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ABSTRACT

The predominant success of diffusion models in generative modeling has spurred
significant interest in understanding their theoretical foundations. In this work, we
propose a feature learning framework aimed at analyzing and comparing the train-
ing dynamics of diffusion models with those of traditional classification models.
Our theoretical analysis demonstrates that diffusion models, due to the denoising
objective, are encouraged to learn more balanced and comprehensive representa-
tions of the data. In contrast, neural networks with a similar architecture trained
for classification tend to prioritize learning specific patterns in the data, often
focusing on easy-to-learn components. To support these theoretical insights, we
conduct several experiments on both synthetic and real-world datasets, which em-
pirically validate our findings and highlight the distinct feature learning dynamics
in diffusion models compared to classification.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2021) have emerged as a powerful class of generative
models for content synthesis and have demonstrated state-of-the-art generative performance in a
variety of domains, such as computer vision (Dhariwal & Nichol, 2021; Peebles & Xie, 2023),
acoustic (Kong et al., 2021; Chen et al., 2021) and biochemical (Hoogeboom et al., 2022; Watson
et al., 2023). Recently, many works have employed (pre-trained) diffusion models to extract useful
representations for tasks other than generative modelling, and demonstrated surprising capabilities in
classical tasks such as image classification with little-to-no tuning (Mukhopadhyay et al., 2023; Xiang
et al., 2023; Li et al., 2023a; Clark & Jaini, 2024; Yang & Wang, 2023; Jaini et al., 2024). Compared
to discriminative models trained with supervised learning, diffusion models not only are able to
achieve comparable recognition performance (Li et al., 2023a), but also demonstrate exceptional
out-of-distribution transferablity (Li et al., 2023a; Jaini et al., 2024) and improved classification
robustness (Chen et al., 2024c).

The significant representation learning power suggests diffusion models are able to extract meaningful
features from training data. Indeed, the core of diffusion models is to estimate the data distribution
through progressively denoising noisy inputs over several iterative steps. This inherently views data
distribution as a composition of multiple latent features and therefore learning the data distribution
corresponds to learning the underlying features. Nevertheless, it remains unclear

how feature learning emerges during the training of diffusion models and whether the feature
learning process is different to supervised learning.

Regardless of the ground-breaking success of diffusion models, the theoretical understanding is still
in its infancy. Existing analysis on diffusion models has mostly focused on theoretical guarantees in
terms of distribution estimation and sampling convergence. Several works have derived statistical
estimation errors between distribution generated by diffusion models to ground-truth distribution
(Oko et al., 2023; Zhang et al., 2024; Chen et al., 2023a), showing that diffusion models achieve a
minimax optimal rate under certain assumptions on the true density (Oko et al., 2023; Zhang et al.,
2024). Algorithmically, Li et al. (2023c); Han et al. (2024) studied the estimation error of diffusion
models trained with gradient descent using kernel methods. Shah et al. (2023); Gatmiry et al. (2024);
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Chen et al. (2024d) introduced algorithms based on diffusion models for learning Gaussian mixture
models. In addition, given access to sufficiently accurate score estimation, Lee et al. (2022; 2023);
Chen et al. (2023b); Li et al. (2023b) proved the convergence guarantees of sampling in (score-based)
diffusion models. Despite showing provable guarantees for diffusion models, existing theories are
limited to the generative aspects of diffusion models, namely distribution learning and sampling. To
the best of our knowledge, no theoretical analysis is performed to elucidate the feature learning
process in diffusion models.

Notations. We make use of the following notations throughout the paper. We use ∥ · ∥ to de-
note L2 norm for vectors and Frobenius norm for matrices, unless mentioning otherwise. We use
O(·),Ω(·),Θ(·), o(·), ω(·) for the big-O, big-Omega, big-Theta, small-o, small-omega notations. We
write Õ(·) to hide (poly)logarithmic factors and similar notations hold for Ω̃(·) and Θ̃(·). For a binary
condition C, we let 1(C) = 1 if C is true and 1(C) = 0 otherwise.

1.1 OUR MAIN RESULTS

Figure 1: Illustration of the ratio of signal learn-
ing to noise learning when varying n · SNR2,
where SNR := ∥µ∥/(σξ

√
d). We show diffu-

sion model tends to study more balanced signal
and noise while classification has a sharp phase
transition and tends to focus on learning either
signal or noise.

In this work, we develop a theoretical framework
that studies feature learning dynamics of diffusion
models and compares with classification. Inspired
by the image data structure, we employ a multi-
patch data distribution x = [µy, ξ] for both classi-
fication and diffusion model training. We consider
a binary-class data setup with y = ±1 as the data
label and µ1,µ−1 ∈ Rd are two fixed orthogo-
nal vectors, i.e., µ1 ⊥ µ−1, representing the sig-
nal. On the other hand, ξ is the label-independent
noise, which is randomly sampled from a Gaus-
sian distribution with standard deviation σξ.

In order to elucidate the difference of feature
learning dynamics for the two tasks, we adopt
a two-layer convolutional neural network with
quadratic activation. For diffusion model, we
consider a weight-sharing setting for the first and
second layer, which is commonly considered for
analyzing autoencoders (Nguyen, 2021; Cui &
Zdeborová, 2024). For classification, we fix the
second layer weights to be ±1, following Cao et al.
(2022); Kou et al. (2023). In other words, the clas-
sifier can be viewed as attaching a fixed linear head to the intermediate layer of the diffusion model.
Given a training dataset of n samples from the multi-patch data distribution, we use gradient descent
to minimize the empirical logistic loss for classification and the DDPM loss (Ho et al., 2020) with
expectation over the diffusion noise.

Under the above settings, we investigate the differences of feature learning dynamics (Allen-Zhu
& Li, 2023; Cao et al., 2022; Zou et al., 2023; Huang et al., 2023b; Jiang et al., 2024; Huang et al.,
2024a; Lu et al., 2024; Meng et al., 2024) between diffusion model and classification. We quantify
the feature learning in terms of signal learning and noise learning, measured through the alignment
between the network weights w to the directions of signal/noise respectively, i.e., |⟨w,µy⟩|, |⟨w, ξ⟩|.
We present the following (informal) results for the two learning paradigms.

Theorem 1.1 (Informal). Let SNR := ∥µ∥/(σξ
√
d) be the signal-to-noise ratio. We can show

• For diffusion model, |⟨w,µy⟩|, |⟨w, ξ⟩| exhibit linear growth initially and there exists a stationary
point along the path of the training dynamics that satisfies |⟨w,µy⟩|/|⟨w, ξ⟩| = Θ(n · SNR2).

• For classification, |⟨w,µy⟩|, |⟨w, ξ⟩| exhibit exponential growth initially and when n · SNR2 ≥
β for some constant β > 1, |⟨w,µy⟩|/|⟨w, ξ⟩| = ω(1), and when n · SNR2 < 1/β,
|⟨w,µy⟩|/|⟨w, ξ⟩| = o(1).

2



Published as a conference paper at ICLR 2025

Theorem 1.1 highlights differences in the feature learning process between diffusion models and
classification. Especially in the regime where n · SNR2 = Θ(1), classification is sensitive to changes
in SNR and tends to learn either the signal µy or the noise ξ. In contrast, diffusion model learns both
signal and noise to the same order. Such a claim is visualized in Figure 1.

We believe our framework represents the first attempt to systematically investigate feature learning
within diffusion models, potentially uncovering novel insights into the intriguing properties of
diffusion models, including but not limited to critical window (Sclocchi et al., 2024; Li & Chen,
2024), shape bias (Jaini et al., 2024), classification robustness (Chen et al., 2024c), feature composition
and dependence (Okawa et al., 2024; Yang et al., 2025; Han et al., 2025).

1.2 RELATED WORK

Theoretical analysis of diffusion model. Existing theoretical guarantees for diffusion models
focus on distribution estimation and sampling. For distribution estimation, Oko et al. (2023) proved
that diffusion models achieve a nearly minimax optimal estimation error where the true density
is defined over a bounded Besov space. Zhang et al. (2024) extended the minimax optimality to
more general sub-Gaussian densities with sufficient smoothness. When the density is supported on a
low-dimensional subspace, diffusion models avoid curse of dimensionality with an estimation rate
depending only on the intrinsic dimension (Oko et al., 2023; Chen et al., 2023a). Furthermore, Shah
et al. (2023); Gatmiry et al. (2024); Chen et al. (2024d) introduced algorithms based on diffusion
models for learning a mixture of Gaussians. Other works provided guarantees of diffusion model
trained by gradient descent (Li et al., 2023c; Han et al., 2024; Wang et al., 2024). For sampling,
Lee et al. (2022; 2023); Chen et al. (2023b); Li et al. (2023b) have shown (score-based) diffusion
models converge polynomially under sufficiently accurate score estimation. Recent studies also
aimed to accelerate the convergence via strategies such as consistency training (Song et al., 2023; Li
et al., 2024b), advanced design of the reverse transition kernel (Huang et al., 2024b), higher-order
approximation (Li et al., 2024a) and parallelization (Chen et al., 2024a; Gupta et al., 2024). In
addition, Li & Chen (2024) theoretically verified critical windows of feature emergence during the
sampling process, provided accurate score estimation.

Theoretical analysis on (denoising) autoencoders. Diffusion models can be viewed as multi-level
denoising autoencoders (Xiang et al., 2023). While there is extensive research on the theoretical
guarantees of autoencoders without denoising, most studies focus on linear autoencoders (Kunin et al.,
2019; Oftadeh et al., 2020; Steck, 2020; Bao et al., 2020). In contrast, only a limited number of works
analyze non-linear autoencoders, primarily in the lazy training regime (Nguyen et al., 2021) or the
mean-field regime (Nguyen, 2021). Additionally, the training dynamics of non-linear autoencoders
have been investigated under population gradient descent (Shevchenko et al., 2023; Kögler et al.,
2024) and online gradient descent (Refinetti & Goldt, 2022). On the other hand, the training dynamics
of denoising autoencoders have been studied in the context of linear networks (Pretorius et al., 2018)
and in the high-dimensional asymptotic limit (Cui & Zdeborová, 2024).

Diffusion model for representation learning. Pre-trained diffusion models are shown to learn
powerful representation, which is useful for downstream tasks such as classification (Mukhopadhyay
et al., 2023; Xiang et al., 2023; Li et al., 2023a; Clark & Jaini, 2024; Yang & Wang, 2023), semantic
segmentation (Baranchuk et al., 2022; Zhao et al., 2023; Yang & Wang, 2023). Moreover, many
works have found intriguing properties of diffusion models used as classifier, including its ability to
understand shape bias (Jaini et al., 2024) and improved adversarial robustness (Chen et al., 2024c).
For more detailed exposition, we refer to the recent survey on this matter (Fuest et al., 2024).

2 PROBLEM SETTING

This section introduces the problem settings for both diffusion model and classification, including the
data model, neural network functions as well as training objectives and algorithm.

Definition 2.1 (Data distribution). Each data sample consists of two patches, as x = [x(1)⊤,x(2)⊤]⊤,
where each patch is generated as follows:

• Sample y ∈ {−1, 1} uniformly with P(y = −1) = P(y = 1) = 1/2.
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• Given two orthogonal signal vectors µ1,µ−1, with µ1 ⊥ µ−1, we set x(1) = µy, i.e., x(1) =

µ1 if y = 1 and x(1) = µ−1 if y = −1. For simplicity, we assume ∥µ1∥ = ∥µ−1∥ = ∥µ∥.

• Set x(2) = ξ where ξ ∼ N (0, σ2
ξ (I− µ1µ

⊤
1 ∥µ1∥−2 − µ−1µ

⊤
−1∥µ−1∥−2)).

This multi-patch data model reflects the structure of image data, where each image consists of multiple
patches, and only a subset of the patches are relevant to the class label, while the rest contribute as
background noise. This data model has been employed in several existing studies (Allen-Zhu & Li,
2023; Cao et al., 2022; Kou et al., 2023; Meng et al., 2024; Zou et al., 2023). A difference in our
model is the use of two orthogonal signal vectors, in contrast to previous works, that employ a single
signal vector of the form yµ. Additionally, while our analysis focuses on a two-patch setting for
simplicity, it can be readily extended to multi-patch data. We let SNR := ∥µ∥/(σξ

√
d) denote the

signal-to-noise ratio.

Neural network functions. We study two-layer convolutional-type neural networks for both
diffusion model and classification. For diffusion model, we consider neural network with quadratic
activation and shared first-layer and second-layer weights:

f(W,x) =
[
f1(W,x(1))⊤,f2(W,x(2))⊤

]⊤
∈ R2d,

where fp

(
W,x(p)

)
=

1√
m

m∑
r=1

⟨wr,x
(p)⟩2wr, p = 1, 2

where m denotes the network width and r represents the neuron index.

For classification, we consider a similar neural network with quadratic activation where second-layer
weights are fixed to be ±1 (instead of wr):

f(W,x) = F1(W1,x)− F−1(W−1,x),

where Fj(W,x) =
1

m

m∑
r=1

⟨wj,r,x
(1)⟩2 + 1

m

m∑
r=1

⟨wj,r,x
(2)⟩2.

We remark that the use of polynomial activation, such as quadratic, cubic and ReLU with polynomial
smoothing is not uncommon in existing theoretical works (Cao et al., 2022; Jelassi & Li, 2022; Zou
et al., 2023; Huang et al., 2023a; Meng et al., 2023). The aim is to better elucidate the separation
between signal and noise learning dynamics.

Training objectives and algorithm. For diffusion model, we employ the objective of denoising
diffusion probabilistic model (DDPM) (Ho et al., 2020). We let x0 = [x(1),x(2)]⊤ ∈ R2d to denote
input image. For a given diffusion time step t ∈ [0, T ], we sample xt = αtx0+βtϵt for ϵt ∼ N (0, I)
and a pre-determined noise schedule coefficients {αt, βt}Tt=0. The aim of diffusion models is to
estimate the mean of the posterior distribution of the noise ϵt conditioned on xt. This is achieved
by training a neural network f to predict the noise added at each step t. The DDPM loss is given
by Ex0,ϵt,t∥f(xt)− ϵt∥2 up to some re-scaling (Ho et al., 2020). We consider a finite-sample setup
given by the training images {xi}ni=1 sampled according to Definition 2.1 and thus the empirical
DDPM loss at time step t becomes

LF (Wt) =
1

2n

n∑
i=1

Eϵt,i ∥f(Wt,xt,i)− ϵt,i∥2 =
1

2n

n∑
i=1

Eϵt,i ∥f(Wt, αtx0,i + βtϵt,i)− ϵt,i∥2 ,

where we let x0,i = xi and xt,i = αtx0,i + βtϵt,i. Here, we decouple the training of neural network
at each diffusion time step with separate weight parameters, a strategy also adopted in (Shah et al.,
2023) for simplicity of analysis.

Unlike (Han et al., 2024), where each sample i is associated with a single noise ϵt,i ∼ N (0, I),
we here consider taking the expectation over the noise distribution, which aligns with the practical
setting where multiple noises are sampled for each input data. We use gradient descent to train
diffusion model starting from random Gaussian initialization w0

r,t ∼ N (0, σ2
0I) as wk+1

r,t = wk
r,t −

η∇wr,tLF (W
k
t ), where the superscript k is the iteration index.
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For classification, we minimize the empirical logistic loss over the training data {xi, yi}ni=1,

LS(W) =
1

n

n∑
i=1

ℓ
(
yif(W,xi)

)
, ℓ(z) = log

(
1 + exp(−z)

)
.

The same as diffusion model, we use gradient descent to train the neural network starting from
random Gaussian initialization w0

j,r ∼ N (0, σ2
0I).

3 MAIN RESULTS

Our main results are based on the following conditions.
Condition 3.1. Suppose the following holds.

1. Dimension d is sufficiently large with d = Ω̃
(
n7m5

)
.

2. The sample size n satisfies n = Ω̃(1).

3. The standard deviation of initialization σ0 is chosen such that Õ(n2mσ−1
ξ d−1) ≤ σ0 ≤

Õ
(
min{m−1/6d−1/6σ

1/3
ξ n−1/3,m−1/6d−7/12σ

−1/3
ξ n1/3, d−3/4σ−1

ξ n}
)
.

4. The learning rate η satisfies η ≤ Õ
(
min{nmσ0σ−1

ξ d−1/2, nmσ−2
ξ d−1}

)
.

5. The signal strength satisfies ∥µ∥ = Θ(1) and noise variation σξ satisfies
Õ(max{n5/2m7/4d−5/8, nm1/6d−1}) ≤ σξ ≤ Õ(d−1/4).

6. The noise coefficients for diffusion model satisfy αt, βt = Θ(1).

Condition 3.1 requires d to be sufficiently large to ensure learning in an over-parameterized setting.
Furthermore, we require the sample size to be lower bounded by a constant subject to logarith-
mic factors. The upper bound on the initialization σ0 is to ensure random initialization does not
significantly affect the signal and noise learning dynamics. The lower bound on σ0 is required to
bound the noise inner product at initialization for properly minimizing the training loss of clas-
sification. The learning rate η is chosen sufficiently small for the convergence analysis for the
classification. Lastly for diffusion model, we consider the constant order for ∥µ∥ and further re-
strict the range of σξ. Despite these conditions, our setting covers a broad range of n · SNR2, i.e.,
Õ(nd−1/2) ≤ n ·SNR2 ≤ Õ(min{n−4m−7/2d1/4, n−1m−1/3d}). We also consider constant order
of αt, βt to avoid degeneracy in learning dynamics.

We present the main results for diffusion model (Theorem 3.1) and classification (Theorem 3.2).
Theorem 3.1 (Diffusion model). Under Condition 3.1, suppose m = Θ(1). With probability
at least 1 − δ (for any δ > 0), there exists a stationary point W∗

t along the training trajectory
of diffusion model, i.e., ∇wr,t

LF (W
∗
t ) = 0 that satisfies (1) ⟨w∗

r,t,µj⟩ = Θ(⟨w∗
r′,t,µj′⟩), (2)

⟨w∗
r,t, ξi⟩ = Θ(⟨w∗

r′,t, ξi′⟩), and (3) for all j = ±1, r ∈ [m], i ∈ [m],

|⟨w∗
r,t,µj⟩|/|⟨w∗

r,t, ξi⟩| = Θ(n · SNR2),

with ⟨w∗
r,t,µj⟩ = Θ(1) if n · SNR2 = Ω(1), and ⟨w∗

r,t, ξi⟩ = Θ(1) if n−1 · SNR−2 = Ω(1).

Theorem 3.1 states that diffusion model training encourages balanced signal and noise learning, i.e.,
the neurons share the same order in the directions of signals and noise. Notably, the ratio between
signal and noise learning is governed by the SNR, with a stationary magnitude as n · SNR2.

Theorem 3.2 (Classification). Let Tµ = Θ̃(η−1m∥µ∥−2) and Tξ = Θ̃(η−1nmσ−2
ξ d−1) and δ > 0.

Under Condition 3.1, suppose m = Ω(log(n/δ)). There exist two absolute constants C > C > 0
such that with probability at least 1− δ, it satisfies that:

• When n · SNR2 ≥ C, there exists 0 ≤ k ≤ Tµ such that LS(W
k) ≤ 0.1 and

max
r

|⟨wk
j,r,µj⟩| ≥ 2, ∀j = ±1, max

j,r,i
|⟨wk

j,r, ξi⟩| = o(1).
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• When n · SNR2 ≤ C, there exists 0 ≤ k ≤ Tξ such that LS(W
k) ≤ 0.1 and

max
r

|⟨wk
yi,r, ξi⟩| ≥ 1, ∀i ∈ [n], max

j,r,y
|⟨wk

j,r,µy⟩| = o(1).

Theorem 3.2 establishes a sharp phase transition between signal and noise learning under classification
training. The transition is precisely determined by n · SNR2. That is, when n · SNR2 ≥ C for some
constant C > 0, the neural network learns signal to achieve small training loss. On the contrary,
when n · SNR2 ≤ C for some constant C ∈ (0, C), the neural network overfits noise to achieve
convergence. With standard techniques, such as in (Cao et al., 2022), we can show signal and noise
learning corresponds to the regime of benign and harmful overfitting respectively. To the best of our
knowledge, this is the first result that shows separation under the constant of n · SNR2.

Diffusion model learns balanced features while classification learn dominant features. Compar-
ing the learning outcomes of diffusion model and classification, we reveal a critical difference that
diffusion models learn more balanced features depending on the SNR conditions, while classification
is prone to learning either signal or noise predominately. This can be best understood in the case of
n · SNR2 = Θ(1). By Theorem 3.2, we have either signal learning or noise dominating the learning
process in classification, while Theorem 3.1 suggests signal and noise learning are in the same order
in diffusion models. The theoretical findings corroborate the empirical observations that the neural
network trained for classification is prone to overly rely on learning a specific pattern that is easier to
learn, a process known as shortcut learning (Geirhos et al., 2020). Meanwhile, diffusion models tend
to learn low-frequency, global patterns (Jaini et al., 2024), which helps to improve the classification
robustness (Chen et al., 2024b;c).

4 PROOF OVERVIEW

This section outlines the proof roadmap for the main results. For diffusion model, the mean-squared
loss, the joint training of two layers as well as learning in the direction of initialization, pose significant
challenges for the analysis. We adopt a two-stage analysis and characterize the stationary points
based on the derived results at the end of the second stage. For classification, the two-stage analysis
is similar as in (Cao et al., 2022; Kou et al., 2023) where the first stage learns signal or noise vector
sufficiently fast and the second stage shows convergence in the training loss where the learned scale
difference in the first stage is maintained. However for classification analysis, we highlight two
critical differences compared to existing works (Cao et al., 2022; Kou et al., 2023; Meng et al., 2024),
i.e., a constant n · SNR2 condition and quadratic activation.

4.1 DIFFUSION MODEL

We first simplify the DDPM loss by taking the expectation with respect to the added diffusion noise:

LF (Wt) = d+
1

2n

n∑
i=1

2∑
p=1

( 1

m
Eϵt,i

∥∥ m∑
r=1

⟨wr,t,x
(p)
t,i ⟩

2wr,t

∥∥2
︸ ︷︷ ︸

I1

− 4αtβt√
m

m∑
r=1

∥wr,t∥2⟨wr,t,x
(p)
0,i ⟩︸ ︷︷ ︸

I2

)
,

where for p = 1, 2, x(p)
t,i = αtx

(p)
0,i + βtϵ

(p)
t,i , with x

(1)
0,i = µyi and x

(2)
0,i = ξi and ϵ

(1)
t,i , ϵ

(2)
t,i ∼ N (0, I).

We further simplify I1 in Lemma D.2 (in Appendix). We remark that I1 corresponds to a regularization
term that regulates the magnitude and alignment of neurons, while I2 corresponds to the main learning
term. We highlight that apart from the signal and noise directions, the learning term I2 also includes
the initialization direction w0

r,t, which further complicates the analysis.

First stage. In the first stage, where all the key quantities, including signal and noise inner products,
weight norms and cross-neuron inner products remain close to their respective initialization, we can
show the growth of the signal and noise inner products is approximately linear:

⟨wk+1
r,t ,µj⟩ = ⟨wk

r,t,µj⟩+Θ(η∥wk
r,t∥2∥µ∥2)

⟨wk+1
r,t , ξi⟩ = ⟨wk

r,t, ξi⟩+Θ(ηn−1∥wk
r,t∥2∥ξi∥2)

(1)

In addition, the change of wk
r,t along direction w0

r′,t can be properly controlled such that the scale
of key quantities remain unaffected and the simplification in (1) is valid throughout the first stage.
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The updates in (1) immediately suggest that once the growth terms of the inner products dominate
their initialization, we obtain |⟨wk

r,t,µj⟩|/|⟨wk
r,t, ξi⟩| = Θ(n · SNR2). This marks the end of the

first stage, as described in the following lemma.
Lemma 4.1. Under Condition 3.1, there exists an iteration T1 = max{Tµ, Tξ}, where Tµ =

Θ̃(
√
mσ−1

0 d−1∥µ∥−1η−1) and Tξ = Θ̃(n
√
mσ−1

0 σ−1
ξ d−3/2η−1) such that for all k ≤ T1,

∥wk
r,t∥2 = Θ(σ2

0d), ⟨wk
r,t,w

0
r,t⟩ = Θ(σ2

0d) for all r ∈ [m], j = ±1, i ∈ [n]. Furthermore, we
can show for all j, j′ = ±1, r, r′ ∈ [m], i, i′ ∈ [n],

• ⟨wT1
r,t,µj⟩ = Θ(⟨wT1

r′,t,µj′⟩), ⟨wT1
r,t, ξi⟩ = Θ(⟨wT1

r′,t, ξi′⟩), and

• |⟨wT1
r,t,µj⟩|/|⟨wT1

r,t, ξi⟩| = Θ(n · SNR2) ,

Lemma 4.1 verifies that at the end of the first stage, all the neurons are concentrated and the ratio
is precisely determined by n · SNR2. This is critically different compared to classification where
signal and noise learning exhibits exponential growth as we show later and thus shows a clear scale
difference at the end of the first stage, even when n · SNR2 = Θ(1).

Second stage. The second stage aims to characterize when the dominant terms in the gradients
along the key directions become no longer dominant. To this end, we decompose the gradient into

⟨∇wr,t
L(Wk

t ),µj⟩ = −Θ
(
∥wk

r,t∥2∥µ∥2
)
+ Ek

r,t,µj
,

⟨∇wr,t
L(Wk

t ), ξi⟩ = −Θ
(
n−1∥wk

r,t∥2∥ξi∥2
)
+ Ek

r,t,ξi ,

⟨∇wr,t
L(Wk

t ),w
0
r,t⟩ = −Θ

((
⟨wk

r,t,µj + ξ⟩ − ∥wk
r,t∥4

)
⟨wk

r,t,w
0
r,t⟩+ ∥wk

r,t∥2⟨w0
r,t,µj + ξ⟩

)
+ Ek

r,t,w0 ,

where Ek
r,t,µj

, Ek
r,t,ξi

, Ek
r,t,w0 are the residual terms of the gradients and we let ξ = 1

n

∑n
i=1 ξi. The

following lemma shows before Ek
r,t,µj

, Ek
r,t,ξi

, Ek
r,t,w0 reach order as the dominant terms, the ratio

of signal and noise inner products are preserved.
Lemma 4.2. There exists an iteration T2 > T1 with T2 = Θ(max{η−1σ−2

0 d−1, η−1nσ−2
0 σ2

ξ})
such that for all j = ±1, r ∈ [m], i ∈ [n] (1) if n · SNR2 = Ω(1), ⟨wT2

r,t,µj⟩ = Θ(1)

and if n−1 · SNR−2 = Ω(1), ⟨wT2
r,t, ξi⟩ = Θ(1); (2) ET2

r,t,µj
= Θ(∥wT2

r,t∥2∥µ∥2), Er,t,ξi =

Θ(n−1∥wT2
r,t∥2∥ξi∥2), E

T2

r,t,w0 = Θ((⟨wk
r,t,µj+ξ⟩−∥wk

r,t∥4)⟨wk
r,t,w

0
r,t⟩+∥wk

r,t∥2⟨w0
r,t,µj+ξ⟩)

and (3) for all T1 ≤ k ≤ T2, we have

• ⟨wk
r,t,µj⟩ = Θ(⟨wk

r′,t,µj′⟩), ⟨wk
r,t, ξi⟩ = Θ(⟨wk

r′,t, ξi′⟩),

• |⟨wk
r,t,µj⟩|/|⟨wk

r,t, ξi⟩| = Θ(n · SNR2) ,

Lemma 4.2 characterizes T2 as the point where the dominant terms of the gradients in the first
stage become comparable to the residual terms. Meanwhile, we show the scale of signal and noise
inner products escape from initialization and reach constant order. Throughout the second stage,
the concentration of neurons are preserved and the ratio of signal to noise learning is dictated by
n · SNR2. Finally, we identify there exists a stationary point that satisfies the conditions at the end of
the second stage (Lemma 4.2).
Theorem 4.1 (Informal). There exists a stationary point W∗

t , i.e., ∇wr,tL(W
∗
t ) = 0 such that

the conditions at T2 (in Lemma 4.2) are satisfied, and in particular |⟨w∗
r,t,µj⟩|/|⟨w∗

r,t, ξi⟩| =

Θ(n · SNR2) for all j = ±1, r ∈ [m], i ∈ [n].

