyperparameters are listed in Table [3| and are chosen

based on rules of thumbs in |[Song & Ermon/ (2020); [Song et al.| (2021). Once the unconditioned
score network is trained, we then used the learned subspace U to create an auxiliary variable

a = 2(zg) = U T2, where zg is the clean speech feature at time 0 and train another conditional
score network with A as an additional input as:

1 t)a — %
Spanvv (20,9, t) = o5 U O;‘Et;jg fff;t&) TV (9.0)| - (59)

For voice conversion experiments, we run the predictor-corrector sampling scheme alternating be-
tween Euler-Maruyama method and Langevin MCMC Song et al.| (2021) for 500 steps and a signal-
to-noise ratio (SNR) parameter of 0.16.

H.2 REALISTIC DATA EXPERIMENT

For the IEMOCAP dataset, we use a system available on SpeechBrain Ravanelli et al.| (2024) that
finetunes on the wav2vec 2.0 backbone Baevski et al.| (2020) with a multi-layer perceptron classifier
(MLP) Wang et al|(2021b). The classifier is trained using Adam optimizer for 30 epochs with a
batch size of 4 and a learning rate of 10~* for the MLP and the 10~ learning rate for wav2vec 2.0
weights. The system is then evaluated using the standard classification accuracy metric and 5-fold
cross validation Busso et al.| (2008)); Ma et al.|(2024). For each fold, we use all 8 speakers from the
training set as target speakers.

On the ALS and ADReSS, we use whisper-medium |[Radford et al.[ (2023) features, as they have
shown to be the most effective for speech impairment classification [Wang et al.| (2024). To avoid
unfair comparison, We concatenate hidden representations over all layers of the whisper-medium
encoder rather than selecting a particular layer and perform mean pooling over the frame-level fea-
tures. For both datasets, we follow the standard splits used in previous works [Vieira et al.| (2022)
to have no overlaps between speaker in the training and test sets. And for both datasets, we use the
15 most frequent speakers from the training set as target speakers for the VC to achieve maximize
conversion quality via better speaker representation.

We apply the VCs in mostly a zero-shot, plug-and-play fashion, and leave finetuning to specific
datasets for future works. For the Diff-VC, we use the publicly available score network and vocoder
checkpoints trained on LibriTTS and adopt the original inference hyperparameter settings for all
experiments. Similarly, we use the pretrained models and for other VC models. Further, we use a
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maximum of 120 second speech from the target speaker to compute the target speaker embedding
for all models except KNN-VC, where we use all the target speech as the pool for nearest neighbor
search. We also compare VC adaptation with common data augmentation technique such as pitch
shifting, where we shift the pitch of all the speech utterances to equally spaced pitch levels over the
F0 range of the training speech data with levels equal to the number of target speakers and train
separate classifiers for each level as in the case of using VC adaptation.

Table [A][5][6] show the complete results for the realistic dataset experiments.

Table 4: Emotion recognition results on IEMOCAP. 8 speakers in the training set of each fold are
used as target speakers.

VC type | Voting type | Accuracy
\ | 1 2 3 4 5  Avg.
No VC \ - | 72.6  76.6 689 689 703 715
single (best) | 64.0 653 574 577 58.6 60.6
. i single (avg) | 61.3 62.1 502 489 53.0 55.1
Pitch shifting | = ooty | 612 653 585 578 625 611
soft majority | 60.8 654 57.8 575 615 61.1
single (best) | 71.2 754 683 719 69.1 704
: single (avg) | 69.6 72.6 67.0 699 674 69.3
KNN-VC majority | 703 756 68.5 728 700 71.4
soft majority | 70.3 76.1 685 728 699 715
single (best) | 65.5 669 63.0 67.5 62.6 65.1
. E single (avg) | 64.6 663 61.1 656 63.1 64.1
THAAN-VE | ajority | 669 690 639 679 665 668
soft majority | 66.6 699 63.6 688 67.0 67.2
single (avg) | 87.0 883 86.2 87.6 86.1 87.0
Diff-vC single (best) | 94.4 948 942 952 929 943
majority 97.5 967 952 98.1 949 965
soft majority | 97.7 97.6 96.3 987 956 972
Table 5: Alzheimer detection results on ADReSS
VC type | Voting type | Precision Recall F1  Accuracy
No VC | - | 714 708 706 708
single (avg) 71.8 714 714 71.2
. . single (best) 77.1 77.1 T7.1 77.1
Pitch shifting | ™ sority 77.1 771 771 771
soft majority 68.8 68.8  68.7 68.8
single (avg) 71.8 715 714 71.5
: single (best) 80.0 792  79.1 79.2
KNN-vC majority 794 792 791 792
soft majority 83.6 833 833 83.3
single (avg) 72.5 724 724 72.4
. : single (best) 75.2 75.0 750 75.0
TAAAN-VC | = ojority 775 771 770 771
soft majority 83.3 833 833 83.3
single (avg) 65.7 654 654 65.6
o single (best) 69.4 694 694 69.4
Diff-VC majority 667 667 667 667
soft majority 72.2 70.8 704 70.8
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Table 6: ALS severity classification results on ALS-TDI with a whisper-medium+SVM classifier

VC type | Voting type | Precisiont Recallt FI1
No VC \ - | 59.8 53.7 54.9
single (avg.) 60.5 54.1 55.8

. s single (best) 67.4 57.7 60.3
Pitch shifting | s ority 730 549 576
soft majority 68.4 59.0 61.5

single (avg.) 58.5 54.6 55.8

. single (best) 65.7 59.5 61.7
KNN-vC majority 67.9 629  64.8
soft majority 51.1 49.6 49.9

single (avg.) 60.2 54.5 55.7

. X single (best) 68.0 58.2 60.7
TAAAN-VC | ooty 69.9 591 617
soft majority 54.1 52.8 53.3

single (avg.) 48.2 47.0 47.0

ey single (best) 53.0 51.0 51.2
Diff-vC majority 498 509 503
soft majority 50.1 48.8 49.2
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