4.2 CLASSIFICATION

For classification, we first let Sy := {i ∈ [n] : yi = y} for y = ±1 and ℓ′ki = ℓ′
(
yif(W

k,x)
)
. We

can rewrite the gradient descent updates in terms of the signal and noise inner products:

⟨wk+1
j,r ,µy⟩ = ⟨wk

j,r,µy⟩ −
η|Sy|
nm

ℓ′ki ⟨wk
j,r,µy⟩jy∥µ∥2 = (1− η|Sy|∥µ∥2

nm
ℓ′ki jy)⟨wk

j,r,µy⟩, (2)

⟨wk+1
j,r , ξi⟩ = ⟨wk

j,r, ξi⟩ −
η

nm
ℓ′ki ⟨wk

j,r, ξi⟩∥ξi∥2jyi −
η

nm

∑
i′ ̸=i

ℓ′ki′ ⟨wk
j,r, ξi′⟩jyi′⟨ξi′ , ξi⟩, (3)
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Low SNR (n · SNR2 = 0.75) High SNR (n · SNR2 = 6.75)

Figure 2: Experiments on the synthetic dataset with both low SNR (n · SNR2 = 0.75) and high
SNR (n · SNR2 = 6.75). In the low SNR setting, we see noise learning quickly dominates signal
learning for the classification task and in the high SNR setting, signal learning quickly dominates
noise learning. Meanwhile diffusion model converges to a stationary point that with signal-to-noise
learning ratio respects the order of n · SNR2. More experimental results on additional SNR values
are in Appendix A.2.

for all j, y = ±1, r ∈ [m], i ∈ [n]. For the signal inner product, its update suggests that for
any j = ±1, wj,r specializes the learning of µj due to that ℓ′ki < 0, |⟨wk+1

j,r ,µy⟩| = (1 −
η|Sy|∥µ∥2

nm ℓ′ki jy)|⟨wk
j,r,µy⟩| > |⟨wk

j,r,µy⟩| only when j = y. For the noise inner product, the
growth is dominated by the second term where |⟨ξi, ξi′⟩| = Õ(d−1/2)∥ξi∥2 is negligible. Thus, we
show |⟨wk+1

j,r , ξi⟩| grows only for j = yi. In contrast, for j = −yi, its magnitude cannot increase
relative to the scale of initialization. Next, we decompose the analysis into two stages.

First stage. In the first stage before the maximum of signal and noise inner product reaches constant
order, the loss derivatives can be lower bounded by an absolute constant, i.e., |ℓ′ki | ≥ Cℓ, for all
k ≤ T1. As a result, both signal and noise inner product can grow exponentially and the relative
growth rates are determined by n · SNR2. A constant order of difference in the growth rates is
sufficient to ensure a scale separation in the signal and noise learning at the end of the first stage, as
shown in the following Lemma.

Lemma 4.3. Under Condition 3.1: (1) When n · SNR2 = Ω(1), there exists T1 = Θ̃(η−1m∥µ∥−2),
such that 1

m

∑m
r=1 |⟨w

T1
j,r,µj⟩| ≥ 2 for all j = ±1 and maxj,r,i |⟨wT1

j,r, ξi⟩| = o(1). (2) When
n−1 · SNR−2 = Ω(1), there exists T1 = Θ̃(η−1nmσ−2

ξ d−1) such that 1
m

∑m
r=1 |⟨wT1

yi,r, ξi⟩| ≥ 4

for all i ∈ [n] and maxj,r,y |⟨wT1
j,r,µy⟩| = o(1).

Remark 4.1. Different to existing analysis that only shows maximum inner product reaches constant
order (Cao et al., 2022; Huang et al., 2023a), we also show the average inner product reach constant
order at the same time. Such a stronger result is required for the analysis under the constant order of
n · SNR2, which reduces the required iteration number in the second stage by an order of m.

Second stage. In the second stage, we show the loss converges while the scale separation established
in Lemma 4.3 is maintained. Because n · SNR2 can be a constant, we require to carefully bound
the loss derivatives in the second stage particularly for establishing the upper bound for |⟨wk

j,r, ξi⟩|
when n · SNR2 = Ω(1). The naïve bound maxi |ℓ′ki | ≤ maxi |ℓki | ≤ nLS(W

k) used in (Cao et al.,
2022) no longer works as it introduces an additional factor of n. To provide a tighter bound, we show
the ratio of loss derivatives in the case of n · SNR2 = Ω(1), i.e., |ℓ′ki |/|ℓ′ki′ | ≤ C1 for all i, i′ ∈ [n]
with yi = yi′ , k ≥ T1, where C1 > 0 is a constant. This is possible because the network output is
dominated by the signal, which is shared across samples with the same label. This allows to bound
maxi |ℓ′ki | = Θ(|Syi∗ |

−1∑
i∈Syi∗

|ℓ′ki |) ≤ Θ(LS(W
k)).

5 EXPERIMENTS

We conduct both synthetic and real-world experiments to verify our theoretical claims.
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Figure 3: Experiments on Noisy-MNIST with S̃NR = 0.1. (First
row): Test Noisy-MNIST images; (Second row): Illustration of in-
put gradient, i.e., ∇xF+1(W,x) when y = 1 and ∇xF−1(W,x)
when y = 0. (Third row): denoised image from diffusion model.
In this low-SNR case, we see classification tends to predominately
learn noise while diffusion learns both signals and noise.

(a)

(b)

(c)

Figure 4: Experiments on
Noisy-MNIST with S̃NR =
0.1. (a) Train loss for classifi-
cation. (b) Train loss for dif-
fusion model. (c) Feture learn-
ing dynamics.

5.1 SYNTHETIC EXPERIMENT

Setup. We follow Definition 2.1 to generate a synthetic dataset for both diffusion model and
classification. Specifically, we set data dimension d = 1000 and let µ1 = [µ, 0, · · · , 0] ∈ Rd and
µ−1 = [0, µ, 0, · · · , 0] ∈ Rd. We sample the noise patch ξi ∼ N (0, Id), i ∈ [n] (i.e., σξ = 1). We
set sample size and network width to be n = 30 and m = 20 and initialize the weights to be Gaussian
with a standard deviation σ0 = 0.001. We vary the choice of µ to create two problem settings: (1)
low SNR with µ = 5, which leads to n · SNR2 = 0.75 and (2) high SNR with µ = 15, which leads
to n · SNR2 = 6.75. We use the same two-layer networks introduced in Section 2. For classification,
we set a learning rate of η = 0.1 and train for 500 iterations. For diffusion model, we minimize the
DDPM loss by averaging over the diffusion noise, following the standard training of diffusion model.
In particular, for each sample, we samples nϵ = 2000 noise at each iteration and the loss is calculated
by taking an average over the noise. For the noise coefficients, we consider a time t = 0.2 and set
αt = exp(−t) = 0.82 and βt =

√
1− exp(−2t) = 0.57. For diffusion model, we set η = 0.5 and

train for 40000 iterations.

Results. In Figure 2, we compare signal and noise learning dynamics–visualized through maximum
signal and noise inner product–between classification and diffusion model. In Appendix A.1, we
also include training loss convergence for both the tasks as well as training and test accuracy for
classification. For classification, the training loss converges while diffusion model recovers only a
stationary point.

In terms of feature learning, noise learning in classification quickly dominates signal learning by
exhibiting a significant larger growth in the first stage (up to around 20 iterations). This ensures that
noise learning stabilizes at a constant order while signal learning remains relatively small. In the
second stage, training loss converges and signal and noise learning exhibits logarithmic growth. For
diffusion model, in the first stage, where training loss does not materially change, both signal and
noise learning increase linearly. In the second stage where loss significantly decreases, signal and
noise learning start to grow exponentially and in the final stage, due to the weight regularization
terms, noise and signal reach a stationary point that preserves the scale of n · SNR2.
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5.2 REAL-WORLD EXPERIMENT

Setup. We also conduct experiments on the MNIST dataset (Lecun et al., 1998) to support our theory.
In order to better control the signal-to-noise ratio, we create a Noisy-MNIST dataset, where we treat
each original MNIST image as a clean signal patch and concatenate a standard Gaussian noise patch
with the same size, i.e., 28× 28. In addition, we scale the signal patch by a constant denoted as S̃NR.
Because the noise scale is fixed, higher S̃NR corresponds to higher SNR. Some sample images with
S̃NR = 0.1 are shown in the first row of Figure 3. We select 50 samples each from digit 0 and 1
respectively (i.e., n = 100). We consider the same neural networks as in the synthetic example,
where we set m = 100 and initialize the weights with σ0 = 0.01. For diffusion model, we choose the
same αt, βt as in the synthetic experiment. In the main paper, we present the results for S̃NR = 0.1,
which corresponds to a low SNR setting.

Results. Figure 4(a,b) shows that both classification and diffusion model converge in loss. Addi-
tionally, Figure 4(c) plots the signal and noise learning dynamics. Because each image is composed
of unique signal µi and noise patch ξi for i ∈ [n], we measure the signal and noise learning by
computing 1

n

∑n
i=1 maxr |⟨wr,µi⟩| and 1

n

∑n
i=1 maxr |⟨wr, ξi⟩| respectively. We notice that due to

the low SNR, noise learning in classification dominates signal learning at convergence while diffusion
model learns more balanced features. This corroborates our theoretical findings.

To visualize the patterns learned by the neural networks, for classification, we adopt an approach
similar to Grad-CAM (Selvaraju et al., 2020) by analyzing the gradient of output with respect to
the input. Specifically, for samples of digit 0, we plot the gradient of negative function output,
∇xF−1(W,x), while for digit 1, we plot ∇xF+1(W,x). As shown in the second row of Figure 3,
the gradients of six test images indicate that classification primarily learns the noise rather than the
signal patch. For diffusion model, we first add diffusion noise to the input images and use the network
to predict the added noise. Then we reconstruct the input with the formula x̂0 = (xt − βtϵ̂(xt))/αt,
where ϵ̂(xt) denotes the predicted diffusion noise. The third row of Figure 3 shows that the diffusion
model learns both the signal and noise. In Appendix A.3, we present results for a high-SNR setting
with S̃NR = 0.5, where we observe the reverse pattern: classification predominately captures signal
rather than noise while diffusion model continues to balance the learning of both signal and noise.
Additionally, Appendix A.5 presents experiments on all 10 digits of the MNIST dataset, verifying the
observed distinctions in feature learning between diffusion models and classification.

6 CONCLUSION

This work introduces a theoretical framework for analyzing the feature learning dynamics in diffusion
models, taking an initial step toward understanding the representation learning in diffusion models.
Our findings demonstrate that diffusion models inherently promote a more balanced feature learning,
in contrast to classification models, which tend to prioritize certain features over others. This suggests
that classification models may be more sensitive to variations in the signal-to-noise ratio compared
to diffusion models. Consequently, this may provide an explanation for the inherent adversarial
robustness of diffusion models in downstream applications, such as classification (Li et al., 2023a;
Chen et al., 2024c;b), as perturbations are less likely to significantly affect the learned representations
compared to classification models.

Although our study focuses on a two-patch data setup, the proposed framework can be extended
to accommodate more complex data settings. For example, our analysis can be extended to multi-
feature data distributions, where certain features appear more frequently (Zou et al., 2023) or have
larger norms than others (Lu et al., 2024). Such extensions could provide deeper insights into
the mechanisms of feature learning in more realistic scenarios. We hypothesize that, despite the
infrequent occurrence or smaller norm of certain features, diffusion models can effectively learn them
due to the nature of the denoising objective. This insight has significant implications for downstream
tasks, such as out-of-distribution classification, where rare or weak features may be the primary
distinguishing factors.

We believe our framework holds broader potential beyond the scope of this work and can be adapted
to analyze conditional and latent diffusion models, elucidate the mechanisms of various training
objectives and optimizers, and examine other generative paradigms, such as flow matching.
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A ADDITIONAL EXPERIMENTAL RESULTS

This section includes additional experiment results.

A.1 SUPPLEMENTARY RESULTS FOR SYNTHETIC EXPERIMENT

We first include the convergence in loss plots as well as accuracy for classification under the two
SNR conditions considered in the main experiment. The (in-distribution) test accuracy is computed
with 3000 test samples. We see both classification and diffusion model are able to converge in loss,
although diffusion model only finds a stationary point. In the low SNR setting, classification is able to
perfectly fit the training samples with a 100% classification accuracy. However because it primarily
focuses on learning noise, the generalization is poor with a test accuracy of around 50%. For the
high-SNR case, both training and test sets can be perfectly classified due to the signal learning.

Low SNR High SNR

Figure 5: Experiments on the synthetic dataset with both low SNR (n · SNR2 = 0.75) and high SNR
(n · SNR2 = 6.75).

A.2 FEATURE LEARNING COMPARISON UNDER VARYING SNRS

In this section, we compare the feature learning dynamics of classification and diffusion models on
additional settings of SNR. Apart from the n · SNR2 = 0.75 and n · SNR2 = 6.75 as shown in the
main text, we additionally test on (1) n · SNR2 = 1.92, (2) n · SNR2 = 3 (3) n · SNR2 = 4.32. The
feature learning dynamics under the corresponding SNR settings are shown in Figure 6.

From the figures, we can see that classification indeed is more sensitive to the SNR scale, where it
easily overfit to either signal or noise (except for the case where n · SNR2 = 3 where classification
learns signal and noise to approximately the same scale). On the other hand, we can verify that at
stationarity, diffusion model learns in a more balanced scale for signal and noise.

A.3 HIGH SNR SETTING ON NOISY-MNIST

Here we include experiment results when S̃NR = 0.5, which corresponds to the high SNR setting.
The experiment settings are exactly the same as in the main experiment. Figure 8 shows both
classification and diffusion model converge in terms of objective. In addition, we see the high
SNR encourages classification to learn primarily the signal while ignoring the noise. In contrast,
diffusion model still learns both signal and noise to relatively the same order. Figure 7 suggests that
classification learns more signal compared to noise while diffusion model still learns more balanced
signal and noise. We also plot classification accuracy for both the low and high SNR cases. In the
low-SNR case, because classification predominately learns noise, the generalization is poor with test
accuracy around 50%. Conversely in the high-SNR case, where the model is able to learn signals, the
classification demonstrates effective generalization with nearly 100% test accuracy.
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n · SNR2 = 1.92 n · SNR2 = 3

n · SNR2 = 4.32

Figure 6: Experiments on the synthetic dataset with varying SNRs.

Figure 7: Experiments on Noisy-MNIST with S̃NR = 0.5. (First
row): Test Noisy-MNIST images; (Second row): Illustration of in-
put gradient, i.e., ∇xF+1(W,x) when y = 1 and ∇xF−1(W,x)
when y = 0. (Third row): denoised image from diffusion model.
In this low-SNR case, we see classification tends to predominately
learn noise while diffusion learns both signal and noise.

(a)

(b)

(c)

Figure 8: Experiments on
Noisy-MNIST with S̃NR =
0.5. (a) Train loss for classifi-
cation. (b) Train loss for diffu-
sion model. (c) Feature learn-
ing dynamics.

A.4 EXPERIMENTS WITH ADDITIONAL DIFFUSION TIME STEP

Here we also test on additional diffusion time step for learning on noisy-MNIST dataset. In particular,
we consider t = 0.8, which gives αt = exp(−t) = 0.45 and βt =

√
1− exp(−2t) = 0.89. We

include the illustrations of denoised images as well as loss convergence and feature learning dynamics
in Figure 10, 11, 12, 13. We see despite with a larger scale of added diffusion noise, diffusion model
still learn both signals and noise unlike for the case of classification.
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(a) ACC (S̃NR = 0.1) (b) ACC (S̃NR = 0.5)

Figure 9: Classification accuracy on (a) low-SNR and (b) high-SNR noisy MNIST datasets. This
demonstrates that when classification focuses on learning noise (as in the low-SNR case), the test
accuracy hovers around 50%, thus suggesting failure to generalize. In contrast, when classification
focuses on learning signals (as in the high-SNR case), classification generalizes effectively, achieving
near-perfect accuracy.

Figure 10: Additional experiments on Noisy-MNIST with S̃NR =
0.1 and diffusion t = 0.8. (First row): Test Noisy-MNIST im-
ages; (Second row): denoised image from diffusion model. We
see diffusion still learns both signals and noise even with large
diffusion time step.

(a)

(b)

Figure 11: Additional experi-
ments on Noisy-MNIST with
S̃NR = 0.1 and = t = 0.8. (a)
Train loss for diffusion model.
(c) Feature learning dynamics.

Figure 12: Additional experiments on Noisy-MNIST with S̃NR =
0.5 and diffusion t = 0.8. (First row): Test Noisy-MNIST im-
ages; (Second row): denoised image from diffusion model. We
see diffusion still learns both signals and noise even with large
diffusion time step.

(a)

(b)

Figure 13: Additional experi-
ments on Noisy-MNIST with
S̃NR = 0.5 and = t = 0.8. (a)
Train loss for diffusion model.
(c) Feature learning dynamics.
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Figure 14: Experiments on 10-class Noisy-MNIST with S̃NR =
0.1. (First row): Test Noisy-MNIST images; (Second row): Illus-
tration of gradient of output (for the true class) with respect to the
input. (Third row): denoised image from diffusion model. In this
low-SNR case, we see classification tends to predominately learn
noise while diffusion learns both signals and noise.

(a)

(b)

(c)

Figure 15: Experiments on
10-class Noisy-MNIST with
S̃NR = 0.1. (a) Train loss for
classification. (b) Train loss
for diffusion model. (c) Fea-
ture learning dynamics.

A.5 ON THE FEATURE LEARNING WITH 10-CLASS MNIST

In the main paper, we only conduct experiments on Noisy-MNIST restricted to two classes. In this
section, we experiment over the 10-class MNIST dataset, which contains more features and is more
challenging for both diffusion model and classification.

We adopt the same data processing pipelines as in Section 5.2 except that for each class, we select
10 images. We set the scaled SNR S̃NR = 0.1, consistent with the main paper. While the diffusion
model remains unchanged, the classification model requires modification. Specifically, the second
layer’s weight matrix has dimensions m × 10, with entries fixed uniformly to values in {−1, 1}.
Furthermore, we employ cross-entropy loss for training the classification model.

We plot the visualization of feature learning in Figure 14. We observe that, even with additional
features and labels, the similar learning patterns are observed, i.e., diffusion model learns both signals
and noise in order to reconstruct the input distribution while classification model learns primarily
noise for loss minimization. From Figure 15(c), we notice that diffusion model learns features to
relatively the same scale while for classification, the growth of feature learning is dominated by noise
learning.
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B PRELIMINARY LEMMAS

Recall we define S1 = {i ∈ [n] : yi = 1} and S−1 = {i ∈ [n] : yi = −1}.
Lemma B.1. Given arbitrary δ > 0, with probability at least 1− δ, we have

n

2

(
1− Õ(n−1/2)

)
≤ |S1|, |S−1| ≤

n

2

(
1 + Õ(n−1/2)

)
Proof of Lemma B.1. The proof is the same as in (Cao et al., 2022; Kou et al., 2023) and we include
here for completeness. Because |S1| =

∑n
i=1 1(yi = 1) and |S−1| =

∑n
i=1 1(yi = −1) and

P(yi = 1) = P(yi = −1) = 1/2 for all i ∈ [n], then E|S1| = E|S−1| = n/2. By Hoeffding’s
inequality, for arbitrary a > 0,

P(||S±1| − n/2| ≥ a) ≤ 2 exp(−2a2n−1).

Setting a =
√
n log(4/δ)/2 and taking union bound, we have with probability at least 1− δ,∣∣∣|S±1| −

n

2

∣∣∣ ≤√n log(4/δ)

2
.

Hence the proof is complete.

Lemma B.2. Given arbitrary δ > 0, with probability at least 1− δ,

σ2
ξd(1− Õ(d−1/2)) ≤ ∥ξi∥2 ≤ σ2

ξd(1 + Õ(d−1/2))

|⟨ξi, ξi′⟩| ≤ 2σ2
ξ

√
d log(4n2/δ)

for all i, i′ ∈ [n].

Proof of Lemma B.2. The proof is the same as in (Cao et al., 2022; Kou et al., 2023) and we include
here for completeness. By Bernstein’s inequality, with probability at least 1− δ/(2n), we have

|∥ξi∥2 − σ2
ξd| = O(σ2

ξ

√
d log(4n/δ)),

which shows the first result.

For the second claim, we can show by Bernstein’s inequality, with probability at least 1− δ/(2n2)
that for any i ̸= i′

|⟨ξi, ξi′⟩| ≤ 2σ2
ξ

√
d log(4n2/δ)

Then we apply union bound to show the results hold for all i, i′ ∈ [n].

C CLASSIFICATION

We track the inner product dynamics during the training of supervised classification to elucidate the
signal learning and noise learning. We first write the gradient descent dynamics as follows.

wk+1
j,r = wk

j,r − η∇wj,rLS(W
k)

= wk
j,r −

η

nm

n∑
i=1

ℓ′ki ⟨wk
j,r,x

(1)
i ⟩jyix(1)

i − η

nm

n∑
i=1

ℓ′ki ⟨wk
j,r, ξi⟩jyiξi

= wk
j,r −

η

nm

∑
i∈S1

ℓ′ki ⟨wk
j,r,µ1⟩jµ1 +

η

nm

∑
i∈S−1

ℓ′ki ⟨wk
j,r,µ−1⟩jµ−1 −

η

nm

n∑
i=1

ℓ′ki ⟨wk
j,r, ξi⟩jyiξi

Here we restate the Condition 3.1 specific for the case of supervised classification.
Condition C.1. Suppose that

1. Dimension d satisfies d = Ω̃(max{n2mσ−1
ξ ∥µ∥, n4m}).
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2. Training sample and network width satisfy m = Ω(log(n/δ)), n = Ω(log(m/δ)).

3. The initialization variation σ0 satisfies Õ(n2mσ−1
ξ d−1) ≤ σ0 ≤ Õ(min{∥µ∥−1, σ−1

ξ d−1/2}).

4. The learning rate satisfies η ≤ Õ(min{m∥µ∥−2, nmσ0σ
−1
ξ d−1/2, nmσ−2

ξ d−1})

We make the particular remarks as follows. The lower bound on m = Ω̃(1) is to ensure the
initialization is concentrated and thus provides a lower bound on the maximum and average inner
product. The lower bound on n = Ω̃(1) is required such that |S1|, |S−1| = Θ(n) and Õ(n−1/2)
remains small. The lower bound on σ0 is required for the noise memorization setting where we need
to control the lower bound for the noise inner product at initialization. Thus to ensure the lower
bound σ0 is valid, we require further conditions on the dimension d apart from d = Ω̃(n2).

C.1 USEFUL LEMMAS

We first provide a lemma that bound the inner product at initialization.
Lemma C.1 (Cao et al. (2022)). Suppose δ > 0 and that d = Ω(log(mn/δ)),m = Ω(log(1/δ)),
then with probability at least 1− δ,

|⟨w0
j,r,µj′⟩| ≤

√
2 log(8m/δ)σ0∥µ∥

|⟨w0
j′,r, ξi⟩| ≤ 2

√
log(8mn/δ)σ0σξ

√
d

for all j, j′ ∈ {±1}, r ∈ [m], i ∈ [n]. In addition,

max
r∈[m]

|⟨w0
j,r,µj′⟩| ≥ σ0∥µ∥/2,

max
r∈[m]

|⟨w0
j,r, ξi⟩| ≥ σ0σξ

√
d/4

for all j, j′ ∈ {±1}, i ∈ [n].

We decompose the weights into its signal components and noise components.
Lemma C.2. The weight can be decomposed as

wk
j,r = w0

j,r + ζk1µ1 + ζk−1µ−1 +

n∑
i=1

ρkj,r,i∥ξi∥−2ξi

where the noise coefficients ρkj,r,i satisfy ρ0j,r,i = 0 and

ρk+1
j,r,i = ρkj,r,i −

η

nm
ℓ′ki ⟨wk

j,r, ξi⟩jyi∥ξi∥2

for all j = ±1, r ∈ [m] and i ∈ [n].

Proof of Lemma C.2. The proof follows from (Cao et al., 2022; Kou et al., 2023). First, we recall the
gradient descent update as

wk+1
j,r = wk

j,r −
η

nm

∑
i∈S1

ℓ′ki ⟨wk
j,r,µ1⟩jµ1 +

η

nm

∑
i∈S−1

ℓ′ki ⟨wk
j,r,µ−1⟩jµ−1 −

η

nm

n∑
i=1

ℓ′ki ⟨wk
j,r, ξi⟩jyiξi

= w0
j,r −

η

nm

k∑
s=0

∑
i∈S1

ℓ′ki ⟨ws
j,r,µ1⟩jµ1 +

η

nm

k∑
s=0

∑
i∈S−1

ℓ′ki ⟨ws
j,r,µ−1⟩jµ−1

− η

nm

k∑
s=0

n∑
i=1

ℓ′ki ⟨ws
j,r, ξi⟩jyiξi.

By the data model, we have with probability 1, the vectors are linearly independent and thus the
decomposition is unique with

ρkj,r,i = − η

nm

k∑
s=0

ℓ′ki ⟨ws
j,r, ξi⟩jyi∥ξi∥2

Then writing out the iterative update for ρkj,r,i completes the proof.
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Lemma C.3. Let x ∼ N (0, σ2). Then P(|x| ≤ c) ≤ erf
(

c√
2σ

)
≤
√

1− exp(− 2c2

πσ2 ).

Proof of Lemma C.3. The probability density function for x is given by

f(x) =
1√
2πσ

exp(− x2

2σ2
).

Then we know that

P(|x| ≤ c) =
1√
2πσ

∫ c

−c

exp(− x2

2σ2
)dx.

By the definition of erf function

erf(c) =
2√
π

∫ c

0

exp(−x2)dx,

and variable substitution yields

erf(
c√
2σ

) =
1√
2πσ

∫ c

0

exp(− x2

2σ2
)dx.

Therefore, we first conclude P(|x| ≤ c) = 2erf( c√
2σ

). Next, by the inequality erf(x) ≤√
1− exp(−4x2/π), we obtain the desired result.

C.2 SCALE OF INNER PRODUCTS

We first derive a global bound for the growth of inner products until convergence. To this end, we let
T ∗ = η−1poly(∥µ∥−1, σ−2

ξ d−1, σ−1
0 , n,m, d) be the maximum number of iterations considered and

let α = 2 log(T ∗). We also denote β := 3maxj,r,i,y{|⟨w0
j,r,µy⟩|, |⟨w0

j,r, ξi⟩|}. Then from Lemma
C.1 and from Condition C.1, we can bound

3max{σ0∥µ∥/2, σ0σξ
√
d/4} ≤ β ≤ 1/C (4)

for some sufficiently large constant C > 0.
Proposition C.1. Under Condition C.1, for all 0 ≤ k ≤ T ∗, we can bound

|⟨wk
j,r,µj⟩|, |⟨wk

yi,r, ξi⟩|, |ρ
k
yi,r,i| ≤ α, (5)

|⟨wk
j,r,µ−j⟩| ≤ β, (6)

|⟨wk
−yi,r, ξi⟩|, |ρ

k
−yi,r,i| ≤ β + 12

√
log(4n2/δ)

d
nα (7)

for all i ∈ [n], r ∈ [m] and j = ±1.

We will prove the bound by induction and we first derive several intermediate lemmas as follows.
Lemma C.4. Suppose results in Proposition C.1 hold at iteration k, then we have Fj(W

k
j ,xi) ≤ 0.5

for all i ∈ [n], j ̸= yi.

Proof of Lemma C.4. Recall that

Fj(W
k
j ,xi) =

1

m

m∑
r=1

(
⟨wk

j,r,x
(1)
i ⟩2 + ⟨wk

j,r,x
(2)
i ⟩2

)
=

1

m

m∑
r=1

(
⟨wk

j,r,µyi
⟩2 + ⟨wk

j,r, ξi⟩2
)

≤ β2 +

(
β + 12

√
log(4n2/δ)

d
nα

)2

≤ 0.5

where the second last inequality is by (6) and (7). The last inequality is by Condition C.1 such that
β ≤ 1/C ≤ 0.25 and d ≥ 144n2α2 log(4n2/δ).
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Lemma C.5. Suppose results in Proposition C.1 hold at iteration k, then we have

|⟨wk
j,r −w0

j,r, ξi⟩ − ρkj,r,i| ≤ 4

√
log(4n2/δ)

d
nα,

for all j = ±1, r ∈ [m], i ∈ [n].

Proof. By Lemma C.2, we recall the decomposition as

wk
j,r = w0

j,r + ζk1µ1 + ζk−1µ−1 +

n∑
i=1

ρkj,r,i∥ξi∥−2ξi.

By the orthogonality, we can show

⟨wk
j,r, ξi⟩ = ⟨w0

j,r, ξi⟩+ ρkj,r,i +
∑
i ̸=i′

ρkj,r,i′∥ξi′∥−2⟨ξi, ξi′⟩

By Lemma B.2 and suppose d = Ω(log(n/δ)), then |⟨ξi, ξi′⟩|∥ξi∥−2 ≤ 4
√
log(4n2/δ)d−1. Thus

we have

|⟨wk
j,r −w0

j,r, ξi⟩ − ρkj,r,i| ≤ 4

√
log(4n2/δ)

d
nα,

where we use the upper bound on |ρkj,r,i| ≤ α.

Lemma C.6. For any r ∈ [m], j, y = ±1, we have sign(⟨w0
j,r,µy⟩) = sign(⟨wk

j,r,µy⟩) for all
0 ≤ k ≤ T ∗.

Proof of Lemma C.6. We prove the results by induction. First, it is clear at k = 0, the results are
satisfied. Then suppose there exists an iteration k̃ such that sign(⟨wk

j,r,µy⟩) = sign(⟨w0
j,r,µy⟩)

holds for all k ≤ k̃ − 1, we show the sign invariance also holds at k̃. Recall the gradient descent
update as

wk+1
j,r = wk

j,r −
η

nm

∑
i∈S1

ℓ′ki ⟨wk
j,r,µ1⟩jµ1 +

η

nm

∑
i∈S−1

ℓ′ki ⟨wk
j,r,µ−1⟩jµ−1

− η

nm

n∑
i=1

ℓ′ki ⟨wk
j,r, ξi⟩jyiξi.

Then the update of the inner product is

⟨wk̃
j,r,µy⟩ = ⟨wk̃−1

j,r ,µy⟩ −
η

nm

∑
i∈Sy

ℓ′k̃−1
i ⟨wk̃−1

j,r ,µy⟩jy∥µ∥2

=
(
1− η

nm
jy
∑
i∈Sy

ℓ′k̃−1
i ∥µ∥2

)
⟨wk̃−1

j,r ,µy⟩

By the condition that η ≤ C−1m∥µ∥−2 for sufficiently large constant C, we have
| η
nmjy

∑
i∈Sy

ℓ′k̃−1
i ∥µ∥2| < 1. Thus we can guarantee the sign(⟨wk̃

j,r,µy⟩) = sign(⟨wk̃−1
j,r ,µy⟩) =

sign(⟨w0
j,r,µy⟩).

Proof of Proposition C.1. We prove the results by induction. For ρkj,r,i, we prove a stronger result

that |ρkyi,r,i
| ≤ 0.9α ≤ α and |ρk−yi,r,i

| ≤ 0.6β + 8
√

log(4n2/δ)
d nα. First it is clear at t = 0, the

results are satisfied based on the definition of β and α ≥ β. Now suppose that there exists T̃ ≤ T ∗

such that results hold for all 0 ≤ k ≤ T̃ − 1. We wish to show the results also hold for k = T̃ .

First recall the gradient descent update as

wk+1
j,r = wk

j,r −
η

nm

∑
i∈S1

ℓ′ki ⟨wk
j,r,µ1⟩jµ1 +

η

nm

∑
i∈S−1

ℓ′ki ⟨wk
j,r,µ−1⟩jµ−1
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− η

nm

n∑
i=1

ℓ′ki ⟨wk
j,r, ξi⟩jyiξi.

Then based on the orthogonal data modelling assumption, we have for y ̸= j, i.e., y = −j,

⟨wk+1
j,r ,µ−j⟩ = ⟨wk

j,r,µ−j⟩+
η

nm

∑
i∈S−j

ℓ′ki ⟨wk
j,r,µ−j⟩∥µ∥2

=
(
1− η∥µ∥2

nm

∑
i∈S−j

|ℓ′ki |
)
⟨wk

j,r,µ−j⟩

where the second equality is by ℓ′ki < 0 for all i, k. From Lemma C.6, we have sign(⟨wk+1
j,r ,µ−j⟩) =

sign(⟨wk
j,r,µ−j⟩) and thus

|⟨wT̃
j,r,µ−j⟩| ≤

∣∣∣∣∣∣
(
1− η∥µ∥2

nm

∑
i∈S−j

|ℓ′T̃−1
i |

)∣∣∣∣∣∣
∣∣∣⟨wT̃−1

j,r ,µ−j⟩
∣∣∣ ≤ ∣∣∣⟨wT̃−1

j,r ,µ−j⟩
∣∣∣ ≤ β

On the other hand, for y = j, we have

⟨wk+1
j,r ,µj⟩ = ⟨wk

j,r,µj⟩ −
η

nm

∑
i∈Sj

ℓ′ki ⟨wk
j,r,µj⟩∥µ∥2

= ⟨wk
j,r,µj⟩+

η∥µ∥2

nm

∑
i∈Sj

|ℓ′ki |⟨wk
j,r,µj⟩

Next, we notice that

|ℓ′ki | = 1

1 + exp
(
Fyi

(Wk
yi
,xi)− F−yi

(Wk
−yi

,xi)
)

≤ exp
(
− Fyi

(Wk
yi
,xi) + F−yi

(Wk
−yi

,xi)
)

≤ exp
(
− Fyi(W

k
yi
,xi) + 0.5

)
= exp

(
− 1

m

m∑
r=1

(
⟨wk

yi,r,µyi
⟩2 + ⟨wk

yi,r, ξi⟩
2
)
+ 0.5

)
(8)

where the last inequality is by Lemma C.4. Let kj,r be the last time k ≤ T ∗ that |⟨wk
j,r,µj⟩| ≤ 0.5α.

Then we have

⟨wT̃
j,r,µj⟩ = ⟨wkj,r

j,r ,µj⟩+
η∥µ∥2

nm
|ℓ′kj,r

i |⟨wkj,r

j,r ,µj⟩︸ ︷︷ ︸
A1

+
η∥µ∥2

nm

∑
kj,r<k≤T̃−1

|ℓ′ki |⟨wk
j,r,µj⟩

︸ ︷︷ ︸
A2

.

Without loss of generality, we suppose ⟨w0
j,r,µj⟩ ≥ 0, then by Lemma C.6, ⟨wk

j,r,µj⟩ ≥ 0 for all
k ≥ 0. Then we can bound

|A1| ≤
η∥µ∥2

nm
0.5α ≤ 0.25α

where the last inequality is by the condition that η ≤ nm∥µ∥−2/2. Furthermore,

|A2| ≤
η∥µ∥2

nm

∑
kj,r<k≤T̃−1

exp(−Fyi(W
k
yi
,xi) + 0.5)⟨wk

j,r,µj⟩

≤ 2η∥µ∥2α
nm

T ∗ exp(−α2/4)

=
2η∥µ∥2α
nm

T ∗ exp(− log(T ∗))

≤ 0.25α

25



Published as a conference paper at ICLR 2025

where the first inequality is by (8) and the second inequality is by upper bound on ⟨wk
j,r,µj⟩ ≤ α for

all k ≤ T̃ − 1. The equality is by the definition of α = 2 log(T ∗) and the last inequality is by the
condition η ≤ nm∥µ∥−2/8. Thus, we can show

⟨wT̃
j,r,µj⟩ ≤ 0.5α+ 0.25α+ 0.25α = α.

Next for the noise growth, from Lemma C.2, we have for yi ̸= j

ρT̃−yi,r,i = ρT̃−1
−yi,r,i

+
η

nm
ℓ′ki ⟨wT̃−1

−yi,r, ξi⟩∥ξi∥
2. (9)

When |ρT̃−1
−yi,r,i

| ≤ 1.5
(
0.3β + 4

√
log(4n2/δ)

d nα
)
, we have

|ρT̃−yi,r,i| ≤ |ρT̃−1
−yi,r,i

|+
2ησ2

ξdα

nm
≤ |ρT̃−1

−yi,r,i
|+ 0.15β ≤ 0.6β + 8

√
log(4n2/δ)

d
nα

where the second inequality is by triangle inequality and |ℓ′ki | ≤ 1 and Lemma B.2. The third
inequality is by the lower bound on β in (4) and the condition that η ≤ 0.05nmσ0σ

−1
ξ d−1/2α.

Further, because |⟨w0
−yi,r, ξi⟩| ≤ 0.3β, when 1.5

(
0.3β + 4

√
log(4n2/δ)

d nα
)
≤ |ρT̃−1

−yi,r,i
| ≤ 0.6β +

8
√

log(4n2/δ)
d nα, we can show from Lemma C.5 that if ρT̃−1

−yi,r,i
> 0, then

1

3
ρT̃−1
−yi,r,i

≤ ⟨wT̃−1
−yi,r, ξi⟩ ≤

4

3
ρT̃−1
−yi,r,i

Then (9) suggests

ρT̃−yi,r,i ≤
(
1− η∥ξi∥2

3nm
|ℓ′ki |

)
ρT̃−1
−yi,r,i

≤ ρT̃−1
−yi,r,i

≤ 0.6β + 8

√
log(4n2/δ)

d
nα

If ρT̃−1
−yi,r,i

< 0, then

4

3
ρT̃−1
−yi,r,i

≤ ⟨wT̃−1
−yi,r, ξi⟩ ≤

1

3
ρT̃−1
−yi,r,i

Then (9) suggests

ρT̃−yi,r,i ≥
(
1− η∥ξi∥2

3nm
|ℓ′ki |

)
ρT̃−1
−yi,r,i

≥ ρT̃−1
−yi,r,i

≥ −0.6β − 8

√
log(4n2/δ)

d
nα

Thus this completes the proof that |ρT̃−yi,r,i
| ≤ 0.6β + 8

√
log(4n2/δ)

d nα.

Finally, by Lemma C.5 we have for all k ≥ 0

|⟨wk
−yi,r, ξi⟩| ≤ |⟨w0

−yi,r, ξi⟩|+ |ρk−yi,r,i|+ 4

√
log(4n2/δ)

d
nα ≤ 0.9β + 12

√
log(4n2/δ)

d
nα

which proves the upper bound for |⟨wT̃
−yi,r, ξi⟩| and |ρT̃−yi,r,i

|.
Next, from Lemma C.2, we have for yi = j,

ρk+1
yi,r,i

= ρkyi,r,i −
η

nm
ℓ′ki ⟨wk

yi,r, ξi⟩∥ξi∥
2. (10)

Let k̃r,i be the last time k < T ∗ that |ρkyi,r,i
| ≤ 0.6α. Then it can be verified that for k ≥ k̃r,i,

|⟨wk
yi,r, ξi⟩| ≥ |ρkyi,r,i| − |⟨w0

yi,r, ξi⟩| − 4

√
log(4n2/δ)

d
nα ≥ 0.5α

where the first inequality is by Lemma C.5 and the last inequality is by |⟨w0
yi,r, ξi⟩| +

4
√

log(4n2/δ)
d nα ≤ 1 ≤ 0.1α.
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We now expand (10) as

ρT̃yi,r,i = ρ
k̃r,i

yi,r,i
+

η

nm
|ℓ′k̃r,i

i |⟨wk̃r,i
yi,r, ξi⟩∥ξi∥

2︸ ︷︷ ︸
A3

+
η

nm

∑
k̃r,i<k≤T̃−1

|ℓ′ki |⟨wk
yi,r, ξi⟩∥ξi∥

2

︸ ︷︷ ︸
A4

Then we can bound

|A3| ≤
2ησ2

ξd

nm
|⟨wk̃r,i

yi,r, ξi⟩| ≤
2ησ2

ξd

nm

(
|⟨w0

yi,r, ξi⟩|+ 0.6α+ 4

√
log(4n2/δ)

d
nα

)

≤
2ησ2

ξd

nm
0.7α

≤ 0.15α

where the first inequality is by |ℓ′ki | ≤ 1 and Lemma B.2 with d = Ω(log(n/δ)) and the second
inequality is by Lemma C.5. The last inequality is by the condition η ≤ C−1nmσ−2

ξ d−1 for
sufficiently large constant C.

In addition, we bound

|A4| ≤
2ησ2

ξdα

nm

∑
kj,r<k≤T̃−1

exp(−Fyi
(Wk

yi
,xi) + 0.5)

≤
4ησ2

ξdα

nm
T ∗ exp(−α2/4)

≤
4ησ2

ξdα

nm
≤ 0.15α

where the first inequality is by (8) and the second inequality is by |⟨wk
yi,r, ξi⟩| ≥ 0.6α−0.1α = 0.5α.

The last inequality is by the condition η ≤ C−1nmσ−2
ξ d−1 for sufficiently large constant C.

Combining the bound on |A3| and |A4|, we have

|ρT̃yi,r,i| ≤ 0.6α+ 0.15α+ 0.15α = 0.9α.

Lastly, we bound

|⟨wT̃
yi,r, ξi⟩| ≤ |⟨w0

yi,r, ξi⟩|+ |ρT̃yi,r,i|+ 4

√
log(4n2/δ)

d
nα ≤ 0.3β + 4

√
log(4n2/δ)

d
nα+ 0.9α

≤ α.

This shows the upper bound as |⟨wT̃
yi,r, ξi⟩|, |ρ

T̃
yi,r,i

| ≤ α.

We require the following lemma that lower bound the loss derivatives in the first stage before the
inner products reach constant order.
Lemma C.7. If maxr,i,y{⟨wk

j,r,µy⟩, ⟨wk
j,r, ξi⟩} = O(1), there exists a constant Cℓ > 0 such that

|ℓ′ki | ≥ Cℓ for all i ∈ [n].

Proof of Lemma C.7. If maxr,i,y{⟨wk
j,r,µy⟩, ⟨wk

j,r, ξi⟩} = O(1), we can bound for all j = ±1

Fj(W
k
j ,xi) =

1

m

m∑
r=1

(
⟨wk

j,r,µyi
⟩2 + ⟨wk

j,r, ξi⟩2
)
≤ O(1)

Therefore, we can bound |ℓ′ki | = (1 + exp(Fyi
(Wk

yi
,xi)− F−yi

(Wk
−yi

,xi)))
−1 ≥ Ω(1).

We also prove the following upper bound on the gradient norm.
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Lemma C.8 (Proof of Lemma C.8). Under Condition C.1, for 0 ≤ k ≤ T ∗, we can bound

∥∇LS(W
k)∥2 = O(max{∥µ∥2, σ2

ξd})LS(W
k)

Proof of Lemma C.8. The proof adopts a similar argument as in (Cao et al., 2022, Lemma C.7) and
we include here for completeness. We first bound

∥∇f(Wk,xi)∥ ≤ 2

m

∑
j,r

∥∥⟨wk
j,r,µyi⟩µyi + ⟨wk

j,r, ξi⟩ξi
∥∥

≤ 2

m

∑
r

|⟨wk
yi,r,µyi

⟩|∥µ∥+ 2

m

∑
r

|⟨wk
yi,r, ξi⟩|∥ξi∥

+
2

m

∑
r

|⟨wk
−yi,r,µyi

⟩|∥µ∥+ 2

m

∑
r

|⟨wk
−yi,r, ξi⟩|∥ξi∥

≤ 2

m

m∑
r=1

(
|⟨wk

yi,r,µyi
⟩|+ |⟨wk

yi,r, ξi⟩|
)
max{∥µ∥, 2σξ

√
d}

+
2

m

m∑
r=1

(
|⟨wk

−yi,r,µyi⟩|+ |⟨wk
−yi,r, ξi⟩|

)
max{∥µ∥, 2σξ

√
d}

≤ 2
(√

Fyi
(Wk

yi
,xi) +

√
F−yi

(Wk
−yi

,xi)
)
max{∥µ∥, 2σξ

√
d}

≤ 2
(√

Fyi
(Wk

yi
,xi) + 1

)
max{∥µ∥, 2σξ

√
d}

where the third inequality is by Lemma B.2 and the fourth inequality is by Jensen’s inequality and
the last inequality is by Lemma C.4 that F−yi

(Wk
−yi

,xi) for all i ∈ [n]. Then we have

− ℓ′(yif(W
k,xi))∥∇f(Wk,xi)∥2

≤ −ℓ′
(
Fyi

(Wk
yi
,xi)− 0.5

)(
2
(√

Fyi
(Wk

yi
,xi) + 1

)
max{∥µ∥, 2σξ

√
d}
)2

= −4ℓ′
(
Fyi(W

k
yi
,xi)− 0.5

)(√
Fyi(W

k
yi
,xi) + 1

)2
max{∥µ∥2, 4σ2

ξd}

≤ max
z>0

{−4ℓ′(z − 0.5)(
√
z + 1)2}max{∥µ∥2, 4σ2

ξd}

= O(max{∥µ∥2, σ2
ξd})

where the last equality is by maxz>0{−4ℓ′(z−0.5)(
√
z+1)2} <∞ because ℓ′ has an exponentially

decaying tail. Then we can bound

∥∇LS(W
k)∥2 ≤

( 1
n

n∑
i=1

ℓ′(yif(W
k,xi))∥∇f(Wk,xi)∥

)2
≤
( 1
n

n∑
i=1

√
−O(max{∥µ∥2, σ2

ξd})ℓ′(yif(Wk,xi))
)2

≤ O(max{∥µ∥2, σ2
ξd})

1

n

n∑
i=1

−ℓ′(yif(Wk,xi))

≤ O(max{∥µ∥2, σ2
ξd})LS(W

k)

where the third inequality is by Cauchy-Schwartz inequality and the last inequality is by −ℓ′ ≤ ℓ for
cross-entropy loss.

C.3 SIGNAL LEARNING

We first analyze the setting, where n · SNR2 ≥ C ′ for some constant C ′ > 0, which allows signal
learning to dominate noise memorization, thus reaching benign overfitting.

For the purpose of signal learning, we derive an anti-concentration result that provides a lower bound
for signal inner product at initialization.
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Lemma C.9. Suppose δ > 0 and m = Ω(log(1/δ)). Then with probability at least 1− δ, we have
for all j, y = ±1

σ0∥µ∥/2 ≤ 1

m

n∑
r=1

|⟨w0
j,r,µy⟩| ≤ σ0∥µ∥

Proof of Lemma C.16. First notice that for any j = ±1, ⟨w0
j,r,µy⟩ ∼ N (0, σ2

0∥µ∥2) and thus we
have E[|⟨w0

j,r,µy⟩|] = σ0∥µ∥
√

2/π. By sub-Gaussian tail bound, with probability at least 1− δ/8,
for any j, y = ±1 ∣∣∣∣∣ 1m

m∑
r=1

|⟨w0
j,r,µy⟩| − σ0∥µ∥

√
2/π

∣∣∣∣∣ ≤
√

2σ2
0∥µ∥2 log(8/δ)

m

Choosing m = Ω(log(1/δ)), we have

σ0∥µ∥
√

2/π0.99 ≤ 1

m

n∑
r=1

|⟨w0
j,r,µy⟩| ≤ σ0∥µ∥

√
2/π1.01.

Then we have σ0∥µ∥/2 ≤ 1
m

∑n
r=1 |⟨w0

j,r, ξi⟩| ≤ σ0∥µ∥. Finally taking the union bound for all
j, y = ±1 completes the proof.

We have established several preliminary lemmas that hold with high probability, including Lemma
B.1, Lemma B.2, Lemma C.1, Lemma C.9. We let Eprelim be the event such that all the results in
these lemmas hold for a given δ. Then by applying union bound, we have P(Eprelim) ≥ 1− 4δ. The
subsequent analysis are conditioned on the event Eprelim.

C.3.1 FIRST STAGE

In the first stage where maxr,i,y{⟨wk
j,r,µy⟩, ⟨wk

j,r, ξi⟩} = O(1), we show in Lemma C.7 that we
can lower bound the loss derivatives by a constant Cℓ, i.e., |ℓ′ki | ≥ Cℓ, for all i ∈ [n], k ≤ T1.

Theorem C.1. Under Condition C.1, suppose n · SNR2 ≥ C ′ for some C ′ ≥ 0. Then there
exists a time T1 = Θ̃(η−1m∥µ∥−2), such that (1) maxr |⟨wT1

j,r,µj⟩| ≥ 2, for all j = ±1, (2)
1
m

∑m
r=1 |⟨w

T1
j,r,µj⟩| ≥ 2, for all j = ±1 (3) maxr,i |⟨wT1

yi,r, ξi⟩| = Õ(n−1/2).

Proof of Theorem C.1. We first upper bound the growth of noise by analyzing inner product dynamics

⟨wk
yi,r, ξi⟩ = ⟨wk−1

yi,r , ξi⟩ −
η

nm

n∑
i′=1

ℓ′k−1
i′ ⟨wk−1

j,r , ξi′⟩⟨ξi′ , ξi⟩

= ⟨wk−1
yi,r , ξi⟩ −

η

nm
ℓ′ki ⟨wk−1

yi,r , ξi⟩∥ξi∥
2 − η

nm

∑
i′ ̸=i

ℓ′k−1
i′ ⟨wk−1

yi,r , ξi′⟩⟨ξi′ , ξi⟩

This suggests

|⟨wk
yi,r, ξi⟩| ≤ |⟨wk−1

yi,r , ξi⟩|+
η

nm
|ℓ′ki ||⟨wk−1

yi,r , ξi⟩|∥ξi∥
2 +

η

nm

∑
i′ ̸=i

|ℓ′ki′ ||⟨wk−1
yi,r , ξi′⟩||⟨ξi′ , ξi⟩|

(11)

Next, from Lemma C.7 and Lemma B.2, we have for any i′ ̸= i ∈ [n] and k ≤ T1,

|ℓ′ki′ | · |⟨ξi, ξi′⟩|
|ℓ′ki | · ∥ξi∥2

≤
2σ2

ξ

√
d log(4n2/δ)

Cℓ0.99σ2
ξd

= 2.1C−1
ℓ

√
log(4n2/δ)

d

where we use the lower and upper bound on loss derivatives during the first stage, as well as
Lemma B.2. Then taking the maximum of (11) over the neurons and samples, we let Bk :=
maxr,i |⟨wk

yi,r, ξi⟩| and obtain

Bk ≤ Bk−1 +
η

nm

(
1 + 2.1C−1

ℓ n

√
log(4n2/δ)

d

)
|ℓ′ki |∥ξi∥2Bk−1
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≤
(
1 +

1.01η∥ξi∥2

nm

)
Bk−1

≤
(
1 +

1.02ησ2
ξd

nm

)k
B0

where the second inequality is by d = Ω̃(n2) sufficiently large and |ℓ′ki | ≤ 1. The third inequality is
by Lemma B.2.

We then consider the propagation of ⟨wk
j,r,µy⟩. From the gradient update we can show for j = y,

⟨wk+1
j,r ,µj⟩ = ⟨wk

j,r,µj⟩ −
η

nm

∑
i∈Sj

ℓ′ki ⟨wk
j,r,µj⟩∥µ∥2

≥ ⟨wk
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nm
⟨wk

j,r,µj⟩

≥
(
1 + 0.49

ηCℓ∥µ∥2

m

)
⟨wk

j,r,µj⟩

where the first inequality is by loss derivative lower bound and the the second inequality is by Lemma
B.1 and n = Ω̃(1) sufficiently large. This implies that

|⟨wk
j,r,µj⟩| ≥

(
1 + 0.49

ηCℓ∥µ∥2

m

)
|⟨wk−1

j,r ,µj⟩| ≥
(
1 + 0.49

ηCℓ∥µ∥2

m

)k|⟨w0
j,r,µj⟩|

Applying Lemma C.1 and Lemma C.9, we have for all j = ±1,

max
r

|⟨wk
j,r,µj⟩| ≥

(
1 + 0.49

ηCℓ∥µ∥2

m

)k
σ0∥µ∥/2

1

m
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1 + 0.49
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Consider

T1 = log(4mσ−1
0 ∥µ∥−1)/ log

(
1 + 0.49

ηCℓ∥µ∥2

m

)
= Θ(η−1m∥µ∥−2 log(4mσ−1

0 ∥µ∥−1))

for η sufficiently small. Then we can verify that for j = ±1, we have

max
r

|⟨wT1
j,r,µj⟩| ≥ 2,

1

m

m∑
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|⟨wT1
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Now under the SNR condition, we can bound the growth of noise as
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log(8mn/δ)

≤ exp
((

2.1/Cℓn
−1SNR−2 + Õ(nSNR2η)

)
log(4σ−1

0 ∥µ∥−1)
)
2σ0σξ

√
d
√

log(8mn/δ)

≤ exp
((
2.1/Cℓn

−1SNR−2 + 0.01
)
log(4σ−1

0 ∥µ∥−1)
)
2σ0σξ

√
d
√
log(8mn/δ)

≤ 8SNR−1
√
log(8mn/δ)

= Õ(n−1/2)

where the first inequality is by Lemma C.1 and the second inequality is by Taylor expansion around
η = 0. The third inequality is by choosing η sufficiently small and the fourth inequality is by the
SNR condition that n · SNR2 ≥ C ′ ≥ 2.5C−1

ℓ .
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C.3.2 SECOND STAGE

First, at the end of first stage, we have

• maxr |⟨wT1
j,r,µj⟩| ≥ 2 for all j = ±1.

• 1
m

∑m
r=1 |⟨w

T1
j,r,µj⟩| ≥ 2 for all j = ±1.

• maxr,i |⟨wT1
yi,r, ξi⟩| = Õ(n−1/2)

• maxr,i |⟨wT1
−yi,r, ξi⟩| ≤ β + 12

√
log(4n2/δ)

d nα.

Next we define

w∗
j,r = w0

j,r + 2 log(4/ϵ)sign(⟨w0
j,r,µj⟩)

µj + µ−j

∥µ∥2

We first show the monotonicity of signal inner product in the second stage.

Lemma C.10. Under the same conditions as in Theorem C.1, we have for all j = ±1, r ∈ [m],
T1 ≤ k ≤ T , |⟨wk

j,r,µj⟩| ≥ |⟨wT1
j,r,µj⟩| ≥ 2.

Proof of Lemma C.10. From the update of signal inner product, we have for all j = ±1, r ∈ [m],
T1 ≤ k ≤ T

⟨wk+1
j,r ,µj⟩ = ⟨wk

j,r,µj⟩ −
η

nm

∑
i∈Sj

ℓ′ki ⟨wk
j,r,µj⟩∥µ∥2

=
(
1− η∥µ∥2

nm

∑
i∈Sj

ℓ′ki
)
⟨wk

j,r,µj⟩.

Thus |⟨wk
j,r,µj⟩| ≥ |⟨wk−1

j,r ,µj⟩| ≥ |⟨wT1
j,r,µj⟩| ≥ 2 for all j = ±1, r ∈ [m], T1 ≤ k ≤ T .

We then bound the distance between WT1 to W∗.

Lemma C.11. Under Condition C.1, we can bound ∥WT1 −W∗∥ = O(
√
m log(1/ϵ)∥µ∥−1).

Proof of Lemma C.11. Let Pξ be the projection matrix to the direction of ξ, i.e., Pξ = ξξ⊤

∥ξ∥2 . Then
we can represent

wk
j,r −w0

j,r = Pµ1
(wk

j,r −w0
j,r) +Pµ−1

(wk
j,r −w0

j,r) +

n∑
i=1

Pξi
(wk

j,r −w0
j,r)

+
(
I−Pµ1 −Pµ−1 −

n∑
i=1

Pξi

)
(wk

j,r −w0
j,r).

By the scale difference at T1 and the fact that gradient descent only updates in the direction of µj ,
j = ±1 and ξi, we can bound

∥WT1 −W0∥2

≤
∑

j=±1,r∈[m]

( ⟨wT1
j,r −w0

j,r,µ1⟩2

∥µ∥2
+

⟨wT1
j,r −w0

j,r,µ−1⟩2

∥µ∥2
+

n∑
i=1

⟨wT1
j,r −w0

j,r, ξi⟩2

∥ξi∥2
)

+
∑

j=±1,r∈[m]

∥∥∥∥∥(I−Pµ1 −Pµ−1 −
n∑

i=1

Pξi

)
(wT1

j,r −w0
j,r)

∥∥∥∥∥
2

≤ 2m
(2maxr⟨wT1

j,r,µj⟩2

∥µ∥2
+

2⟨wT1
j,r,µ−j⟩2 + 2⟨w0

j,r,µ−j⟩2 + 2⟨w0
j,r,µj⟩2

∥µ∥2
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+

n∑
i=1

2⟨wT1
j,r, ξi⟩2 + 2⟨w0

j,r, ξi⟩2

∥ξi∥2
)
+

∑
j=±1,r∈[m]

∥∥∥∥∥(I−Pµ1 −Pµ−1 −
n∑

i=1

Pξi

)
(wT1

j,r −w0
j,r)

∥∥∥∥∥
2

≤ O(m∥µ∥−2)

where we have use the scale difference at T1. Therefore,

∥WT1 −W∗∥ ≤ ∥WT1 −W0∥+ ∥W0 −W∗∥
≤ O(

√
m∥µ∥−1) +O(

√
m log(1/ϵ)∥µ∥−1)

≤ O(
√
m log(1/ϵ)∥µ∥−1)

where we use the definition of W∗.

Lemma C.12. Under Condition C.1, we have for all T1 ≤ k ≤ T ∗

∥Wk −W∗∥2 − ∥Wk+1 −W∗∥2 ≥ 2ηLS(W
t)− ηϵ

Proof of Lemma C.12. The proof is similar as in Cao et al. (2022). We first show a lower bound on
yi⟨∇f(Wt,xi),W

∗⟩ for any i ∈ [n] for all T1 ≤ k ≤ T ∗.

yi⟨∇f(Wk,xi),W
∗⟩ = 1

m

∑
j,r

jyi⟨wk
j,r,µyi⟩⟨µyi ,w

∗
j,r⟩+

1

m

∑
j,r

jyi⟨wk
j,r, ξi⟩⟨ξi,w∗

j,r⟩

=
1

m

m∑
r=1

⟨wk
yi,r,µyi

⟩⟨w∗
yi,r,µyi

⟩ − 1

m

m∑
r=1

⟨wk
−yi,r,µyi

⟩⟨w∗
−yi,r,µyi

⟩

+
1

m

∑
j,r

jyi⟨wk
j,r, ξi⟩⟨ξi,w0

j,r⟩

=
1

m

m∑
r=1

|⟨wk
yi,r,µyi⟩|2 log(4/ϵ)︸ ︷︷ ︸

A5

+
1

m

m∑
r=1

⟨wk
yi,r,µyi⟩⟨w0

yi,r,µyi⟩︸ ︷︷ ︸
A6

− 1

m

m∑
r=1

⟨wk
−yi,r,µyi⟩⟨w∗

−yi,r,µyi⟩︸ ︷︷ ︸
A7

+
1

m

∑
j,r

jyi⟨wk
j,r, ξi⟩⟨ξi,w0

j,r⟩︸ ︷︷ ︸
A8

where the second equality is by definition of W∗. The third equality is by Lemma C.6. We next
bound

|A6| ≤ σ0∥µ∥
√

2 log(8m/δ)α = Õ(σ0∥µ∥)

|A7| ≤
1

m

m∑
r=1

|wk
−yi,r,µyi

|
(
|⟨w0

−yi,r,µyi
⟩|+ 2 log(2/ϵ)

)
= Õ(σ0∥µ∥)

|A8| ≤ Õ(σ0σξ
√
d)

where we use the global bound on the inner product by Õ(1). Next, by Theorem C.1 and Lemma C.10,
we can show 1

m

∑m
r=1 |⟨wk

yi,r,µyi
⟩| ≥ 2 for all i ∈ [n] and we can lower bound A5 ≥ 4 log(4/ϵ)

and thus

yi⟨∇f(Wk,xi),W
∗⟩ ≥ 4 log(4/ϵ)− 2 log(4/ϵ) = 2 log(4/ϵ) (12)

where we bound |A6|+ |A7|+ |A8| ≤ 2 log(4/ϵ) under Condition C.1.

Further, we derive

∥Wk −W∗∥2 − ∥Wk+1 −W∗∥2

= 2η⟨∇LS(W
k),Wk −W∗⟩ − η2∥∇LS(W

k)∥2

=
2η

n

n∑
i=1

ℓ′ki yi
(
2f(Wk,xi)− ⟨∇f(Wk,xi),W

∗⟩
)
− η2∥∇LS(W

k)∥2
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≥ 2η

n

n∑
i=1

ℓ′ki
(
2yif(W

k,xi)− 2 log(2/ϵ)
)
− η2∥∇LS(W

k)∥2

≥ 4η

n

n∑
i=1

(
ℓ(yif(W

k,xi))− ϵ/4
)
− η2∥∇LS(W

k)∥2

≥ 2ηLS(W
k)− ηϵ

where the first inequality is by (12) and the second inequality is by convexity of cross-entropy function
and the last inequality is by Lemma C.8.

Before proving the second stage convergence, we require the following lemma in order to bound the
ratio of loss derivatives among different samples.
Lemma C.13 (Kou et al. (2023)). Let g(z) = ℓ′(z) = −(1 + exp(z))−1. Then for any z2 − c ≥
z1 ≥ −1 where c ≥ 0, we have g(z1)/g(z2) ≤ exp(c).

Theorem C.2. Under the same settings as in Theorem C.1, let T = T1 + ⌊∥WT1−W∗∥2

ηϵ ⌋ =

T1 +O(η−1ϵ−1m∥µ∥−2). Then we have

• there exists T1 ≤ k ≤ T such that LS(W
k) ≤ 0.1.

• maxj,r,i |⟨wk
j,r, ξi⟩| = o(1) for all T1 ≤ k ≤ T .

• maxr |⟨wk
j,r,µj⟩| ≥ 2 for all j = ±1, T1 ≤ k ≤ T .

Proof of Theorem C.2. By Lemma C.12, for any T1 ≤ k ≤ T , we have

∥Wk −W∗∥2 − ∥Wk+1 −W∗∥2 ≥ 2ηLS(W
k)− ηϵ

for all s ≤ k. Then summing over the inequality gives

1

T − T1 + 1

T∑
k=T1

LS(W
k) ≤ ∥WT1 −W∗∥2

2η(T − T1 + 1)
+
ϵ

2
≤ ϵ

where the last inequality is by the choice T = T1 + ⌊∥WT1−W∗∥2

ηϵ ⌋ = T1 +

Ω(η−1ϵ−1m log(1/ϵ)∥µ∥−2). Then we can claim that there exists a k ∈ [T1, T ] such that
LS(W

k) ≤ ϵ. Setting ϵ = 0.1 shows the desired convergence.

Next, we show the upper bound on maxj,r,i |⟨wk
j,r, ξi⟩| for all k ∈ [T1, T ]. No-

tice that by Proposition C.1, we already have maxj,r |⟨wk
−yi,r, ξi⟩| ≤ ϑ, where

we let ϑ := 3max{maxr,i |⟨wT1
yi,r, ξi⟩|, β, 4

√
log(4n2/δ)

d nα}. Then we only focus on
bounding maxyi,i |⟨wk

j,r, ξi⟩|. From the scale difference at T1, we know that ϑ =

Õ(max{n−1/2, σ0σξ
√
d, σ0∥µ∥, nd−1/2}) = o(1). Next, we can bound

T∑
k=T1

LS(W
k) ≤ ∥WT1 −W∗∥2

η
= O(η−1m log(1/ϵ)∥µ∥−2) (13)

where we use Lemma C.11 for the last equality.

Then, we first prove maxr,i |ρkyi,r,i
| ≤ 2ϑ for all T1 ≤ k ≤ T . First it is easy to see that at T1, we

have

max
r,i

|ρT1
yi,r,i

| ≤ max
r,i

|⟨wT1
yi,r, ξi⟩|+max

r,i
|⟨w0

yi,r, ξi⟩|+ 4

√
log(4n2/δ)

d
nα ≤ ϑ ≤ 2ϑ

Then suppose there T̃ ∈ [T1, T ] such that maxr,i |ρT1
yi,r,i

| ≤ 2ϑ for all k ∈ [T1, T̃ − 1]. Now we let
ϕk := maxr,i |ρkyi,r,i

| and thus by the update of noise coefficient

ϕk+1 ≤ ϕk +
η

nm
|ℓ′ki |

(
ϕk + β/3 + 4

√
log(4n2/δ)

d
nα
)
∥ξi∥2
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≤ ϕk +
η

nm
max

i
|ℓ′ki |

(
ϕk + β/3 + 4

√
log(4n2/δ)

d
nα
)
O(σ2

ξd).

where we use Lemma C.5 in the first inequality. Then taking the summation from T1 to T̃ gives

ϕT̃ ≤ ϕT1 +
η

nm

T̃−1∑
k=T1

max
i

|ℓ′ki |O(σ2
ξd)ϑ (14)

where the first inequality is by the induction condition. Next, the aim is bound
∑T̃−1

k=T1
maxi |ℓ′ki |.

First, for any i, i′ ∈ [n] such that yi = yi′ , we can bound for all T1 ≤ k ≤ T̃ − 1

yif(W
k,xi)− yi′f(W

k,xi′)

= Fyi
(Wk

yi
,xi)− F−yi

(Wk
−yi

,xi))− Fyi′ (W
k
yi′
,xi′) + F−yi′ (W

k
−yi′

,xi′))

≤ 1

m

m∑
r=1

(
⟨wk

yi,r,µyi
⟩2 + ⟨wk

yi,r, ξi⟩
2
)
− 1

m

m∑
r=1

(
⟨wk

yi,r,µyi
⟩2 + ⟨wk

yi,r, ξi′⟩
2
)
+ 1/C1

=
1

m

m∑
r=1

(
⟨wk

yi,r, ξi⟩
2 − ⟨wk

yi,r, ξi′⟩
2
)
+ 1/C1

≤ max
r,i

⟨wk
yi,r, ξi⟩

2 + 1/C1

≤ max
r,i

(
|ρkyi,r,i|+max

r,i
|⟨w0

yi,r, ξi⟩|+ 4

√
log(4n2/δ)

d
nα
)2

≤ 6ϑ2 ≤ ϑ

where in the first inequality we notice that F−yi
(Wk

−yi
,xi)) ≥ 0, yi = yi′ and we recall that

F−yi(W
k
j ,xi) ≤ β2 +

(
β + 12

√
log(4n2/δ)

d nα
)2

= 1/C1 for some sufficiently large constant
C1 > 0. The second last inequality is by induction condition and the last inequality is by choosing
ϑ ≤ 1/6. Then we can bound the ratio of loss derivatives (based on Lemma C.13) that

|ℓ′ki′ |/|ℓ′ki | ≤ exp
(
yif(W

k,xi)− yi′f(W
k,xi′)) ≤ exp(ϑ)

This suggests 1 − O(ϑ) ≤ |ℓ′ki′ |/|ℓ′ki | ≤ 1 + O(ϑ) for all i, i′ ∈ [n], T1 ≤ k ≤ T̃ − 1. Then let
i∗ = argmaxi |ℓ′ki |, we have
T∑
T1

max
i

|ℓ′ki | =
T∑
T1

Θ(
1

|Syi∗ |
∑

i∈Syi∗

|ℓ′ki |) ≤
T∑
T1

Θ(
1

|Syi∗ |
∑

i∈Syi∗

ℓki ) ≤
T∑
T1

Θ(
n

|Syi∗ |
LS(W

k))

= Õ(η−1m log(1/ϵ)∥µ∥−2)
(15)

where the first inequality is by |ℓ′| ≤ ℓ and the last equality is from (13) and |Syi∗ | ≥ 0.49n (based
on Lemma B.1).

This allows to bound (14) as

ϕT̃ ≤ ϕT1 +
η

nm

T̃−1∑
s=T1

max
i

|ℓ′ki |O(σ2
ξd)ϑ

≤ ϕT1 +O(n−1σ2
ξd log(1/ϵ)∥µ∥−2) · ϑ

≤ ϑ+O(n−1SNR−2 log(1/ϵ)) · ϑ
≤ 2ϑ

and the second inequality is by (15) and the last inequality is by setting ϵ = 0.1 and n · SNR2 ≥ C ′

for sufficiently large constant C ′. Thus, we have maxr,i |⟨wT̃
yi,r, ξi⟩| ≤ maxr,i |ρT̃yi,r,i

| + β +

4
√

log(4n2/δ)
d nα ≤ 3ϑ = o(1). The lower bound on signal inner product is directly from Lemma

C.10.
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C.4 NOISE MEMORIZATION

We also analyze the setting where n−1SNR−2 ≥ C ′ for some constant C ′ > 0, which allows the
noise memorization to dominate signal learning, thus reaching harmful overfitting.

We first require the following anti-concentration result for the noise inner product, which is required
to ensure the sign invariance of the inner product along training.
Lemma C.14. Suppose δ > 0 and σ0 ≥ Ω(log(n2/δ)n2mαd−1σ−1

ξ ), we have for all j = ±1, r ∈

[m], i ∈ [n], |⟨w0
j,r, ξi⟩| ≥ 8

√
log(4n2/δ)

d nα.

Proof of Lemma C.14. For any j = ±1, r ∈ [m], i ∈ [n], we have ⟨w0
j,r, ξi⟩ ∼ N (0, σ2

0∥ξi∥2).

Then applying Lemma C.3 by setting RHS to δ/(2mn) and c = 8
√

log(4n2/δ)
d nα, we require

d2 ≥ 42 log(4n2/δ)n2α2σ−2
0 σ−2

ξ / log(
4m2n2

4m2n2 − δ2
)

where we use Lemma B.2 that ∥ξi∥2 ≥ 0.99σ2
ξd. Finally noticing that 1/ log(4m2n2/(4m2n2 −

δ2)) ≤ Θ(m2n2) and taking the union bound completes the proof.

An immediate consequence of Lemma C.14 is the following result that allows to derive the sign
invariance for ⟨wk

yi,r,i
, ξi⟩ for all iterations.

Lemma C.15. Under Condition C.1, for any i ∈ [n], r ∈ [m], we have sign(⟨wk
yi,r, ξi⟩) =

sign(ρkyi,r,i
) = sign(⟨w0

yi,r, ξi⟩) for all 0 ≤ k ≤ T ∗.

Proof of Lemma C.15. First by Lemma C.14 and Lemma C.5, we can bound if ⟨w0
yi,r, ξi⟩ ≥ 0,

ρkyi,r,i +
1

2
⟨w0

yi,r, ξi⟩ ≤ ⟨wk
yi,r, ξi⟩ ≤ ρkyi,r,i +

3

2
⟨w0

yi,r, ξi⟩

and if ⟨w0
yi,r, ξi⟩ ≤ 0,

ρkyi,r,i +
3

2
⟨w0

yi,r, ξi⟩ ≤ ⟨wk
yi,r, ξi⟩ ≤ ρkyi,r,i +

1

2
⟨w0

yi,r, ξi⟩

Next we use induction to show the sign invariance. First it is clear when k = 0, the sign invariance is
trivially satisfied. At k = 1, we have by the iterative update of the coefficients,

ρ1yi,r,i = ρ0yi,r,i +
η

nm
|ℓ′0i |⟨w0

yi,r, ξi⟩∥ξi∥
2 =

η

nm
|ℓ′0i |⟨w0

yi,r, ξi⟩∥ξi∥
2

and thus sign(ρ1yi,r,i
) = sign(⟨w0

yi,r, ξi⟩). Further, by Lemma C.5, and without loss of generality
that ⟨w0

yi,r, ξi⟩ ≥ 0, we have

⟨w1
yi,r, ξi⟩ ≥ ρ1yi,r,i + ⟨w0

yi,r, ξi⟩ − 4

√
log(4n2/δ)

d
nα ≥ ρ1yi,r,i +

1

2
⟨w0

yi,r, ξi⟩ ≥ 0.

Similar argument also holds for ⟨w0
yi,r, ξi⟩ < 0. Then we show at k = 1, sign(ρ1yi,r,i

) =

sign(⟨w1
yi,r, ξi⟩) = sign(⟨w0

yi,r, ξi⟩). Suppose there exists a time T̃ such that for all k ≤ T̃ − 1,

the sign invariance holds. Then for k = T̃ , suppose sign(⟨wT̃−1
yi,r , ξi⟩) = sign(ρT̃−1

yi,r,i
) =

sign(⟨w0
yi,r, ξi⟩) = +1,

ρT̃yi,r,i = ρT̃−1
yi,r,i

+
η

nm
|ℓ′T̃−1
i |⟨wT̃−1

yi,r , ξi⟩∥ξi∥
2

≥ ρT̃−1
yi,r,i

+
η

nm
|ℓ′T̃−1
i |

(
ρT̃−1
yi,r,i

+ ⟨w0
yi,r, ξi⟩ − 4

√
log(4n2/δ)

d
nα
)
∥ξi∥2

≥ ρT̃−1
yi,r,i

+
η

nm
|ℓ′T̃−1
i |

(
ρT̃−1
yi,r,i

+
1

2
⟨w0

yi,r, ξi⟩
)
∥ξi∥2

≥ 0
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Further,

⟨wT̃
yi,r, ξi⟩ ≥ ρT̃yi,r,i + ⟨w0

yi,r, ξi⟩ − 4

√
log(4n2/δ)

d
nα ≥ ρT̃yi,r,i +

1

2
⟨w0

yi,r, ξi⟩ ≥ 0.

and thus completes the induction that sign(⟨wT̃
yi,r, ξi⟩) = sign(ρT̃yi,r,i

) = sign(⟨w0
yi,r, ξi⟩). Similar

argument holds when sign(⟨w0
yi,r, ξi⟩) = −1.

We also derive the following concentration result for the average noise inner product at initialization.

Lemma C.16. Suppose δ > 0 and m = Ω(log(n/δ)). Then with probability at least 1− δ, we have
for all j = ±1, i ∈ [n]

σ0σξ
√
d/2 ≤ 1

m

n∑
r=1

|⟨w0
j,r, ξi⟩| ≤ σ0σξ

√
d

Proof of Lemma C.16. First notice that for any i ∈ [n], ⟨w0
j,r, ξi⟩ ∼ N (0, σ2

0∥ξi∥2) and thus we have
E[|⟨w0

j,r, ξi⟩|] = σ0∥ξi∥
√

2/π. By sub-Gaussian tail bound, with probability at least 1 − δ/(2n),
for any i ∈ [n] ∣∣∣∣∣ 1m

m∑
r=1

|⟨w0
j,r, ξi⟩| − σ0∥ξi∥

√
2/π

∣∣∣∣∣ ≤
√

2σ2
0∥ξi∥2 log(4n/δ)

m

Choosing m = Ω(log(n/δ)), we have

σ0∥ξi∥
√

2/π0.99 ≤ 1

m

n∑
r=1

|⟨w0
j,r, ξi⟩| ≤ σ0∥ξi∥

√
2/π1.01.

Because from Lemma B.2, we have 0.99σξ
√
d ≤ ∥ξi∥ ≤ 1.01σξ

√
d by choosing d = Ω̃(1)

sufficiently large. Then we have σ0σξ
√
d/2 ≤ 1

m

∑n
r=1 |⟨w0

j,r, ξi⟩| ≤ σ0σξ
√
d. Finally taking the

union bound for all j = ±1, i ∈ [n] completes the proof.

We have established several preliminary lemmas that hold with high probability, including Lemma
B.1, Lemma B.2, Lemma C.1, Lemma C.14, Lemma C.16. We let Eprelim be the event such
that all the results in these lemmas hold for a given δ. Then by applying union bound, we have
P(Eprelim) ≥ 1− 5δ. The subsequent analysis are conditioned on the event Eprelim.

C.4.1 FIRST STAGE

Theorem C.3. Under Condition C.1, suppose n−1 · SNR−2 ≥ C ′ for some constant C ′ > 0. Then
there exists a time T1 = Θ̃(η−1nmσ−2

ξ d−1), such that (1) maxr |⟨wT1
yi,r, ξi⟩| ≥ 2 for all i ∈ [n], (2)

1
m

∑m
r=1 |⟨wT1

yi,r, ξi⟩| ≥ 4 for all i ∈ [n] and (3) maxj,r,y |⟨wT1
j,r,µy⟩| = Õ(n−1/2).

Proof of Theorem C.3. We first bound the growth of signal as follows. From the gradient descent
update, we have

|⟨wk
j,r,µj⟩| = |⟨wk−1

j,r ,µj⟩|+
η|Sj |
nm

|⟨wk−1
j,r ,µj⟩|∥µ∥2

≤
(
1 + 0.51

η∥µ∥2

m

)
|⟨wk−1

j,r ,µj⟩|

≤
(
1 + 0.51

η∥µ∥2

m

)k
|⟨w0

j,r,µj⟩| (16)

where the first inequality is by |ℓ′ki | ≤ 1 and the second inequality is by Lemma B.1 with n = Ω̃(1)
sufficiently large.
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On the other hand, for the growth of noise, we have from the inner product update, for any i ∈ [n]

⟨wk
yi,r, ξi⟩ = ⟨wk−1

yi,r , ξi⟩ −
η

nm

n∑
i′=1

ℓ′k−1
i′ ⟨wk−1

j,r , ξi′⟩⟨ξi′ , ξi⟩

=
(
1− η

nm
ℓ′ki ∥ξi∥2

)
⟨wk−1

yi,r , ξi⟩ −
η

nm

∑
i′ ̸=i

ℓ′k−1
i′ ⟨wk−1

yi,r , ξi′⟩⟨ξi′ , ξi⟩

Then this suggests

|⟨wk
yi,r, ξi⟩| ≥

(
1− η

nm
ℓ′ki ∥ξi∥2

)
|⟨wk−1

yi,r , ξi⟩| −
η

nm

∑
i′ ̸=i

|ℓ′k−1
i′ | · |⟨wk−1

yi,r , ξi′⟩| · |⟨ξi′ , ξi⟩| (17)

We first prove for any i ∈ [n], maxr |⟨wk+1
yi,r , ξi⟩| ≥ maxr |⟨wk

yi,r, ξi⟩| ≥ maxr |⟨w0
yi,r, ξi⟩| for all

k ≤ T1. We prove such a result by induction. It is clear that at k = 0, the result is satisfied. Now
suppose there exists an iteration k̃ such that

max
r

|⟨wk
yi,r, ξi⟩| ≥ max

r
|⟨w0

yi,r, ξi⟩| ≥ σ0σξ
√
d/4

for all k ≤ k̃ − 1, where the last inequality is by Lemma C.1. Then we can bound based on Lemma
C.7 and Lemma B.2, we have for any i′ ̸= i ∈ [n] and

n|ℓ′k̃−1
i′ | · |⟨ξi, ξi′⟩| · |⟨wk̃−1

yi,r , ξi′⟩|

|ℓ′k̃−1
i | · ∥ξi∥2 maxr |⟨wk̃−1

yi,r , ξi⟩|
≤

2σ2
ξ

√
d log(4n2/δ)

Cℓ0.99σ2
ξd

nασ−1
0 σ−1

ξ d−1/2

= 8.4C−1
ℓ nα

√
log(4n2/δ)

dσ0σξ

≤ 0.01 (18)

where we use the lower and upper bound on loss derivatives during the first stage, as well as Lemma
B.2 and Lemma C.1. The last inequality is by σ0 ≥ 840nC−1

ℓ d−1σ−1
ξ α

√
log(4n2/δ). Then we

have

max
r

|⟨wk̃
yi,r, ξi⟩| ≥

(
1− η

nm
ℓ′k̃−1
i ∥ξi∥2

)
max

r
|⟨wk̃−1

yi,r , ξi⟩| −
η

nm

∑
i′ ̸=i

|ℓ′k̃−1
i′ | · |⟨wk̃−1

yi,r , ξi′⟩| · |⟨ξi′ , ξi⟩|

≥
(
1 +

η

nm
0.99|ℓ′k̃−1

i |∥ξi∥2
)
max

r

∣∣∣⟨wk̃−1
yi,r , ξi⟩

∣∣∣
≥ max

r

∣∣∣⟨wk̃−1
yi,r , ξi⟩

∣∣∣
≥ max

r
|⟨w0

yi,r, ξi⟩|

Let Bk
i := maxr |⟨wk

yi,r, ξi⟩| and we obtain for any k ≤ T1,

Bk
i ≥

(
1 +

η

nm
0.99|ℓ′k̃−1

i |∥ξi∥2
)
Bk−1

i ≥
(
1 +

ησ2
ξd

nm
0.98Cℓ

)
Bk−1

i

≥
(
1 +

ησ2
ξd

nm
0.98Cℓ

)k
B0

i

≥
(
1 +

ησ2
ξd

nm
0.98Cℓ

)k
σ0σξ

√
d/4

where we use (18), which holds for iteration k and Lemma C.1. Consider

T1 = log(8σ−1
0 σ−1

ξ d−1/2)/ log
(
1 +

ησ2
ξd

nm
0.98Cℓ

)
= Θ(η−1nmσ−2

ξ d−1 log(8σ−1
0 σ−1

ξ d−1/2))

for η sufficiently small. Then it can be shown that

BT1
i = max

r
|⟨wT1

yi,r, ξi⟩| ≥ 2
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In addition, we show the average also grows to a constant order with a similar argument. In particular,
from (17), we have

1

m

m∑
r=1

|⟨wk
yi,r, ξi⟩| ≥

(
1− η

nm
ℓ′ki ∥ξi∥2

) 1

m

m∑
r=1

|⟨wk−1
yi,r , ξi⟩|

− η

nm

∑
i′ ̸=i

|ℓ′k−1
i′ | · 1

m

m∑
r=1

|⟨wk−1
yi,r , ξi′⟩| · |⟨ξi′ , ξi⟩|

Using a similar induction argument, we can show

1

m

m∑
r=1

|⟨wk
yi,r, ξi⟩| ≥

1

m

m∑
r=1

|⟨wk−1
yi,r , ξi⟩| ≥

1

m

m∑
r=1

|⟨w0
yi,r, ξi⟩| ≥ σ0σξ

√
d/2

for all k ≤ T1, where the last inequality follows from Lemma C.16. Then we can show at T1,

1

m

m∑
r=1

|⟨wT1
yi,r, ξi⟩| ≥

(
1 +

ησ2
ξd

nm
0.98Cℓ

)T1

σ0σξ
√
d/2 ≥ 4.

In the meantime, (16) allows to bound the growth of signal learning as for any j = ±1,

max
r

|⟨wT1
j,r,µj⟩|

≤
(
1 + 0.51

η∥µ∥2

m

)T1√
2 log(8m/δ)σ0∥µ∥

= exp
( log(1 + 0.51η∥µ∥2

m )

log(1 + 0.98
ησ2

ξdCℓ

nm )
log
(
8σ−1

0 σ−1
ξ d−1/2

))√
2 log(8m/δ)σ0∥µ∥

≤ exp
((

0.53C−1
ℓ nSNR2 + Õ(n−1SNR−2η)

)
log
(
8σ−1

0 σ−1
ξ d−1/2

))√
2 log(8m/δ)σ0∥µ∥

≤ 8
√

2 log(8m/δ)SNR

= Õ(n−1/2)

where the first inequality is by Lemma C.1 and the second inequality is by Taylor expansion around
η = 0. The third inequality is by choosing η sufficiently small and based on the condition that
n−1SNR−2 ≥ 0.55C−1

ℓ . The last equality is by the SNR condition.

C.4.2 SECOND STAGE

We choose W∗ to be

w∗
j,r = w0

j,r + 2 log(4/ϵ)

n∑
i=1

1(yi = j)sign(⟨w0
j,r, ξi⟩)

ξi
∥ξi∥2

First we show the invariance of sign of noise inner product after the first stage.
Lemma C.17. Under the same settings as in Theorem C.3, we have maxr |⟨wk

yi,r, ξi⟩| ≥ 1 and
1
m

∑m
r=1 |⟨wk

yi,r, ξi⟩| ≥ 2 for all T1 ≤ k ≤ T ∗ and any i ∈ [n].

Proof of Lemma C.17. In addition to the two results, we also prove maxr |ρkyi,r,i
| ≥ 1.5 and

1
m

∑m
r=1 |ρkyi,r,i

| ≥ 3. We prove these results by induction. First, it is clear that at k = T1,
the bound regarding inner products are trivially satisfied by Theorem C.3. Then by Lemma C.5, we
have

max
r

|ρT1
yi,r,i

| ≥ max
r

|⟨wT1
yi,r, ξi⟩| − β − 4

√
log(4n2/δ)

d
nα ≥ 2− 0.5 = 1.5

1

m

m∑
r=1

|ρT1
yi,r,i

| ≥ 1

m

m∑
r=1

|⟨wT1
yi,r, ξi⟩| − β − 4

√
log(4n2/δ)

d
nα ≥ 4− 1 = 3
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where the last inequalities are by Condition C.1 for sufficiently large constant C.

Now suppose there exists a time T1 ≤ T̃ ≤ T ∗ such that the results hold for all k ≤ T̃ − 1. Then at
k = T̃ , recall the coefficient update as

ρT̃yi,r,i = ρT̃−1
yi,r,i

+
η

nm
|ℓ′T̃−1
i |⟨wT̃−1

yi,r , ξi⟩∥ξi∥
2 (19)

If ⟨w0
yi,r, ξi⟩ > 0, by Lemma C.15 we have ⟨wT̃−1

yi,r , ξi⟩, ρ
T̃−1
yi,r,i

> 0. Then

ρT̃yi,r,i = ρT̃−1
yi,r,i

+
η
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|ℓ′T̃−1
i |⟨wT̃−1

yi,r , ξi⟩∥ξi∥
2

≥ ρT̃−1
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+
η
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|ℓ′T̃−1
i |

(
ρT̃−1
yi,r,i

+ ⟨w0
yi,r, ξi⟩ − 4

√
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d
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∥ξi∥2

≥ ρT̃−1
yi,r,i

+
η
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|ℓ′T̃−1
i |

(
ρT̃−1
yi,r,i

+
1

2
⟨w0

yi,r, ξi⟩
)
∥ξi∥2.

Then taking maximum over r,

max
r

|ρT̃yi,r,i| ≥ max
r

|ρT̃−1
yi,r,i

|+ η∥ξi∥2

2nm
|ℓ′T̃−1
i |max

r
|ρT̃−1

yi,r,i
| ≥ max

r
|ρT̃−1

yi,r,i
| ≥ 1.5

where the first inequality follows from ⟨w0
yi,r, ξi⟩/2 ≤ 0.5 ≤ maxr |ρT̃−1

yi,r,i
|/2 based on Condition

C.1. Similarly, when ⟨w0
yi,r, ξi⟩ < 0, we can obtain the same result. Then, we have

max
r

|⟨wT̃
yi,r, ξi⟩| ≥ max

r
|ρT̃yi,r,i| − β − 4

√
log(4n2/δ)

d
nα ≥ 1.5− 0.5 = 1.

Furthermore, we prove the results for the average quantities in a similar manner. First, from the
coefficient update, and by Lemma C.15, sign(ρT̃−1

yi,r,i
) = sign(⟨wT̃−1

yi,r , ξi⟩) and thus taking the average
of absolute value on both sides of (19), we get
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m
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m
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≥ 1

m
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( 1
m
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d
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|+ η
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m
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where we use |a+ b| = |a|+ |b| when sign(a) = sign(b). Then, we have

1

m

m∑
r=1

|⟨wT̃
yi,r, ξi⟩| ≥

1

m

m∑
r=1

|ρT̃yi,r,i| − β − 4

√
log(4n2/δ)

d
nα ≥ 3− 1 = 2.

where the inequality is by Condition C.1.

Lemma C.18. Under Condition C.1, we have ∥WT1 −W∗∥ = O(
√
nm log(1/ϵ)σ−1

ξ d−1/2).

Proof of Lemma C.18. The proof follows similarly as in Lemma C.11. Let Pξ be the projection
matrix to the direction of ξ, i.e., Pξ = ξξ⊤

∥ξ∥2 . Then we can represent

wk
j,r −w0

j,r = Pµ1
(wk

j,r −w0
j,r) +Pµ−1

(wk
j,r −w0

j,r) +

n∑
i=1

Pξi
(wk

j,r −w0
j,r)
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+
(
I−Pµ1

−Pµ−1
−

n∑
i=1

Pξi

)
(wk

j,r −w0
j,r).

By the scale difference at T1 and the fact that gradient descent only updates in the direction of µj ,
j = ±1 and ξi, we can bound
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2
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where we use the scale difference at T1. Therefore,

∥WT1 −W∗∥ ≤ ∥WT1 −W0∥+ ∥W0 −W∗∥
≤ O(

√
mnσ−1

ξ d−1/2) +O(
√
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≤ O(
√
nm log(1/ϵ)σ−1

ξ d−1/2)

where we use the definition of W∗.

Lemma C.19. Under Condition C.1, we have for all T1 ≤ k ≤ T ∗

∥Wk −W∗∥2 − ∥Wk+1 −W∗∥2 ≥ 2ηLS(W
t)− ηϵ

Proof of Lemma C.19. The proof follows from similar arguments as for Lemma C.12. We first obtain
a lower bound on yi⟨∇f(Wt,xi),W

∗⟩ for any i ∈ [n] for all T1 ≤ k ≤ T ∗.
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+
1

m

∑
j,r

jyi⟨wk
j,r, ξi⟩⟨ξi,w0

j,r⟩︸ ︷︷ ︸
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where the second equality is by definition of W∗. The third equality is by Lemma C.17 and Lemma
C.15 on the sign invariance. We next bound based on the scale difference and Lemma B.2,

|A10| = Õ(nd−1/2), |A11| = Õ(σ0∥µ∥), |A12| ≤ Õ(σ0σξ
√
d)
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where we use the global bound on the inner product by Õ(1). Next, by Theorem C.3 and Lemma
C.17, we can show 1

m

∑m
r=1 |⟨wk

yi,r,µyi
⟩| ≥ 2 for all i ∈ [n], k ≥ T1 and we can bound

A9 ≥ 4 log(4/ϵ)

Combining the bound for A9, A10, A11, A12, we have

yi⟨∇f(Wk,xi),W
∗⟩ ≥ 2 log(4/ϵ) (20)

where we bound |A10|+ |A11|+ |A12| ≤ 2 log(4/ϵ) under Condition C.1.

Further, we derive

∥Wk −W∗∥2 − ∥Wk+1 −W∗∥2

= 2η⟨∇LS(W
k),Wk −W∗⟩ − η2∥∇LS(W
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=
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n

n∑
i=1

ℓ′ki yi
(
2f(Wk,xi)− ⟨∇f(Wk,xi),W
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n

n∑
i=1

ℓ′ki
(
2yif(W

k,xi)− 2 log(2/ϵ)
)
− η2∥∇LS(W

k)∥2

≥ 4η

n

n∑
i=1

(
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)
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k)∥2

≥ 2ηLS(W
k)− ηϵ

where the first inequality is by (20) and the second inequality is by convexity of cross-entropy function
and the last inequality is by Lemma C.8.

Theorem C.4. Under the same settings as in Theorem C.3, let T = T1 + ⌊∥WT1−W∗∥2

ηϵ ⌋ =

T1 +O(η−1ϵ−1mnσ−2
ξ d−1). Then we have

• there exists T1 ≤ k ≤ T such that LS(W
k) ≤ 0.1.

• maxj,r,y |⟨wk
j,r,µy⟩| = o(1) for all T1 ≤ k ≤ T .

• maxr |⟨wk
yi,r, ξi⟩| ≥ 1 for all i ∈ [n], T1 ≤ k ≤ T .

Proof of Theorem C.4. The proof is similar as in Theorem C.2. By Lemma C.19, for any T1 ≤ k ≤ T ,
we have

∥Wk −W∗∥2 − ∥Wk+1 −W∗∥2 ≥ 2ηLS(W
k)− ηϵ

for all s ≤ k. Then summing over the inequality gives
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k) ≤ ϵ. Setting ϵ = 0.1 shows the desired convergence.

Next, we show the upper bound on maxj,y,r |⟨wk
j,r,µy⟩| for all k ∈ [T1, T ]. Notice that by Proposi-
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−j,r,µj⟩| ≤ ϑ, where we let

ϑ := 3max{max
j,r

|⟨wT1
j,r,µj⟩|, β, 4

√
log(4n2/δ)

d
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Subsequently, we use induction to prove maxj,r |⟨wk
j,r,µj⟩| ≤ 2ϑ. First we notice that
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LS(W
k) ≤ ∥WT1 −W∗∥2

η
= O(η−1nmσ−2

ξ d−1) (21)
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where the equality is by Lemma C.11 where we choose ϵ = 0.1.

At k = T1, we have maxj,r |⟨wT1
j,r,µj⟩| ≤ ϑ ≤ 2ϑ. Suppose there T̃ ∈ [T1, T ] such that

maxr,i |ρT1
yi,r,i

| ≤ 2ϑ for all k ∈ [T1, T̃ − 1]. Now we let Ψk := maxj,r |⟨wk
j,r,µj⟩| and thus

by the update of inner product

Ψk+1 ≤ Ψk +
η

nm

∑
i∈Sj

|ℓ′ki |Ψk∥µ∥2

≤ Ψk +
η

nm

∑
i∈[n]

ℓkiΨ
k∥µ∥2

= Ψk +
2η∥µ∥2

m
LS(W

k)Ψk.

where we use |ℓ′| ≤ ℓ in the second inequality. Taking the summation from T1 to T̃ gives

ΨT̃ ≤ ΨT1 +
2η∥µ∥2

m

T̃−1∑
k=T1

LS(W
k) ·m2ϑ

≤ ΨT1 +O(nSNR2) · 2ϑ
≤ 2ϑ

where the second inequality is by (21) and the last inequality is by n−1 ·SNR−2 ≥ C ′ for sufficiently
large constant C ′ > 0. The lower bound for noise inner product is directly from Lemma C.17.
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D DIFFUSION MODEL

For the analysis of diffusion model, we restate Condition 3.1 specifically for the case of diffusion
model.

Condition D.1. Suppose δ > 0 and the following conditions hold.

1. The dimension d satisfies d = Ω̃(max{n4, nσ−1
ξ }).

2. The training sample satisfies n = Ω(log(m/δ)) and the network width satisfies m = Θ(1).

3. The initialization σ0 satisfies Õ(nσ−1
ξ d−5/4) ≤ σ0 ≤ Õ(min{m−1/6d−1/6σ

1/3
ξ n−1/3,

m−1/6d−7/12σ
−1/3
ξ n1/3, d−3/4σ−1

ξ n})

4. The signal strength satisfies ∥µ∥ = Θ(1).

5. SNR−1 = Õ(d1/4).

6. The noise coefficients αt, βt satisfy αt, βt = Θ(1).

We make the following remarks on the conditions. Compared to the conditions required by classifica-
tion, diffusion model requires m = Θ(1) for the analysis of stationary points. The lower bound on
sample size n is required for the concentration of |S1|, |S−1|. The lower bound on σ0 is required to
ensure the inner products of ξi across samples remain small relative to the initialization. The constant
order of signal strength ∥µ∥ and the bound for n · SNR2 are utilized for simplifying the analysis. It
is also worth mentioning that diffusion does not require a small learning rate for convergence.

D.1 USEFUL LEMMAS

Lemma D.1. Suppose δ > 0. Then with probability at least 1− δ, for any t,

σ2
0d(1− Õ(d−1/2)) ≤ ∥w0

r,t∥2 ≤ σ2
0d(1 + Õ(d−1/2))

|⟨w0
r,t,µj⟩| ≤

√
2 log(16m/δ)σ0∥µj∥,

|⟨w0
r,t, ξi⟩| ≤ 2

√
log(16mn/δ)σ0σξ

√
d

|⟨w0
r,t,w

0
r′,t⟩| ≤ 2

√
log(16m2/δ)σ2

0

√
d, r ̸= r′

for all r, r′ ∈ [m] and i ∈ [n], and j = 1, 2.

Proof of Lemma D.1. The proof is the same as in (Kou et al., 2023) and we include here for com-
pleteness. Because at initialization w0

r,t ∼ N (0, σ2
0I), by Bernstein’s inequality, with probability at

least 1− δ/(8m), we have

|∥w0
r,t∥22 − σ2

0d| = O(σ2
0

√
d log(16m/δ))

Then taking the union bound yields for all r ∈ [m], we have with probability at least 1− δ/4 that

σ2
0d(1− Õ(d−1/2)) ≤ ∥w0

r,t∥22 ≤ σ2
0d(1 + Õ(d−1/2)).

Further, because ⟨w0
r,t,µj⟩ ∼ N (0, σ2

0∥µj∥22) for j = 1, 2, then by Gaussian tail bound and union
bound, we have with probability at least 1− δ/4, for all j = 1, 2, r ∈ [m],

|⟨w0
r,t,µj⟩| ≤

√
2 log(16m/δ)σ0∥µ∥2

Finally, following similar argument and noticing that ∥ξi∥22 = Θ(σ2
ξd) and ∥w0

r,t∥22 = Θ(σ2
0d), we

have with probability at least 1 − δ/4 that for all i ∈ [n], |⟨w0
r,t, ξi⟩| ≤ 2

√
log(16mn/δ)σ0σξ

√
d

and |⟨w0
r,t,w

0
r′,t⟩| ≤ 2

√
log(16m2/δ)σ2

0

√
d.
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D.2 DERIVATION OF LOSS FUNCTION AND GRADIENT

We first simplify the objective through taking the expectation over the added diffusion noise.

Lemma D.2. The DDPM loss can be simplified under expectation as

L(Wt) =
1

2n

n∑
i=1

∑
j∈[2]

(
d+ L

(j)
1,i (Wt) + L

(j)
2,i (Wt)

)
,

where

L
(j)
1,i (Wt) =

1

m

m∑
r=1

∥wr,t∥2
(
α4
t ⟨wr,t,x

(j)
0,i ⟩

4 + 6α2
tβ

2
t ⟨wr,t,x

(j)
0,i ⟩

2∥wr,t∥2 + 3β4
t ∥wr,t∥4

− 4
√
mαtβt⟨wr,t,x

(j)
0,i ⟩
)

L
(j)
2,i (Wt) =

2

m

m∑
r=1

∑
r′ ̸=r

⟨wr,t,wr′,t⟩
((
α2
t ⟨wr,t,x

(j)
0,i ⟩

2 + β2
t ∥wr,t∥2

)(
α2
t ⟨wr′,t,x

(j)
0,i ⟩

2 + β2
t ∥wr′,t∥2

)
+ 2β4

t ⟨wr,t,wr′,t⟩2 + 4α2
tβ

2
t ⟨wr,t,x0,i⟩⟨wr′,t,x0,i⟩⟨wr,t,wr′,t⟩

)
corresponding to the learning of r-th neuron and alignment of r-th neuron with other neurons
respectively.

Proof of Lemma D.2. Without loss of generality, we consider for a single sample xt,i. We first write
the objective as

E∥fp(Wt,x
(p)
t,i )− ϵ

(p)
t,i ∥

2

= E∥ϵ(p)t,i ∥
2︸ ︷︷ ︸

I1

+E

∥∥∥∥∥ 1√
m

m∑
r=1

σ(⟨wr,t,x
(p)
t,i ⟩)wr,t

∥∥∥∥∥
2

︸ ︷︷ ︸
I2

−2E

[
1√
m

m∑
r=1

σ(⟨wr,t,x
(p)
t,i ⟩)⟨wr,t, ϵt,i⟩

]
︸ ︷︷ ︸

I3

where we omit the subscript for the expectation for clarity.

First, we can see I1 = d. Then

I3 =
1√
m

m∑
r=1

E
[
(⟨wr,t,x

(p)
t,i ⟩)

2⟨wr,t, ϵt,i⟩
]

=
1√
m

m∑
r=1

d∑
i′=1

E
[
(⟨wr,t,x

(p)
t,i ⟩)

2wr,t[i
′]ϵt,i[i

′]
]

=
2βt√
m

m∑
r=1

d∑
i′=1

E
[
(⟨wr,t,x

(p)
t,i ⟩)wr,t[i

′]2
]

=
2βt√
m

m∑
r=1

∥wr,t∥2E
[
⟨wr,t,x

(p)
t,i ⟩
]

=
2αtβt√
m

m∑
r=1

∥wr,t∥2⟨wr,t,x
(p)
0,i ⟩

where the third equality uses Stein’s Lemma.

Next, we consider I2 by writing

I2 =
1

m

m∑
r=1

E
[
(⟨wr,t,x

(p)
t,i ⟩)

4
]
∥wr,t∥2 +

2

m

m∑
r=1

∑
r′ ̸=r

E
[
(⟨wr,t,x

(p)
t,i ⟩)

2(⟨wr′,t,x
(p)
t,i ⟩)

2
]
⟨wr,t,wr′,t⟩.
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Next, we compute the two terms E
[
(⟨wr,t,x

(p)
t,i ⟩)4

]
and E

[
(⟨wr,t,x

(p)
t,i ⟩)2(⟨wr′,t,x

(p)
t,i ⟩)2

]
respec-

tively. For notation simplicity, we let ar := αt⟨wr,t,x
(p)
0,i ⟩, br := βt∥wr,t∥ and zr := βt⟨wr,t, ϵt,i⟩.

We first compute E[zr] = 0 and E[z2r ] = β2
t ∥wr,t∥2, E[z4r ] = 3β4

t ∥wr,t∥4. For the first term,

E
[
(⟨wr,t,x

(p)
t,i ⟩)

4
]
= E

[
(ar + zr)

4
]

= E[a4r + 4a3rzr + 6a2rz
2
r + 4arz

3
r + z4r ]

= a4r + 6a2rE[z2r ] + E[z4r ]
= a4r + 6a2rb

2
r + 3b4r

= α4
t ⟨wr,t,x

(p)
0,i ⟩

4 + 6α2
tβ

2
t ⟨wr,t,x

(p)
0,i ⟩

2∥wr,t∥2 + 3β4
t ∥wr,t∥4

Next, for Eϵt,i∼N (0,I)[⟨wr,t, αtx0,i + βtϵt,i⟩2⟨wr′,t, αtx0,i + βtϵt,i⟩2], we note that

E[zrzr′ ] = β2
tE[ϵ⊤t,iwr,tw

⊤
r′,tϵt,i] = β2

t ⟨wr,t,wr′,t⟩,
E[zrz2r′ ] = 0

E[z2rz2r′ ] = E[z2r ]E[z2r′ ] + 2E[zrzr′ ]2 = β4
t ∥wr,t∥2∥wr′,t∥2 + 2β4

t ⟨wr,t,wr′,t⟩2

where the second and third results follow from Isserlis Theorem. Then we can simplify

E[⟨wr,t, αtx0,i + βtϵt,i⟩2⟨wr′,t, αtx0,i + βtϵt,i⟩2]
= E[(ar + zr)

2(ar′ + zr′)
2]

= a2ra
2
r′ + a2rE[z2r′ ] + 4arar′E[zrzr′ ] + a2r′E[z2r ] + E[z2rz2r′ ]

= α4
t ⟨wr,t,x0,i⟩2⟨wr′,t,x0,i⟩2 + α2

tβ
2
t ⟨wr,t,x0,i⟩2∥wr′,t∥2 + 4α2

tβ
2
t ⟨wr,t,x0,i⟩⟨wr′,t,x0,i⟩⟨wr,t,wr′,t⟩

+ α2
tβ

2
t ⟨wr′,t,x0,i⟩2∥wr,t∥2 + β4

t ∥wr,t∥2∥wr′,t∥2 + 2β4
t ⟨wr,t,wr′,t⟩2

Combining I1, I2, I3 gives

E∥st(x(p)
t,i )− ϵt,i∥2

= d+
1

m

m∑
r=1

∥wr,t∥2
(
α4
t ⟨wr,t,x

(p)
0,i ⟩

4 + 6α2
tβ

2
t ⟨wr,t,x

(p)
0,i ⟩

2∥wr,t∥2 + 3β4
t ∥wr,t∥4 − 4

√
mαtβt⟨wr,t,x

(p)
0,i ⟩
)

︸ ︷︷ ︸
L

(p)
1,i (wr,t)

+
2

m

m∑
r=1

∑
r′ ̸=r

⟨wr,t,wr′,t⟩
((
α2
t ⟨wr,t,x

(p)
0,i ⟩

2 + β2
t ∥wr,t∥2

)(
α2
t ⟨wr′,t,x

(p)
0,i ⟩

2 + β2
t ∥wr′,t∥2

)
+ 2β4

t ⟨wr,t,wr′,t⟩2 + 4α2
tβ

2
t ⟨wr,t,x0,i⟩⟨wr′,t,x0,i⟩⟨wr,t,wr′,t⟩

)
︸ ︷︷ ︸

L
(p)
2,i (wr,t)

where we respectively denote the two composing loss terms as L(p)
1,i (corresponding to the learning of

r-th neuron) and L(p)
2,i (alignment with other neurons).

We next compute the gradient of the DDPM loss in expectation.
Lemma D.3. The gradient of expected DDPM loss in Lemma D.2 can be computed as

∇L(Wt) =
1

2n

n∑
i=1

∑
p∈[2]

(
∇L(p)

1,i (Wt) +∇L(p)
2,i (Wt)

)
where

∇L(p)
1,i (wr,t)

=
2

m

(
α4
t ⟨wr,t,x

(p)
0,i ⟩

4 + 12α2
tβ

2
t ⟨wr,t,x

(p)
0,i ⟩

2∥wr,t∥2 + 9β4
t ∥wr,t∥4 − 4

√
mαtβt⟨wr,t,x

(p)
0,i ⟩
)
wr,t
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+
2

m

(
2α4

t ⟨wr,t,x
(p)
0,i ⟩

3∥wr,t∥2 + 6α2
tβ

2
t ∥wr,t∥4⟨wr,t,x

(p)
0,i ⟩ − 2

√
mαtβt∥wr,t∥2

)
x
(p)
0,i

∇L(p)
2,i (wr,t)

=
2

m

∑
r′ ̸=r

((
α2
t ⟨wr,t,x

(p)
0,i ⟩

2 + β2
t ∥wr,t∥2

)(
α2
t ⟨wr′,t,x

(p)
0,i ⟩

2 + β2
t ∥wr′,t∥2

)
+ 2β4

t ⟨wr,t,wr′,t⟩2

+ 4α2
tβ

2
t ⟨wr,t,x0,i⟩⟨wr′,t,x0,i⟩⟨wr,t,wr′,t⟩

)
wr′,t

+
2

m

∑
r′ ̸=r

(
α2
t ⟨wr′,t,x

(p)
0,i ⟩

2 + β2
t ∥wr′,t∥2

)
⟨wr,t,wr′,t⟩

(
2α2

t ⟨wr,t,x
(p)
0,i ⟩x

(p)
0,i + 2β2

twr,t

)
+

2

m

∑
r′ ̸=r

⟨wr,t,wr′,t⟩2
(
4β2

twr′,t + 8α2
tβ

2
t ⟨wr,t,x0,i⟩x0,i

)
Proof of Lemma D.3. The proof is straightforward and thus omitted for clarity.

D.3 FIRST STAGE

Before deriving the results for the first stage, we derive the following lemma that decomposes the
weight norm given concentration of neurons.

Lemma D.4. For any k and r ∈ [m], such that ⟨wk
r,t,µj⟩ = Θ(⟨wk

r,t,µj′⟩) ≥ Θ̃(σ0∥µ∥),
⟨wk

r,t, ξi⟩ = Θ(⟨wk
r,t, ξi′⟩) ≥ Θ̃(σ0σξ

√
d) and ⟨wk

r,t,µj⟩, ⟨wk
r,t, ξi⟩ = Õ(1), ⟨wk

r,t,w
0
r,t⟩ =

Θ(σ2
0d) for any j, j′ = ±1, i, i′ ∈ [n], r ∈ [m]. Then we can show

∥wk
r,t∥2 = Θ

(
⟨wk

r,t,µj⟩2∥µ∥−2 + n · SNR2⟨wk
r,t, ξi⟩2∥µ∥−2 + ∥w0

r,t∥2
)
.

and for r ̸= r′, we have

⟨wk
r,t,w

k
r′,t⟩ = Θ

(
⟨wk

r,t,µj⟩⟨wk
r′,t,µj⟩∥µ∥−2 + n · SNR2⟨wk

r,t, ξi⟩⟨wk
r′,t, ξi⟩∥µ∥−2 + ⟨w0

r,t,w
0
r′,t⟩

)
Proof of Lemma D.4. We decompose the weight wk

r,t as

wk
r,t = ϕkrw

0
r,t + γk1µ1∥µ1∥−2 + γk−1µ−1∥µ−1∥−2 +

n∑
i=1

ρkr,iξi∥ξi∥−2, (22)

based on the gradient descent updates of wk
r,t starting from small initialization w0

r,t and the direction
of update only involves wk

r,t and µ±1, ξi, where γ01 = γ0−1 = ρ0r,i = 0 and ϕkr = 1.

Then given the assumption that ⟨wk
r,t,w

0
r,t⟩ = Θ(σ2

0d), we have ϕkr = Θ(1) because

⟨wk
r,t,w

0
r,t⟩ = ϕkr∥w0

r,t∥2 + ⟨γk1µ1∥µ1∥−2 + γk−1µ−1∥µ−1∥−2 +

n∑
i=1

ρkr,iξi∥ξi∥−2,w0
r,t⟩

= ϕkrΘ(σ2
0d),

where the second equality uses Lemma D.1. This suggests that ϕkr = Θ(1).

Then we can see
⟨wk

r,t,µj⟩ = ϕkr ⟨w0
r,t,µj⟩+ γkj

⟨wk
r,t, ξi⟩ = ϕkr ⟨w0

r,t, ξi⟩+ ρkr,i +
∑
i′ ̸=i

ρkr,i′⟨ξi, ξi′⟩∥ξi∥−2 = ϕkr ⟨w0
r,t, ξi⟩+ ρkr,i + Õ(nd−1/2),

where the second equality for ⟨wk
r,t, ξi⟩ is by Lemma B.2 and ⟨wk

r,t, ξi⟩ = Õ(1), thus ρkr,i = Õ(1).

Then based on the assumptions that |⟨wk
r,t,µj⟩| ≥ Θ̃(σ0∥µ∥) and |⟨wk

r,t, ξi⟩| ≥ Θ̃(σ0σξ
√
d) and

ϕkr = Θ(1), we can simplify (22) as

wk
r,t = Θ(w0

r,t) + Θ(⟨wk
r,t,µj⟩(µ1 + µ−1)∥µ∥−2) + Θ

(
⟨wk

r,t, ξi⟩+ Õ(nd−1/2)
) n∑
i=1

ξi∥ξi∥−2,

(23)
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where we use ⟨wk
r,t,µj⟩ = Θ(⟨wk

r,t,µj′⟩) ≥ ϕkr |⟨w0
r,t,µj⟩| and ⟨wk

r,t, ξi⟩ = Θ(⟨wk
r,t, ξi′⟩) ≥

ϕkr |⟨w0
r,t, ξi⟩| in the first equality. For the second equality, we use the assumption that ⟨wk

r,t, ξi⟩ ≥
Θ̃(σ0σξ

√
d).

Then we can show

∥wk
r,t∥2

= Θ(∥w0
r,t∥2) + Θ(⟨wk

r,t,µj⟩2)∥µ∥−2 +Θ(⟨wk
r,t, ξi⟩2 + Õ(nd−1/2))∥

n∑
i=1

ξi∥ξi∥−2∥2

+Θ(⟨wk
r,t,µj⟩⟨w0

r,t,µj⟩∥µ∥−2) + Θ((⟨wk
r,t, ξi⟩+ Õ(nd−1/2))⟨w0

r,t, ξi⟩
n∑

i=1

∥ξi∥−2)

= Θ(σ2
0d) + Θ(⟨wk

r,t,µj⟩2)∥µ∥−2 +Θ(⟨wk
r,t, ξi⟩2 + Õ(nd−1/2))

(
Θ(nσ−2

ξ d−1) + Õ(n2σ−2
ξ d−3/2)

)
+Θ((⟨wk

r,t, ξi⟩+ Õ(nd−1/2))⟨w0
r,t, ξi⟩nσ−2

ξ d−1)

= Θ(σ2
0d) + Θ(⟨wk

r,t,µj⟩2)∥µ∥−2 +Θ(nσ−2
ξ d−1⟨wk

r,t, ξi⟩2) + Õ(n2σ−2
ξ d−3/2) + Õ(n2σ0σ

−1
ξ d−1)

= Θ
(
⟨wk

r,t,µj⟩2∥µ∥−2 + nSNR2⟨wk
r,t, ξi⟩2∥µ∥−2 + σ2

0d
)
,

where the second equality uses Lemma D.1, Lemma B.2 and ⟨wk
r,t,µj⟩ = Θ(⟨wk

r,t,µj′⟩) ≥
ϕkr |⟨w0

r,t,µj⟩|. The third equality is by the condition on d = Ω̃(n2) and ⟨wk
r,t, ξi⟩ =

Θ(⟨wk
r,t, ξi′⟩) ≥ ϕkr |⟨w0

r,t, ξi⟩| and Lemma D.1. The last equality is by the condition σ0 ≥
Ω̃(max{nσ−1

ξ d−5/4, n2σ−1
ξ d−2}) = Ω̃(nσ−1

ξ d−5/4) given d = Ω̃(n2).

In addition, we can deduce from (23) that

⟨wk
r,t,w

k
r′,t⟩

= Θ(⟨w0
r,t,w

0
r′,t⟩) + Θ(⟨wk

r′,t,µj⟩⟨w0
r,t,µj⟩∥µ∥−2) + Θ(⟨wk

r′,t, ξi⟩
n∑

i=1

⟨w0
r,t, ξi⟩∥ξi∥−2)

+ Θ(⟨wk
r,t,µj⟩⟨w0

r′,t,µj⟩∥µ∥−2) + Θ
(
⟨wk

r,t, ξi⟩
n∑

i=1

⟨w0
r′,t, ξi⟩∥ξi∥−2

)
+Θ(⟨wk

r,t,µj⟩⟨wk
r′,t,µj⟩∥µ∥−2) + Θ(n⟨wk

r,t, ξi⟩⟨wk
r′,t, ξi⟩∥ξi∥−2)

= Θ(⟨w0
r,t,w

0
r′,t⟩) + Θ

(
⟨wk

r,t,µj⟩⟨wk
r′,t,µj⟩∥µ∥−2

)
+Θ(n⟨wk

r,t, ξi⟩⟨wk
r′,t, ξi⟩∥ξi∥−2)

= Θ(⟨w0
r,t,w

0
r′,t⟩) + Θ

(
⟨wk

r,t,µj⟩⟨wk
r′,t,µj⟩∥µ∥−2

)
+Θ(nSNR2⟨wk

r,t, ξi⟩⟨wk
r′,t, ξi⟩∥µ∥−2)

where we use ϕkr = Θ(1) and the ⟨wk
r,t,µj⟩ = Θ(⟨wk

r,t,µj′⟩) ≥ ϕkr |⟨w0
r,t,µj⟩| and ⟨wk

r,t, ξi⟩ =
Θ(⟨wk

r,t, ξi′⟩) ≥ ϕkr |⟨w0
r,t, ξi⟩| for the equalities.

Lemma D.5 (Restatement of Lemma 4.1). Under Condition D.1, there exists an iteration T1 =

max{Tµ, Tξ}, where Tµ = Θ̃(
√
mσ−1

0 d−1∥µ∥−1η−1) and Tξ = Θ̃(n
√
mσ−1

0 σ−1
ξ d−3/2η−1) such

that for all 0 ≤ k ≤ T1, (1) ∥wk
r,t∥2 = Θ(σ2

0d) for all r ∈ [m], j = ±1, i ∈ [n], (2) ⟨wk
r,t,w

0
r,t⟩ =

Θ(σ2
0d), and (3) the signal and noise learning dynamics can be simplified to

⟨wk+1
r,t ,µj⟩ = ⟨wk

r,t,µj⟩+Θ
(ηαtβt|Sj |

n
√
m

∥wk
r,t∥2∥µj∥2

)
⟨wk+1

r,t , ξi⟩ = ⟨wk
r,t, ξi⟩+Θ

(ηαtβt
n
√
m

∥wk
r,t∥2∥ξi∥2

)
for all j = ±1, r ∈ [m], i ∈ [n]. Furthermore, we can show

• ⟨wT1
r,t,µj⟩ = Θ(⟨wT1

r′,t,µj′⟩)> 0,

• ⟨wT1
r,t, ξi⟩ = Θ(⟨wT1

r′,t, ξi′⟩)> 0,

• ∥wT1
r,t∥2 = Θ(∥wT1

r′,t∥2),
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• ⟨wT1
r,t,w

T1

r′,t⟩ = Θ(∥wT1
r,t∥2), for r ̸= r′,

• ⟨∇wr,t
L(WT1

t ),w0
r,t⟩ = − 1√

m
Θ
((

⟨wT1
r,t,µj + ξ⟩ −

√
m∥wT1

r,t∥4
)
⟨wT1

r,t,w
0
r,t⟩ +

∥wT1
r,t∥2⟨w0

r,t,µj + ξ⟩
)

, where we denote ξ = 1
n

∑n
i=1 ξi.

• ⟨wT1
r,t,µj⟩/⟨wT1

r′,t, ξi⟩ = Θ(n · SNR2),

for all j, j′ = ±1, r, r′ ∈ [m], i, i′ ∈ [n].

Proof of Lemma D.5. We prove the results by induction. To this end, we first compute the scale of
the gradients projected to the space of µ1,µ−1 and ξi, for i ∈ [n] under the initialization scale. For
notation clarity, we omit the index k.

As long as ∥wr,t∥2 = Θ(σ2
0d) and suppose ⟨wr′,t,µj⟩ = O(⟨wr,t,µj⟩), ⟨wr′,t, ξi⟩ =

O(⟨wr,t, ξi⟩), we can identify the dominant terms as follows.

Signal. First for µj , and for any i ∈ [n], we compute

1

2n

n∑
i=1

⟨∇L(1)
1,i (wr,t),µj⟩

=
1

m
Θ(⟨wr,t,µj⟩5 + ⟨wr,t,µj⟩3σ2

0d+ σ4
0d

2⟨wr,t,µj⟩)−
1√
m
Θ(⟨wr,t,µj⟩2)

+
1

m
Θ(σ2

0d⟨wr,t,µj⟩3 + σ4
0d

2⟨wr,t,µj⟩)−
1√
m
Θ(σ2

0d)

=
1

m
O(σ4

0d
2⟨wr,t,µj⟩)−

1√
m
Θ(σ2

0d)

where the second equality is by ⟨wr,t,µj⟩2 ≤ ∥wr,t∥2∥µ∥2 = Θ(σ2
0d). It is clear the dominant term

is − 1√
m
4αtβt∥wr,t∥2∥µ∥2. The second dominant term comes from Θ( 1

m∥wr,t∥4⟨wr,t,µj⟩).

Further, we have due to the orthogonality between signal and noise vectors,

1

2n

n∑
i=1

⟨∇L(2)
1,i (wr,t),µj⟩ =

1

m
O
(
⟨wr,t, ξi⟩4⟨wr,t,µj⟩+ ⟨wr,t, ξi⟩2σ2

0d⟨wr,t,µj⟩+ σ4
0d

2⟨wr,t,µj⟩

−
√
m⟨wr,t, ξi⟩⟨wr,t,µj⟩

)
In addition, we have

1

2n

n∑
i=1

⟨∇L(1)
2,i (wr,t),µj⟩ =

m− 1

m
O
(
⟨wr,t,µj⟩5 + ⟨wr,t,µj⟩3σ2

0d+ σ4
0d

2⟨wr,t,µj⟩
)

=
m− 1

m
O
(
σ4
0d

2⟨wr,t,µj⟩
)

Further,

1

2n

n∑
i=1

⟨∇L(2)
2,i (wr,t),µj⟩ =

m− 1

m
O(⟨wr,t, ξi⟩4⟨wr,t,µj⟩+ ⟨wr,t, ξi⟩2σ2

0d⟨wr,t,µj⟩+ σ4
0d

2⟨wr,t,µj⟩)

Then according to the definition of |S±1| and µ±1, we can simplify the gradient into the dominant
terms as

⟨∇L(Wt),µj⟩ = − 1√
m
Θ(∥wr,t∥2 + ⟨wr,t, ξi⟩⟨wr,t,µj⟩)

+O
(
σ4
0d

2⟨wr,t,µj⟩+ ⟨wr,t, ξi⟩4⟨wr,t,µj⟩+ ⟨wr,t, ξi⟩2σ2
0d⟨wr,t,µj⟩

)
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Noise. Similarly, we can also show for the noise learning

1

2n

n∑
i′=1

⟨∇L(1)
1,i′(wr,t), ξi⟩ =

1

m
O
(
⟨wr,t,µj⟩4⟨wr,t, ξi⟩+ ⟨wr,t,µj⟩2σ2

0d⟨wr,t, ξi⟩+ σ4
0d

2⟨wr,t, ξi⟩
)

− 1√
m
Θ
(
⟨wr,t, ξi⟩⟨wr,t,µj⟩

)
=

1

m
O(σ4

0d
2⟨wr,t, ξi⟩)−

1√
m
Θ(⟨wr,t, ξi⟩⟨wr,t,µj⟩)

where the dominating term is −4
√
mαtβt⟨wr,t,µj⟩⟨wr,t, ξi⟩.

In addition,

1

2n

n∑
i′=1

⟨∇L(2)
1,i′(wr,t), ξi⟩

=
1

m
O
(
⟨wr,t, ξi⟩5 + ⟨wr,t, ξi⟩3σ2

0d+ σ4
0d

2⟨wr,t, ξi⟩
)
− 1√

m
O(⟨wr,t, ξi⟩2)

+
1

m

(
O(⟨wr,t, ξi⟩3σ2

0d+ σ4
0d

2⟨wr,t, ξi⟩) + Θ(σ2
0d)
)(
Θ(σ2

ξdn
−1)−

√
mÕ(σ2

ξ

√
d)
)

=
1

m
O
(
⟨wr,t, ξi⟩5 + ⟨wr,t, ξi⟩3σ2

0d+ σ4
0d

2⟨wr,t, ξi⟩
)
− 1√

m
O(⟨wr,t, ξi⟩2)

+
1

m
O(⟨wr,t, ξi⟩3σ2

0σ
2
ξd

2n−1 + ⟨wr,t, ξi⟩σ4
0σ

2
ξd

3n−1)− 1√
m
Θ(σ2

0σ
2
ξd

2n−1)

where we use Lemma B.2 in the first equality and the second equality is by d = Ω̃(n2).

Further we can show

1

2n

n∑
i′=1

⟨∇L(1)
2,i (wr,t), ξi⟩

=
m− 1

m
O
(
⟨wr,t,µj⟩4⟨wr,t, ξi⟩+ ⟨wr,t,µj⟩2σ2

0d⟨wr,t, ξi⟩+ σ4
0d⟨wr,t, ξi⟩

)
=
m− 1

m
O
(
σ4
0d⟨wr,t, ξi⟩

)
Lastly,

1

2n

n∑
i′=1

⟨∇L(2)
2,i (wr,t), ξi⟩ =

m− 1

m
O
(
⟨wr,t, ξi⟩5 + ⟨wr,t, ξi⟩3σ2

0d+ σ4
0d

2⟨wr,t, ξi⟩
)

+
m− 1

m
O(⟨wr,t, ξi⟩3σ2

0σ
2
ξd

2n−1 + ⟨wr,t, ξi⟩σ4
0σ

2
ξd

3n−1)

This suggests we can simplify the gradient along noise direction as

⟨∇L(Wt), ξi⟩ = − 1√
m
Θ(σ2

0σ
2
ξd

2n−1 + ⟨wr,t, ξi⟩2 + ⟨wr,t, ξi⟩⟨wr,t,µj⟩)

+O
(
σ4
0d

2⟨wr,t, ξi⟩+ ⟨wr,t, ξi⟩5 + ⟨wr,t, ξi⟩3σ2
0d
)

+O
(
⟨wr,t, ξi⟩3σ2

0σ
2
ξd

2n−1 + ⟨wr,t, ξi⟩σ4
0σ

2
ξd

3n−1
)

In summary, as long as ∥wr,t∥2 = Θ(σ2
0d) and suppose ⟨wr′,t,µj⟩ = O(⟨wr,t,µj⟩), ⟨wr′,t, ξi⟩ =

O(⟨wr,t, ξi⟩), we can simplify the gradient as

⟨∇wr,t
L(Wt),µj⟩ = − 1√

m
Θ(σ2

0d)−
1√
m
O(⟨wr,t, ξi⟩⟨wr,t,µj⟩)

+O
(
σ4
0d

2⟨wr,t,µj⟩+ ⟨wr,t, ξi⟩4⟨wr,t,µj⟩+ ⟨wr,t, ξi⟩2σ2
0d⟨wr,t,µj⟩

)
(24)
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⟨∇wr,t
L(Wt), ξi⟩ = − 1√

m
Θ(σ2

0σ
2
ξd

2n−1)− 1√
m
O(⟨wr,t, ξi⟩2 + ⟨wr,t, ξi⟩⟨wr,t,µj⟩)

+O
(
σ4
0d

2⟨wr,t, ξi⟩+ ⟨wr,t, ξi⟩5 + ⟨wr,t, ξi⟩3σ2
0d
)

+O
(
⟨wr,t, ξi⟩3σ2

0σ
2
ξd

2n−1 + ⟨wr,t, ξi⟩σ4
0σ

2
ξd

3n−1
)

(25)

In the initial phase where ∥wk
r,t∥2 = Θ(σ2

0d), |⟨wk
r,t,µj⟩| = Õ(σ0∥µ∥) and |⟨wk

r,t, ξi⟩| =

Õ(σ0σξ
√
d) (by Lemma D.1), we can show (24) reduces to

⟨∇L(Wt),µj⟩

= − 1√
m
Θ(σ2

0d) +O
(
σ4
0d

2⟨wr,t,µj⟩+ ⟨wr,t, ξi⟩4⟨wr,t,µj⟩+ ⟨wr,t, ξi⟩2σ2
0d⟨wr,t,µj⟩

)
= − 1√

m
Θ(σ2

0d)

where we use the condition that SNR−1 = Õ(d1/4), i.e., σξ = Õ(d−1/4) = o(1) in the first equality.
The second equality is by condition σ0 ≤ Õ(m−1/6d−1/3) and σ−1

ξ = Ω̃(d1/4). Further, we can
show (25) reduces to

⟨∇L(Wt), ξi⟩ = − 1√
m
Θ(σ2

0σ
2
ξd

2n−1) +O
(
σ4
0d

2⟨wr,t, ξi⟩+ ⟨wr,t, ξi⟩5 + ⟨wr,t, ξi⟩3σ2
0d
)

+O
(
⟨wr,t, ξi⟩3σ2

0σ
2
ξd

2n−1 + ⟨wr,t, ξi⟩σ4
0σ

2
ξd

3n−1
)

= − 1√
m
Θ(σ2

0σ
2
ξd

2n−1) +O
(
⟨wr,t, ξi⟩3σ2

0σ
2
ξd

2n−1 + ⟨wr,t, ξi⟩σ4
0σ

2
ξd

3n−1
)

= − 1√
m
Θ(σ2

0σ
2
ξd

2n−1)

where the first equality is by d = Ω̃(n) and d ≥ Ω̃(n2/3σ
−2/3
ξ ). The second equality is by

σ3
0 ≤ Õ(m−1/2d−1/2σξn

−1). The third equality is by σ3
0 ≤ Õ(m−1/2d−3/2σ−1

ξ ).

In summary, we can show as long as ∥wk
r,t∥2 = Θ(σ2

0d), |⟨wk
r,t,µj⟩| = Õ(σ0∥µ∥) and

|⟨wk
r,t, ξi⟩| = Õ(σ0σξ

√
d),

⟨wk+1
r,t ,µj⟩ = ⟨wk

r,t,µj⟩+
ηαtβt√
m

Θ(σ2
0d) (26)

⟨wk+1
r,t , ξi⟩ = ⟨wk

r,t, ξi⟩+
ηαtβt
n
√
m

Θ(σ2
0d)∥ξi∥2 (27)

In addition, we similarly show that as long as ∥wk
r,t∥2 = Θ(σ2

0d), |⟨wk
r,t,µj⟩|, |⟨wk

r,t, ξi⟩| = o(1),

⟨wk+1
r,t ,w0

r,t⟩

= ⟨wk
r,t,w

0
r,t⟩+ ηO

((
σ4
0d

2 + ⟨wk
r,t,µj + ξi⟩

)
⟨wk

r,t,w
0
r,t⟩+ σ2

0d⟨w0
r,t,µj + ξi⟩

)
, (28)

Next, let Tµ = Θ(

√
m log(16m/δ)

σ0d∥µ∥ηαtβt
) and Tξ = Θ(

n
√

m log(16mn/δ)

σ0σξd3/2ηαtβt
) and T1 = max{Tµ, Tξ}. We

prove the results hold for all 0 ≤ k ≤ T1 via induction. We partition the proof into two stages,
namely when 0 ≤ k ≤ min{Tµ, Tξ} and when min{Tµ, Tξ} ≤ k ≤ T1.

(1) We first show for all 0 ≤ k ≤ min{Tµ, Tξ} that ∥wk
r,t∥2 = Θ(σ2

0d), ⟨wk
r,t,w

0
r,t⟩ = Θ(σ2

0d),
|⟨wk

r,t,µj⟩| = Õ(σ0∥µ∥) and |⟨wk
r,t, ξi⟩| = Õ(σ0σξ

√
d) hold and thus (26), (27), (28) are directly

satisfied. We prove the claims by induction as follows.

It is clear that at k = 0, we have from Lemma D.1 that ∥w0
r,t∥2 = Θ(σ2

0d), ⟨wk
r,t,w

0
r,t⟩ = ∥w0

r,t∥2 =

Θ(σ2
0d) and

|⟨w0
r,t,µj⟩| ≤

√
2 log(16m/δ)σ0∥µ∥ = Õ(σ0∥µ∥)
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|⟨w0
r,t, ξi⟩| ≤ 2

√
log(16mn/δ)σ0σξ

√
d = Õ(σ0σξ

√
d)

Suppose there exists an iteration T̃ ≤ min{Tµ, Tξ} such that ∥wk
r,t∥2 = Θ(σ2

0d), ⟨wk
r,t,w

0
r,t⟩ =

Θ(σ2
0d), |⟨w0

r,t,µj⟩| = Õ(σ0∥µ∥) and |⟨wk
r,t, ξi⟩| = Õ(σ0σξ

√
d) for all 0 ≤ k ≤ T̃ − 1. Then we

have from (26) that

⟨wT̃
r,t,µj⟩ = ⟨wT̃−1

r,t ,µj⟩+
ηαtβt√
m

Θ(σ2
0d)∥µ∥2 = ⟨w0

r,t,µj⟩+
ηαtβt√
m

Θ(σ2
0d)∥µ∥2T̃

≤ ⟨w0
r,t,µj⟩+

ηαtβt√
m

Θ(σ2
0d)∥µ∥2Tµ

= ⟨w0
r,t,µj⟩+ Õ(σ0∥µ∥)

= Õ(σ0∥µ∥) (29)

where we use the Lemma B.1 that |Sj | = Θ(n). In addition, we have from (27) that

⟨wT̃
r,t, ξi⟩ = ⟨wT̃−1

r,t , ξi⟩+
ηαtβt
n
√
m

Θ(σ2
0σ

2
ξd

2) ≤ ⟨w0
r,t, ξi⟩+

ηαtβt
n
√
m

Θ(σ2
0σ

2
ξd

2)Tξ

= Õ(σ0σξ
√
d) (30)

where we use Lemma D.1 that ∥ξi∥2 = Θ(σ2
ξd) for all i ∈ [n].

Finally, we deduce from (28) that

⟨wT̃
r,t,w

0
r,t⟩ = ⟨wT̃−1

r,t ,w0
r,t⟩+ ηO

((
σ4
0d

2 + ⟨wk
r,t,µj + ξi⟩

)
⟨wk

r,t,w
0
r,t⟩+ σ2

0d⟨w0
r,t,µj + ξi⟩

)
= ⟨wT̃−1

r,t ,w0
r,t⟩+ ηO

(
σ3
0d

3/2(∥µ∥+ σξ
√
d) + σ6

0d
3
)

= Θ(σ2
0d) + ηO

(
σ3
0d

3/2(∥µ∥+ σξ
√
d) + σ6

0d
3
)
T̃ (31)

where we use Cauchy-Schwarz inequality in the first inequality. When T̃ = Tµ,

ηO
(
σ3
0d

3/2(∥µ∥+ σξ
√
d) + σ6

0d
3
)
T̃ = Õ

(
(∥µ∥+ σξ

√
d)σ2

0

√
d+ σ5

0d
2
)
≤ Θ(σ2

0d) (32)

where the last inequality is by the condition on σ−1
ξ = Ω̃(d1/4) ≫ 1 and σ0 ≤ Õ(d−1/3). When

T̃ = Tξ,

ηO
(
σ3
0d

3/2(∥µ∥+ σξ
√
d) + σ6

0d
3
)
T̃ = Õ

(
nσ−1

ξ σ2
0(∥µ∥+ σξ

√
d) + nσ5

0σ
−1
ξ d3/2

)
≤ Θ(σ2

0d)

(33)

where the last inequality is by the condition on d that d = Ω̃(nσ−1
ξ ∥µ∥) and d = Ω̃(n2) and

σ0 ≤ Õ(σ
1/3
ξ n−1/3d−1/6). Hence we have proved the induction on ⟨wk

r,t,w
0
r,t⟩ and in fact proved a

stronger result that ⟨wk
r,t,w

0
r,t⟩ = Θ(σ2

0d) for all k ≤ max{Tµ, Tξ} as long as ∥wk
r,t∥2 = Θ(σ2

0d),
|⟨wk

r,t,µj⟩|, |⟨wk
r,t, ξi⟩| = o(1).

Next, we let Pξ = ξξ⊤

∥ξ∥2 be the projection matrix onto the direction of ξ and we express wT̃
r,t =

Pµ1
wT̃

r,t + Pµ−1
wT̃

r,t +
∑n

i=1 Pξi
wT̃

r,t +
(
I − Pµ1

− Pµ−1
−
∑n

i=1 Pξi

)
wT̃

r,t and due to the
orthogonality of the decomposition, we have

∥wT̃
r,t∥2 =

⟨wT̃
r,t,µ1⟩2

∥µ∥2
+

⟨wT̃
r,t,µ−1⟩2

∥µ∥2
+

∥∥∥∥∥
n∑

i=1

⟨wT̃
r,t, ξi⟩
∥ξ∥2

∥∥∥∥∥
2

+

∥∥∥∥∥(I−Pµ1
−Pµ−1

−
n∑

i=1

Pξi

)
wT̃

r,t

∥∥∥∥∥
2

= Õ(σ2
0) + Õ(nσ2

0) +
∥∥∥ ⟨wT̃

r,t,w
0
r,t⟩

∥w0
r,t∥2

w0
r,t

∥∥∥2
= Θ(σ2

0d)

51



Published as a conference paper at ICLR 2025

where we use the induction results that |⟨wT̃
r,t,µj⟩| = Õ(σ0∥µ∥) and |⟨wT̃

r,t, ξi⟩| = Õ(σ0σξ
√
d),

and the
∥∥(I−Pµ1

−Pµ−1
−
∑n

i=1 Pξi

)
wT̃

r,t

∥∥2 is dominated by its projection to w0
r,t.

This completes the induction that for all k ≤ min{Tµ, Tξ}, we have ∥wk
r,t∥2 = Θ(σ2

0d),
⟨wk

r,t,w
0
r,t⟩ = Θ(σ2

0d), |⟨wk
r,t,µj⟩| = Õ(σ0∥µ∥) and |⟨wk

r,t, ξi⟩| = Õ(σ0σξ
√
d).

(2) Next, we examine the iteration min{Tµ, Tξ} ≤ k ≤ max{Tµ, Tξ} = T1. The magnitude
comparison between Tµ and Tξ depends on the condition on n · SNR2. In particular, we can verify
that Tµ/Tξ = Θ̃(n−1/2

√
n−1SNR−2) = Θ̃(n−1SNR−1).

• When Tµ ≤ Tξ, i.e., n · SNR2 = Ω̃(1), we use induction to show for all min{Tµ, Tξ} ≤
k ≤ T1, ∥wk

r,t∥2 = Θ(σ2
0d), ⟨wk

r,t,w
0
r,t⟩ = Θ(σ2

0d), |⟨wk
r,t,µj⟩| = Õ(σ0∥µ∥nSNR),

|⟨wk
r,t, ξi⟩| = Õ(σ0σξ

√
d). It can be shown that under the condition σ0 ≤ Õ(n−1σξd

1/2),
we have |⟨wk

r,t, ξi⟩| = o(1), which suggests ⟨wk
r,t,w

0
r,t⟩ = Θ(σ2

0d). Suppose there exists an
iteration Tµ < T̃ξ ≤ Tξ such that the results hold for all Tµ ≤ k ≤ T̃ξ − 1. Then we can derive
the dominant terms in (24)

⟨∇L(Wt),µj⟩ = − 1√
m
Θ(σ2

0d)

+O
(
σ4
0d

2⟨wr,t,µj⟩+ ⟨wr,t, ξi⟩4⟨wr,t,µj⟩+ ⟨wr,t, ξi⟩2σ2
0d⟨wr,t,µj⟩

)
= − 1√

m
Θ(σ2

0d)

where the first equality is by d = Ω̃(n) and the second equality is by σ3
0 ≤ Õ(m−1/2n−1d−1/2σξ).

This suggests that we can still leverage (26) to bound

⟨wT̃ξ

r,t,µj⟩ = ⟨wT̃ξ−1
r,t ,µj⟩+

ηαtβt√
m

Θ(σ2
0d)∥µ∥2 ≤ ⟨w0

r,t,µj⟩+
ηαtβt√
m

Θ(σ2
0d)∥µ∥2Tξ

= ⟨w0
r,t,µj⟩+ Õ(σ0∥µ∥n · SNR)

= Õ(σ0∥µ∥n · SNR)

The bound on |⟨wT̃ξ

r,t, ξi⟩| is the same as (30). Then by the same arguments in (31), and (32), (33),

we can show ⟨wT̃ξ

r,t,w
0
r,t⟩ = Θ(σ2

0d). Thus, we can compute

∥wT̃ξ

r,t∥2 = Õ(σ2
0n

2 · SNR2) + Õ(nσ2
0) + Θ(σ2

0d) = Θ(σ2
0d)

where the last equality is by the condition on d that d = Ω̃(n∥µ∥σ−1
ξ ). This verifies the induction

on ∥wk
r,t∥2 = Θ(σ2

0d).

• When Tξ < Tµ, i.e., n−1 · SNR−2 = Ω̃(1), we use induction to show for all min{Tµ, Tξ} ≤
k ≤ T1, ∥wk

r,t∥2 = Θ(σ2
0d), |⟨wk

r,t,µj⟩| = Õ(σ0∥µ∥), |⟨wk
r,t, ξi⟩| = Õ(σ0σξ

√
dn−1SNR−1).

Under the condition that σ0 ≤ Õ(σ−1
ξ d−3/4n) ≤ Õ(σ−2

ξ d−1n), we have |⟨wk
r,t, ξi⟩| = o(1),

which suggests ⟨wk
r,t,w

0
r,t⟩ = Θ(σ2

0d). Suppose there exists an iteration Tξ < T̃µ ≤ Tµ such
that the results hold for all Tξ ≤ k ≤ T̃µ − 1. Thus we can derive the dominant terms in (25) as

⟨∇L(Wt), ξi⟩ = − 1√
m
Θ(σ2

0σ
2
ξd

2n−1) +O
(
σ4
0d

2⟨wr,t, ξi⟩+ ⟨wr,t, ξi⟩5 + ⟨wr,t, ξi⟩3σ2
0d
)

+O
(
⟨wr,t, ξi⟩3σ2

0σ
2
ξd

2n−1 + ⟨wr,t, ξi⟩σ4
0σ

2
ξd

3n−1
)

= − 1√
m
Θ(σ2

0σ
2
ξd

2n−1) +O
(
⟨wr,t, ξi⟩3σ2

0σ
2
ξd

2n−1 + ⟨wr,t, ξi⟩σ4
0σ

2
ξd

3n−1
)

= − 1√
m
Θ(σ2

0σ
2
ξd

2n−1)
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where the first equality is due to SNR−1 = Õ(d1/4) and d ≥ Ω̃(n2/3σ
−2/3
ξ ). The second equality

is by σ3
0 ≤ Õ(d−1m−1/2). The third equality is by σ3

0 ≤ Õ(σ−1
ξ d−7/4nm−1/2).

This suggests that we can still leverage (27) to bound

⟨wT̃µ

r,t , ξi⟩ = ⟨wT̃µ−1
r,t , ξi⟩+

ηαtβt
n
√
m

Θ(σ2
0σ

2
ξd

2) ≤ ⟨w0
r,t, ξi⟩+

ηαtβt
n
√
m

Θ(σ2
0σ

2
ξd

2)Tµ

= Õ(σ0σξ
√
dn−1SNR−1)

The bound on ⟨wT̃ξ

r,t,µj⟩ is the same as (29). Then following the same argument, we can
decompose

∥wT̃ξ

r,t∥2 = Õ(σ2
0) + Õ(σ2

0n
−1SNR−2) + Θ(σ2

0d) = Θ(σ2
0d)

where the last equality is by the condition that SNR−1 = Õ(d1/4). This verifies the induction on
∥wk

r,t∥2 = Θ(σ2
0d).

Furthermore, at k = T1, we have for all r ∈ [m], j = ±1 and i ∈ [n], the growth term dominates the
initialization term and thus

⟨wT1
r,t,µj⟩ = Θ(ηαtβtm

−1/2σ2
0d∥µ∥2T1) ≥ Θ̃(σ0∥µ∥) ≥ Θ(|⟨w0

r,t,µj⟩|)

⟨wT1
r,t, ξi⟩ = Θ(ηαtβtn

−1m−1/2σ2
0dσ

2
ξdT1) ≥ Θ̃(σ0σξ

√
d) ≥ Θ(|⟨w0

r,t, ξi⟩|)
where the inequality is by the definition of T1. Thus, we verify the concentration of inner products,
i.e., ⟨wT1

r,t,µj⟩ = Θ(⟨wT1

r′,t,µj′⟩) and ⟨wT1
r,t, ξi⟩ = Θ(⟨wT1

r′,t, ξi′⟩), at the end of first stage as well
as the ratio ⟨wT1

r,t,µj⟩/⟨wT1

r′,t, ξi⟩ = Θ(n · SNR2) for any r, r′ ∈ [m]. Then, we can see directly
∥wT1

r,t∥2 = Θ(∥wT1

r′,t∥2) = Θ(σ2
0d) for all r, r′ ∈ [m].

Next, we verify at T1, we have ⟨wT1
r,t,w

T1

r′,t⟩ = Θ(∥wT1
r,t∥2) for all r, r′ ∈ [m] such that r ̸= r′. To

this end, we first notice that the conditions required by Lemma D.4 are readily satisfied at k = T1
and thus applying Lemma D.4 yields

∥wT1
r,t∥2 = Θ

(
⟨wT1

r,t,µj⟩2∥µ∥−2 + n · SNR2⟨wT1
r,t, ξi⟩2∥µ∥−2 + ∥w0

r,t∥2
)

⟨wT1
r,t,w

T1

r′,t⟩ = Θ
(
⟨wT1

r,t,µj⟩⟨wT1

r′,t,µj⟩∥µ∥−2 + n · SNR2⟨wT1
r,t, ξi⟩⟨w

T1

r′,t, ξi⟩∥µ∥
−2 + ⟨w0

r,t,w
0
r′,t⟩

)
= Θ

(
⟨wT1

r,t,µj⟩2∥µ∥−2 + n · SNR2⟨wT1
r,t, ξi⟩2∥µ∥−2 + ⟨w0

r,t,w
0
r′,t⟩

)
= Θ

(
∥wT1

r,t∥2 − ∥w0
r,t∥2 + ⟨w0

r,t,w
0
r′,t⟩

)
= Θ

(
∥wT1

r,t∥2 − σ2
0d
)
+ Õ(σ2

0

√
d)

= Θ(∥wT1
r,t∥2)

where the second equality for ⟨wT1
r,t,w

T1

r′,t⟩ is due to ⟨wT1
r,t,µj⟩ = Θ(⟨wT1

r′,t,µj′⟩) and ⟨wT1
r,t, ξi⟩ =

Θ(⟨wT1

r′,t, ξi′⟩) and the second last equality is by Lemma D.1.

Finally we verify that at T1,

⟨∇wr,t
L(WT1

t ),w0
r,t⟩

= − 1√
m
Θ(⟨wT1

r,t,µj + ξ⟩⟨wT1
r,t,w

0
r,t⟩+ ∥wT1

r,t∥2⟨w0
r,t,µj + ξ⟩)

+O
((

⟨wT1
r,t,µj⟩4 + ⟨wT1

r,t, ξi⟩4 + (⟨wT1
r,t,µj⟩2 + ⟨wT1

r,t, ξi⟩2)∥w
T1
r,t∥2 + ∥wT1

r,t∥4
)
⟨wT1

r,t,w
0
r,t⟩
)

+O
(
⟨wT1

r,t,µj⟩3∥wT1
r,t∥2⟨w0

r,t,µj⟩+ ⟨wT1
r,t, ξi⟩3∥w

T1
r,t∥2⟨w0

r,t, ξi⟩
)

+O
(
∥wT1

r,t∥4⟨w
T1
r,t,µj⟩⟨w0

r,t,µj⟩+ ∥wT1
r,t∥4⟨w

T1
r,t, ξi⟩⟨w0

r,t, ξi⟩
)

= − 1√
m
Θ((⟨wT1

r,t,µj + ξ⟩ −
√
m∥wT1

r,t∥4)⟨w
T1
r,t,w

0
r,t⟩+ ∥wT1

r,t∥2⟨w0
r,t,µj + ξ⟩)

where we use the concentration of neurons along directions µj , ξi at T1 and the scale of
⟨wT1

r,t,µj⟩, ⟨wT1
r,t, ξi⟩.
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D.4 SECOND STAGE

For the second stage, we derive an extension of Lemma D.4 given the scale of ⟨wk
r,t,w

0
r,t⟩ can escape

initialization. We highlight that unlike ⟨wk
r,t,µj⟩ and ⟨wk

r,t, ξi⟩ that increase monotonically, the
dominant term of ⟨∇wr,t

L(WT1
t ),w0

r,t⟩ suggests that ⟨wk
r,t,w

0
r,t⟩ can also decrease.

Lemma D.6. For any k and r ∈ [m], such that ⟨wk
r,t,µj⟩ =

Θ(⟨wk
r,t,µj′⟩) ≥ Θ(⟨wk

r,t,w
0
r,t⟩∥w0

r,t∥−2|⟨w0
r,t,µj⟩|), ⟨wk

r,t, ξi⟩ = Θ(⟨wk
r,t, ξi′⟩) ≥

Θ(⟨wk
r,t,w

0
r,t⟩∥w0

r,t∥−2|⟨w0
r,t, ξi⟩|) and ⟨wk

r,t,µj⟩, ⟨wk
r,t, ξi⟩ = Õ(1), ⟨wk

r,t,w
0
r,t⟩ =

Θ(⟨wk
r′,t,w

0
r′,t⟩) = Ω(min{σ0σ−1

ξ n1/2m−1/6, σ0
√
dm−1/6}) for any j, j′ = ±1, i, i′ ∈

[n], r, r′ ∈ [m]. Then we can show

∥wk
r,t∥2 = Θ

(
⟨wk

r,t,µj⟩2∥µ∥−2 + n · SNR2⟨wk
r,t, ξi⟩2∥µ∥−2 + ⟨wk

r,t,w
0
r,t⟩2∥w0

r,t∥−2
)
.

And for r ̸= r′, we have

⟨wk
r,t,w

k
r′,t⟩ = Θ

(
⟨wk

r,t,µj⟩⟨wk
r′,t,µj⟩∥µ∥−2 + n · SNR2⟨wk

r,t, ξi⟩⟨wk
r′,t, ξi⟩∥µ∥−2

+ ⟨wk
r,t,w

0
r,t⟩2

⟨w0
r,t,w

0
r′,t⟩

∥w0
r,t∥4

)
Proof of Lemma D.6. Similar to the proof of Lemma D.4, we can decompose the weight wk

r,t as

wk
r,t = ϕkrw

0
r,t + γk1µ1∥µ1∥−2 + γk−1µ−1∥µ−1∥−2 +

n∑
i=1

ρkr,iξi∥ξi∥−2.

First, we show that ϕkr = Θ(⟨wk
r,t,w

0
r,t⟩∥w0

r,t∥−2) as follows. We compute

⟨wk
r,t,w

0
r,t⟩ = ϕkr∥w0

r,t∥2 +Θ(⟨wk
r,t,µj⟩⟨w0

r,t,µj⟩∥µ∥−2 + ⟨wk
r,t, ξi⟩

n∑
i=1

⟨w0
r,t, ξi⟩∥ξi∥−2)

= ϕkr∥w0
r,t∥2 + Õ(σ0 + nσ0σ

−1
ξ d−1/2)

= Θ(ϕkr∥w0
r,t∥2)

where the second equality is by the assumption that ⟨wk
r,t,µj⟩, ⟨wk

r,t, ξi⟩ = Õ(1) and the last equality
is by the assumption ⟨wk

r,t,w
0
r,t⟩ = Ω(min{σ0σ−1

ξ n1/2m−1/6, σ0
√
dm−1/6}) and the condition

that σ−1
ξ = Ω(d1/4), d ≥ Õ(nm1/3) and d ≥ Õ(nm1/6σ−1

ξ ). Then based on the assumption, we
can still bound ⟨wk

r,t,µj⟩ ≥ ϕkr |⟨w0
r,t,µj⟩| = Θ(⟨wk

r,t,w
0
r,t⟩∥w0

r,t∥−2|⟨w0
r,t,µj⟩|), and similarly

we can bound ⟨wk
r,t, ξi⟩ ≥ ϕkr |⟨w0

r,t, ξi⟩| = Θ(⟨wk
r,t,w

0
r,t⟩∥w0

r,t∥−2|⟨w0
r,t, ξi⟩|). This allows to

simplify

wk
r,t = Θ(⟨wk

r,t,w
0
r,t⟩∥w0

r,t∥−2)w0
r,t +Θ(⟨wk

r,t,µj⟩(µ1 + µ−1)∥µ∥−2)

+ Θ
(
⟨wk

r,t, ξi⟩
) n∑
i=1

ξi∥ξi∥−2 (34)

Consequently, the assumption that ⟨wk
r,t,w

0
r,t⟩ = Θ(⟨wk

r′,t,w
0
r′,t⟩), combined with (34), we can

derive that ϕkr = Θ(ϕkr′) given ⟨wk
r,t,µj⟩ = Θ(⟨wk

r′,t,µj⟩) and ⟨wk
r,t, ξi⟩ = Θ(⟨wk

r′,t, ξi⟩). Thus,
we can compute

∥wk
r,t∥2 = Θ

(
(ϕkr )

2∥w0
r,t∥2 + ⟨wk

r,t,µj⟩2∥µ∥−2 + nSNR2⟨wk
r,t, ξi⟩2∥µ∥−2

)
= Θ(∥wk

r′,t∥2)

In addition, we can derive for r ̸= r′

⟨wk
r,t,w

k
r′,t⟩

= Θ
(
(ϕkr )

2⟨w0
r,t,w

0
r′,t⟩+ ⟨wk

r,t,µj⟩⟨wk
r′,t,µj⟩∥µ∥−2 + nSNR2⟨wk

r,t, ξi⟩⟨wk
r′,t, ξi⟩∥µ∥−2

)
which completes the proof.
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Lemma D.7. Let T+
1 ≥ T1 and suppose for all T1 ≤ k < T+

1 , it satisfies that
for all j = ±1, i ∈ [n], r ∈ [m], ⟨wk+1

r,t ,µj⟩, ⟨wk+1
r,t , ξi⟩ = Õ(1), ⟨wk

r,t,w
0
r,t⟩ =

Ω(min{σ0σ−1
ξ n1/2m−1/6, σ0

√
dm−1/6}) and

⟨wk+1
r,t ,µj⟩ = ⟨wk

r,t,µj⟩+Θ
( η√

m
∥wk

r,t∥2∥µ∥2
)

(35)

⟨wk+1
r,t , ξi⟩ = ⟨wk

r,t, ξi⟩+Θ
( η

n
√
m
∥wk

r,t∥2∥ξi∥2
)
. (36)

⟨wk+1
r,t ,w0

r,t⟩ = ⟨wk
r,t,w

0
r,t⟩

+
η√
m
Θ
((

⟨wk
r,t,µj + ξ⟩ −

√
m∥wk

r,t∥4
)
⟨wk

r,t,w
0
r,t⟩+ ∥wk

r,t∥2⟨w0
r,t,µj + ξ⟩

)
(37)

Then we have for all T1 ≤ k ≤ T+
1 ,

(1) ⟨wk
r,t,µj⟩ = Θ(⟨wk

r′,t,µj′⟩)

(2) ⟨wk
r,t, ξi⟩ = Θ(⟨wk

r′,t, ξi′⟩)

(3) ⟨wk
r,t,w

0
r,t⟩ = Θ(⟨wk

r′,t,w
0
r′,t⟩)

(4) ⟨wk
r,t,µj⟩ ≥ Θ(⟨wk

r,t,w
0
r,t⟩∥w0

r,t∥−2|⟨w0
r,t,µj⟩|),

⟨wk
r,t, ξi⟩ ≥ Θ(⟨wk

r,t,w
0
r,t⟩∥w0

r,t∥−2|⟨w0
r,t, ξi⟩|),

(5) ∥wk
r,t∥2 = Θ(∥wk

r′,t∥2)

(6) ⟨wk
r,t,w

k
r′,t⟩ = Θ(∥wk

r,t∥2) for r′ ̸= r

(7) |⟨wk
r,t,µj⟩|/|⟨wk

r′,t, ξi⟩| = Θ(n · SNR2)

for all j = ±1, r, r′ ∈ [m], i ∈ [n].

Proof of Lemma D.7. The proof is by induction. First, when k = T1, claims (1-8) are satisfied by
Lemma D.5 with ⟨wT1

r,t,w
0
r,t⟩ = Θ(σ2

0d), ⟨w
T1
r,t,w

0
r,t⟩∥w0

r,t∥−2 = Θ(1). Now suppose there exists
T̃+
1 < T+

1 such that for all T1 ≤ k ≤ T̃+
1 , (1-6) are satisfied. We aim to show for it is also satisfied

for k + 1. By the assumption that for any r ∈ [m]

⟨wk+1
r,t ,µj⟩ = ⟨wk

r,t,µj⟩+Θ
( η√

m
∥wk

r,t∥2∥µ∥2
)

⟨wk+1
r,t , ξi⟩ = ⟨wk

r,t, ξi⟩+Θ
( η

n
√
m
∥wk

r,t∥2∥ξi∥2
)
,

⟨wk+1
r,t ,w0

r,t⟩ = ⟨wk
r,t,w

0
r,t⟩

+
η√
m
Θ
((

⟨wk
r,t,µj + ξi⟩ −

√
m∥wk

r,t∥4
)
⟨wk

r,t,w
0
r,t⟩+ ∥wk

r,t∥2⟨w0
r,t,µj + ξi⟩

)
we can show

⟨wk+1
r,t ,µj⟩ = ⟨wk

r,t,µj⟩+Θ
( η√

m
∥wk

r,t∥2∥µ∥2
)
= Θ

(
⟨wk

r′,t,µj′⟩+
η√
m
∥wk

r′,t∥2∥µ∥2
)

= Θ(⟨wk+1
r′,t ,µj′⟩)

where the second equality is by induction condition, thus verifying the induction for claim (1).
Similarly, we can use the same argument for verifying claim (2). For the claim (3)

⟨wk+1
r,t ,w0

r,t⟩

= ⟨wk
r,t,w

0
r,t⟩+

η√
m
Θ
((

⟨wk
r,t,µj + ξ⟩ −

√
m∥wk

r,t∥2
)
⟨wk

r,t,w
0
r,t⟩+ ∥wk

r,t∥2⟨w0
r,t,µj + ξ⟩

)
= Θ(⟨wk

r′,t,w
0
r′,t⟩)
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+
η√
m
Θ
((

⟨wk
r′,t,µj + ξ⟩ −

√
m∥wk

r′,t∥4
)
⟨wk

r′,t,w
0
r′,t⟩+ ∥wk

r′,t∥2⟨w0
r′,t,µj + ξ⟩

)
= Θ(⟨wk+1

r′,t ,w
0
r′,t⟩)

where the second equality is due to induction claim that ⟨wk
r,t,w

0
r,t⟩ = Θ(⟨wk

r′,t,w
0
r′,t⟩), ⟨wk

r,t,µj+

ξ⟩ = Θ(⟨wk
r′,t,µj + ξ⟩), and we can show that Θ(⟨w0

r,t,v⟩) = ⟨w0
r′,t,v⟩ holds for any v, and any

r, r′ ∈ [m] with constant probability due to m = Θ(1). Next, we verify claim (7)

⟨wk+1
r,t ,µj⟩

⟨wk+1
r′,t , ξi⟩

=
⟨wk

r,t,µj⟩+Θ
(

η√
m
∥wk

r,t∥2∥µ∥2
)

⟨wk
r′,t, ξi⟩+Θ

(
η

n
√
m
∥wk

r′,t∥2∥ξi∥2
) = Θ(n · SNR2)

where the last equality follows from the induction condition and ∥µ∥2/∥ξi∥2 = Θ(SNR2) by Lemma
B.2 and ∥wk

r,t∥2 = Θ(∥wk
r′,t∥2) by induction condition. Thus the induction for (7) is verified.

Next in order to verify (4), we only need to show the growth of ⟨wk
r,t,µj⟩, ⟨wk

r,t, ξi⟩ is larger than the
growth of ⟨wk

r,t,w
0
r,t⟩∥w0

r,t∥−2|⟨w0
r,t,µj⟩| and ⟨wk

r,t,w
0
r,t⟩∥w0

r,t∥−2|⟨w0
r,t, ξi⟩| respectively. To

this end, we consider upper bounding the update of ⟨wk
r,t,w

0
r,t⟩ as

|⟨wk
r,t,µj + ξ⟩⟨wk

r,t,w
0
r,t⟩| ≤ Θ

(
∥wk

r,t∥2(∥µ∥+ σξ
√
d)∥w0

r,t∥
)

|∥wk
r,t∥2⟨w0

r,t,µj + ξ⟩| ≤ Θ(∥wk
r,t∥2(∥µ∥+ σξ

√
d)∥w0

r,t∥).

Then we consider two cases depending on the magnitude of ∥µ∥ and σξ
√
d:

• When ∥µ∥ ≥ σξ
√
d, i.e., σξ

√
d = O(1). Then

∥wk
r,t∥2(∥µ∥+ σξ

√
d)∥w0

r,t∥−1|⟨w0
r,t,µj⟩| = Õ(∥wk

r,t∥2d−1/2) ≤ Θ(∥wk
r,t∥2∥µ∥2) (38)

∥wk
r,t∥2(∥µ∥+ σξ

√
d)∥w0

r,t∥−1|⟨w0
r,t, ξi⟩| = Õ(∥wk

r,t∥2σξ) ≤ Θ(
1

n
∥wk

r,t∥2∥ξi∥2) (39)

where we use the condition on d = Ω̃(nσ−1
ξ ) and ∥ξi∥2 = Θ(σ2

ξd) for (39).

• When ∥µ∥ ≤ σξ
√
d, i.e., we have σξ

√
d = Ω(1). Then

∥wk
r,t∥2(∥µ∥+ σξ

√
d)∥w0

r,t∥−1|⟨w0
r,t,µj⟩|

= Θ(∥wk
r,t∥2σ−1

0 σξ⟨w0
r,t,µj⟩) = Õ(∥wk

r,t∥2σξ) = Õ(∥wk
r,t∥2nd−1/2) ≤ Θ(∥wk

r,t∥2∥µ∥2)
(40)

∥wk
r,t∥2(∥µ∥+ σξ

√
d)∥w0

r,t∥−1|⟨w0
r,t, ξi⟩|

= Θ(∥wk
r,t∥2σ−1

0 σξ⟨w0
r,t, ξi⟩) = Õ(∥wk

r,t∥2σ2
ξ

√
d) ≤ Θ(

1

n
∥wk

r,t∥2σ2
ξd) = Θ(

1

n
∥wk

r,t∥2∥ξi∥2)
(41)

where the second last equality of (40) is by the condition that SNR−1 = Õ(n) which implies that
σξ = Õ(nd−1/2). The second last inequality of (41) is by d = Ω̃(n2).

This suggests that

|⟨wk
r,t,µj + ξ⟩⟨wk

r,t,w
0
r,t⟩| ≤ Θ

(
∥wk

r,t∥2∥µ∥2
)

|∥wk
r,t∥2⟨w0

r,t,µj + ξ⟩| ≤ Θ(
1

n
∥wk

r,t∥2∥ξi∥2).

which verifies the claim (4) by combining with the update (35), (36), (37).

Next, in order to verify (5,6), we leverage Lemma D.6. First, it is easy to verify that at k + 1, the
conditions for Lemma D.6 are satisfied by the induction claims (1-4) at k + 1. Then we have

∥wk+1
r,t ∥2 = Θ

(
⟨wk+1

r,t ,µj⟩2∥µ∥−2 + n · SNR2⟨wk+1
r,t , ξi⟩2∥µ∥−2 + ⟨wk

r,t,w
0
r,t⟩2∥w0

r,t∥−2
)

= Θ(⟨wk+1
r′,t ,µj⟩2∥µ∥−2 + n · SNR2⟨wk+1

r′,t , ξi⟩
2∥µ∥−2 + ⟨wk

r′,t,w
0
r′,t⟩2∥w0

r′,t∥−2)
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= Θ(∥wk+1
r′,t ∥

2).

Finally, to verify (4) for k + 1, we have from Lemma D.6 that

⟨wk+1
r,t ,wk+1

r′,t ⟩

= Θ
(
⟨wk+1

r,t ,µj⟩⟨wk+1
r′,t ,µj⟩∥µ∥−2 + n · SNR2⟨wk+1

r,t , ξi⟩⟨wk+1
r′,t , ξi⟩∥µ∥

−2 + ⟨wk+1
r,t ,w0

r,t⟩2
⟨w0

r,t,w
0
r′,t⟩

∥w0
r,t∥4

)
= Θ

(
⟨wk+1

r,t ,µj⟩2∥µ∥−2 + n · SNR2⟨wk+1
r,t , ξi⟩2∥µ∥−2 + ⟨wk+1

r,t ,w0
r,t⟩2

⟨w0
r,t,w

0
r′,t⟩

∥w0
r,t∥4

)
= Θ(∥wk+1

r,t ∥2 − ⟨wk+1
r,t ,w0

r,t⟩2∥w0
r,t∥−2 + ⟨wk+1

r,t ,w0
r,t⟩2

⟨w0
r,t,w

0
r′,t⟩

∥w0
r,t∥4

)

= Θ(∥wk+1
r,t ∥2)

where we use the induction claims (1-2) for k + 1 and Lemma D.1. The last equality is by
⟨wk+1

r,t ,w0
r,t⟩2∥w0

r,t∥−2 ≤ Θ(∥wk+1
r,t ∥2). which completes all the induction.

From Lemma D.5 and Lemma D.7, we know that for T1 ≤ k ≤ T+
1 we can decompose the gradient

into two parts, the dominant term and the residual term:

⟨∇wr,tL(W
k
t ),µj⟩ = − 1√

m
Θ
(
∥wk

r,t∥2∥µ∥2
)
+ Ek

r,t,µj
(42)

⟨∇wr,t
L(Wk

t ), ξi⟩ = − 1

n
√
m
Θ
(
∥wk

r,t∥2∥ξi∥2
)
+ Ek

r,t,ξi (43)

⟨∇wr,tL(W
k
t ),w

0
r,t⟩

= − 1√
m
Θ
((

⟨wk
r,t,µj + ξ⟩ −

√
m∥wk

r,t∥4
)
⟨wk

r,t,w
0
r,t⟩+ ∥wk

r,t∥2⟨w0
r,t,µj + ξ⟩

)
+ Ek

r,t,w0

(44)

where we let Ek
r,t,µj

, Ek
r,t,ξi

, Ek
r,t,w0 denote the residual terms. Therefore, before Ek

r,t,µj
, Ek

r,t,ξi

grow to reach Ek
r,t,µj

= Θ( 1√
m
∥wk

r,t∥2∥µ∥2), Ek
r,t,ξi

= Θ( 1
n
√
m
∥wk

r,t∥2∥ξi∥2), Ek
r,t,w0 =

1√
m
Θ((⟨wk

r,t,µj + ξ⟩ −
√
m∥wk

r,t∥4)⟨wk
r,t,w

0
r,t⟩ + ∥wk

r,t∥2⟨w0
r,t,µj + ξ⟩), it can be veri-

fied that (35), (36), (37) are satisfied respectively. If further, ⟨wk
r,t,µj⟩, ⟨wk

r,t, ξi⟩ = Õ(1),
⟨wk

r,t,w
0
r,t⟩ = Ω(min{σ0σ−1

ξ n1/2m−1/6, σ0
√
dm−1/6}) are satisfied, then we readily have

|⟨wk
r,t,µj⟩|/|⟨wk

r′,t, ξi⟩| = Θ(n · SNR2) by Lemma D.7.

The next lemma characterizes the end of second stage where the residual term reaches the same order
as the dominant term.
Lemma D.8 (Restatement of Lemma 4.2). Consider the gradient decomposition defined in (42), (43)
and (44). There exists T2 > T1 with T2 = Θ(max{η−1m1/3σ−2

0 d−1, η−1m1/3nσ−2
0 σ2

ξ}) such that
for all j = ±1, r ∈ [m], i ∈ [n],

(1) If n · SNR2 = Ω(1),

⟨wT2
r,t,µj⟩ = Θ(m−1/6), ⟨wT2

r,t, ξi⟩ = Θ(⟨wT2
r,t,µj⟩),

⟨wT2
r,t,w

0
r,t⟩∥w0

r,t∥−2 ≤ Θ
(
n · SNR2⟨wT2

r,t, ξi⟩
)

If n−1 · SNR−2 = Ω(1),

⟨wT2
r,t,µj⟩ = Θ(n · SNR2 ·m−1/6), ⟨wT2

r,t, ξi⟩ = Θ(m−1/6)

⟨wT2
r,t,w

0
r,t⟩∥w0

r,t∥−2 ≤ Θ
(√

n · SNR2⟨wT2
r,t, ξi⟩

)
(2) ET2

r,t,µj
= Θ( 1√

m
∥wT2

r,t∥2∥µ∥2), ET2

r,t,ξi
= Θ( 1

n
√
m
∥wT2

r,t∥2∥ξi∥2), ET2

r,t,w0 =
1√
m
Θ(⟨wk

r,t,µj + ξi⟩⟨wk
r,t,w

0
r,t⟩+ ∥wk

r,t∥2⟨w0
r,t,µj + ξi⟩).
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In addition, for any T1 ≤ k ≤ T2 and for all j = ±1, r ∈ [m], i ∈ [n],

(3) ⟨wk
r,t,µj⟩ = Θ(⟨wk

r′,t,µj′⟩) and ⟨wk
r,t, ξi⟩ = Θ(⟨wk

r′,t, ξi′⟩),

(4) ∥wk
r,t∥2 = Θ(∥wk

r′,t∥2) and ⟨wk
r,t,w

k
r′,t⟩ = Θ(∥wk

r,t∥2),

(5) ⟨wk
r,t,µj⟩/⟨wk

r,t, ξi⟩ = Θ(n · SNR2).

Proof of Lemma D.8. Here we let T2 be the first time such that ET2
r,t,µj

= Θ( 1√
m
∥wT2

r,t∥2∥µ∥2) or

ET2

r,t,ξi
= Θ( 1

n
√
m
∥wT2

r,t∥2∥ξi∥2) or ET2

r,t,w0 = 1√
m
Θ((⟨wk

r,t,µj + ξ⟩ −
√
m∥wk

r,t∥4)⟨wk
r,t,w

0
r,t⟩+

∥wk
r,t∥2⟨w0

r,t,µj + ξ⟩). In order to prove the results, we use induction k to simultaneously prove the
following conditions A (k),B(k),C (k),D(T2),E (T2), for T1 ≤ k ≤ T2:

• A (k): ⟨wk
r,t,µj⟩, ⟨wk

r,t, ξi⟩ = Õ(1), ⟨wk
r,t,w

0
r,t⟩ = Ω(min{σ0σ−1

ξ n1/2m−1/6, σ0
√
dm−1/6})

for all j = ±1, r ∈ [m], i ∈ [n].

• B(k): ⟨∇wr,tL(W
k
t ),µj⟩ = Θ

(
− 1√

m
∥wk

r,t∥2∥µ∥2
)
, ⟨∇wr,tL(W

k
t ), ξi⟩ = Θ

(
−

1
n
√
m
∥wk

r,t∥2∥ξi∥2
)

and ⟨∇wr,t
L(Wk

t ),w
0
r,t⟩ = − 1√

m
Θ
(
⟨wk

r,t,µj + ξ⟩⟨wk
r,t,w

0
r,t⟩ +

∥wk
r,t∥2⟨w0

r,t,µj + ξ⟩
)

for all j = ±1, r ∈ [m], i ∈ [n].

• C (k): Claims (3-5), i.e., ⟨wk
r,t,µj⟩ = Θ(⟨wk

r′,t,µj′⟩), ⟨wk
r,t, ξi⟩ = Θ(⟨wk

r′,t, ξi′⟩), ∥wk
r,t∥2 =

Θ(∥wk
r′,t∥2), ⟨wk

r,t,w
k
r′,t⟩ = Θ(∥wk

r,t∥2), and ⟨wk
r,t,µj⟩/⟨wk

r,t, ξi⟩ = Θ(n · SNR2).

• D(T2): Claim (1), i.e., If n · SNR2 = Ω(1), ⟨wT2
r,t,µj⟩ = Θ(m−1/6), ⟨wT2

r,t, ξi⟩ = Θ(n−1 ·
SNR−2 ·m−1/6), and if n−1 ·SNR−2 = Ω(1), ⟨wT2

r,t,µj⟩ = Θ(n ·SNR2 ·m−1/6), ⟨wT2
r,t, ξi⟩ =

Θ(m−1/6).

• E (T2): Claim (2), i.e., ET2
r,t,µj

= Θ( 1√
m
∥wT2

r,t∥2∥µ∥2), E
T2

r,t,ξi
= Θ( 1

n
√
m
∥wT2

r,t∥2∥ξi∥2), and

ET2

r,t,w0 = 1√
m
Θ
(
(⟨wT2

r,t,µj + ξ⟩ −
√
m∥wT2

r,t∥4)⟨w
T2
r,t,w

0
r,t⟩+ ∥wT2

r,t∥2⟨w0
r,t,µj + ξ⟩

)
.

The initial conditions A (T1),B(T1),C (T1) are satisfied by Lemma D.5 at the end of the first stage.
In order to show C (k),D(T2),E (T2), we show the following claims respectively.

Claim D.1. A (k),B(k) ⇒ C (k), for any T1 ≤ k ≤ T2.

Claim D.2. C (T1), ...,C (T2) ⇒ D(T2),E (T2).

Claim D.3. D(T2),E (T2) ⇒ A (T1), ...,A (T2),B(T1), ...,B(T2).

Proof of Claim D.1. Claim D.1 directly follows from Lemma D.7.

Proof of Claim D.2. First, when C (k) is satisfied, we can simplify ∥wk
r,t∥2 from Lemma D.6

∥wk
r,t∥2 = Θ

(
⟨wk

r,t,µj⟩2∥µ∥−2 + n · SNR2⟨wk
r,t, ξi⟩2∥µ∥−2 + ⟨wk

r,t,w
0
r,t⟩2∥w0

r,t∥−2
)
.

= Θ
(
(n2SNR4 + nSNR2)∥µ∥−2⟨wk

r,t, ξi⟩2 + ⟨wk
r,t,w

0
r,t⟩2∥w0

r,t∥−2
)

= Θ
(
(χ2 + χ)∥µ∥−2⟨wk

r,t, ξi⟩2 + ψk
r,t

)
where we temporarily denote χ := n · SNR2 and ψk

r,t := ⟨wk
r,t,w

0
r,t⟩2∥w0

r,t∥−2 for notation clarity.

Then, for the update of ⟨wk
r,t,µj⟩, we can compute

1

2n

n∑
i=1

⟨∇L(1)
1,i (w

k
r,t),µj⟩

=
1

m
Θ
(
⟨wk

r,t,µj⟩5 + ⟨wk
r,t,µj⟩3∥wk

r,t∥2 + ⟨wk
r,t,µj⟩∥wk

r,t∥4 −
√
m⟨wk

r,t,µj⟩2
)
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+
1

m
Θ
(
⟨wk

r,t,µj⟩3∥wk
r,t∥2∥µ∥2 + ⟨wk

r,t,µj⟩∥wk
r,t∥4∥µ∥2 −

√
m∥wk

r,t∥2∥µ∥2
)

=
1

m
Θ(χ5⟨wk

r,t, ξi⟩5 + (χ5 + χ4)⟨wk
r,t, ξi⟩5∥µ∥−2 + (χ5 + χ3)⟨wk

r,t, ξi⟩5∥µ∥−4 −
√
mχ2⟨wk

r,t, ξi⟩2)

+
1

m
Θ
(
(χ5 + χ4)⟨wk

r,t, ξi⟩5 + (χ5 + χ3)⟨wk
r,t, ξi⟩5∥µ∥−2 −

√
m(χ2 + χ)⟨wk

r,t, ξi⟩2
)

+
1

m
Θ(ψk

r,tχ
3⟨wk

r,t, ξi⟩3∥µ∥2 + (ψk
r,t)

2χ⟨wk
r,t, ξi⟩∥µ∥2 −

√
mψk

r,t∥µ∥2)

=
1

m
Θ
(
−
√
m(χ2 + χ)⟨wk

r,t, ξi⟩2 + (χ5 + χ4)⟨wk
r,t, ξi⟩5 + (χ5 + χ3)⟨wk

r,t, ξi⟩5∥µ∥−2
)

+
1

m
Θ(ψk

r,tχ
3⟨wk

r,t, ξi⟩3∥µ∥2 + (ψk
r,t)

2χ⟨wk
r,t, ξi⟩∥µ∥2 −

√
mψk

r,t∥µ∥2)

Similarly, we obtain

1

2n

n∑
i=1

⟨∇L(2)
1,i (wr,t),µj⟩

=
1

m
Θ
(
⟨wk

r,t, ξi⟩4⟨wk
r,t,µj⟩+ ⟨wk

r,t, ξi⟩2⟨wk
r,t,µj⟩∥wk

r,t∥2 + ⟨wk
r,t,µj⟩∥wk

r,t∥4

−
√
m⟨wk

r,t, ξi⟩⟨wk
r,t,µj⟩

)
=

1

m
Θ
(
χ⟨wk

r,t, ξi⟩5 + (χ3 + χ2)⟨wk
r,t, ξi⟩5∥µ∥−2 + (χ5 + χ3)⟨wk

r,t, ξi⟩5∥µ∥−4

−
√
mχ⟨wk

r,t, ξi⟩2
)
+

1

m
Θ(χψk

r,t⟨wk
r,t, ξi⟩3 + χ(ψk

r,t)
2⟨wk

r,t, ξi⟩)

=
1

m
Θ
(
−
√
mχ⟨wk

r,t, ξi⟩2 + χ⟨wk
r,t, ξi⟩5 + (χ3 + χ2)⟨wk

r,t, ξi⟩5∥µ∥−2 + (χ5 + χ3)⟨wk
r,t, ξi⟩5∥µ∥−4

)
+

1

m
Θ(χψk

r,t⟨wk
r,t, ξi⟩3 + χ(ψk

r,t)
2⟨wk

r,t, ξi⟩)

1

2n

n∑
i=1

⟨∇L(1)
2,i (wr,t),µj⟩

=
m− 1

m
Θ
(
⟨wk

r,t,µj⟩5 + ⟨wk
r,t,µj⟩3∥wk

r,t∥2 + ⟨wk
r,t,µj⟩∥wk

r,t∥4 + ⟨wk
r,t,µj⟩∥wk

r,t∥4∥µ∥2

+ ⟨wk
r,t,µj⟩3∥wk

r,t∥2∥µ∥2
)

=
m− 1

m
Θ
(
(χ5 + χ4)⟨wk

r,t, ξi⟩5 + (χ5 + χ3)⟨wk
r,t, ξi⟩5∥µ∥−2

)
+
m− 1

m
Θ(ψk

r,tχ
3⟨wk

r,t, ξi⟩3∥µ∥2 + (ψk
r,t)

2χ⟨wk
r,t, ξi⟩∥µ∥2 −

√
mψk

r,t∥µ∥2)

1

2n

n∑
i=1

⟨∇L(2)
2,i (wr,t),µj⟩

=
m− 1

m
Θ
(
⟨wk

r,t,µj⟩⟨wk
r,t, ξi⟩4 + ⟨wk

r,t,µj⟩∥wk
r,t∥4 + ⟨wk

r,t,µj⟩⟨wk
r,t, ξi⟩2∥wk

r,t∥2
)

=
m− 1

m
Θ
(
χ⟨wk

r,t, ξi⟩5 + (χ3 + χ2)⟨wk
r,t, ξi⟩5∥µ∥−2 + (χ5 + χ3)⟨wk

r,t, ξi⟩5∥µ∥−4
)

+
m− 1

m
Θ(χψk

r,t⟨wk
r,t, ξi⟩3 + χ(ψk

r,t)
2⟨wk

r,t, ξi⟩)

Combining the above results, we have

⟨∇wr,tL(W
k
t ),µj⟩ = − 1√

m
Θ
(
∥wk

r,t∥2∥µ∥2
)
+ Ek

r,t,µj

= − 1√
m
Θ
(
(χ2 + χ)⟨wk

r,t, ξi⟩2 + ψk
r,t∥µ∥2

)
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+Θ
(
(χ5 + χ4)⟨wk

r,t, ξi⟩5 + (χ5 + χ3)⟨wk
r,t, ξi⟩5∥µ∥−2

)
+Θ

(
χ⟨wk

r,t, ξi⟩5 + (χ3 + χ2)⟨wk
r,t, ξi⟩5∥µ∥−2 + (χ5 + χ3)⟨wk

r,t, ξi⟩5∥µ∥−4
)

+Θ(ψk
r,tχ

3⟨wk
r,t, ξi⟩3∥µ∥2 + (ψk

r,t)
2χ⟨wk

r,t, ξi⟩∥µ∥2 + χψk
r,t⟨wk

r,t, ξi⟩3
)

Similarly, we can derive for the update of ⟨wk
r,t, ξi⟩ as follows:

1

2n

n∑
i=1

⟨∇L(1)
1,i (w

k
r,t), ξi⟩

=
1

m
Θ
(
⟨wk

r,t,µj⟩4⟨wk
r,t, ξi⟩+ ⟨wk

r,t,µj⟩2∥wk
r,t∥2⟨wk

r,t, ξi⟩+ ∥wk
r,t∥4⟨wk

r,t, ξi⟩

−
√
m⟨wk

r,t,µj⟩⟨wk
r,t, ξi⟩

)
=

1

m
Θ
(
χ4⟨wk

r,t, ξi⟩5 + (χ4 + χ3)⟨wk
r,t, ξi⟩5∥µ∥−2 + (χ4 + χ2)⟨wk

r,t, ξi⟩5∥µ∥−4 −
√
mχ⟨wk

r,t, ξi⟩2
)

+
1

m
Θ(ψk

r,tχ
2⟨wk

r,t, ξi⟩3 + (ψk
r,t)

2⟨wk
r,t, ξi⟩)

=
1

m
Θ
(
−
√
mχ⟨wk

r,t, ξi⟩2 + χ4⟨wk
r,t, ξi⟩5 + (χ4 + χ3)⟨wk

r,t, ξi⟩5∥µ∥−2 + (χ4 + χ2)⟨wk
r,t, ξi⟩5∥µ∥−4

)
+

1

m
Θ(ψk

r,tχ
2⟨wk

r,t, ξi⟩3 + (ψk
r,t)

2⟨wk
r,t, ξi⟩)

1

2n

n∑
i=1

⟨∇L(2)
1,i (w

k
r,t), ξi⟩

=
1

m
Θ
(
⟨wk

r,t, ξi⟩5 + ⟨wk
r,t, ξi⟩3∥wk

r,t∥2 + ∥wk
r,t∥4⟨wk

r,t, ξi⟩ −
√
m⟨wk

r,t, ξi⟩2
)

+
1

nm
Θ
(
⟨wk

r,t, ξi⟩3∥wk
r,t∥2∥ξi∥2 + ∥wk

r,t∥4⟨wk
r,t, ξi⟩∥ξi∥2 −

√
m∥wk

r,t∥2∥ξi∥2
)

=
1

m
Θ
(
⟨wk

r,t, ξi⟩5 + (χ2 + χ)⟨wk
r,t, ξi⟩5∥µ∥−2 + (χ4 + χ2)⟨wk

r,t, ξi⟩5∥µ∥−4 −
√
m⟨wk

r,t, ξi⟩2
)

+
1

χm
Θ
(
(χ2 + χ)⟨wk

r,t, ξi⟩5 + (χ4 + χ2)⟨wk
r,t, ξi⟩5∥µ∥−2 −

√
m(χ2 + χ)⟨wk

r,t, ξi⟩2
)

+
1

m
Θ
(
ψk
r,t⟨wk

r,t, ξi⟩3 + (ψk
r,t)

2⟨wk
r,t, ξi⟩+ χ−1ψk

r,t⟨wk
r,t, ξi⟩3∥µ∥2 + χ−1(ψk

r,t)
2⟨wk

r,t, ξi⟩∥µ∥2

− χ−1
√
mψk

r,t∥µ∥2
)

=
1

m
Θ
(
−
√
m(χ+ 1)⟨wk

r,t, ξi⟩2 + (χ2 + χ)⟨wk
r,t, ξi⟩5∥µ∥−2 + (χ4 + χ2)⟨wk

r,t, ξi⟩5∥µ∥−4

+ (χ+ 1)⟨wk
r,t, ξi⟩5 + (χ3 + χ)⟨wk

r,t, ξi⟩5∥µ∥−2
)

+
1

m
Θ
(
ψk
r,t⟨wk

r,t, ξi⟩3 + (ψk
r,t)

2⟨wk
r,t, ξi⟩+ χ−1ψk

r,t⟨wk
r,t, ξi⟩3∥µ∥2 + χ−1(ψk

r,t)
2⟨wk

r,t, ξi⟩∥µ∥2

− χ−1
√
mψk

r,t∥µ∥2
)

where the second equality follows from
∑n

i′=1⟨ξi′ , ξi⟩ = (1 + Õ(nd−1/2))∥ξi∥2 = Θ(∥ξi∥2) by
Lemma B.2 and condition on d. Further,

1

2n

n∑
i′=1

⟨∇L(1)
2,i′(w

k
r,t), ξi⟩

=
m− 1

m
Θ
(
⟨wk

r,t,µj⟩4⟨wk
r,t, ξi⟩+ ∥wk

r,t∥4⟨wk
r,t, ξi⟩+ ⟨wk

r,t,µj⟩2∥wk
r,t∥2⟨wk

r,t, ξi⟩
)

=
m− 1

m
Θ
(
χ4⟨wk

r,t, ξi⟩5 + (χ4 + χ2)⟨wk
r,t, ξi⟩5∥µ∥−4 + (χ4 + χ3)⟨wk

r,t, ξi⟩5∥µ∥−2
)

+
m− 1

m
Θ
(
ψk
r,tχ

2⟨wk
r,t, ξi⟩3 + (ψk

r,t)
2⟨wk

r,t, ξi⟩
)
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1

2n

n∑
i′=1

⟨∇L(2)
2,i′(w

k
r,t), ξi⟩

=
m− 1

m
Θ
(
⟨wk

r,t, ξi⟩5 + ∥wk
r,t∥4⟨wk

r,t, ξi⟩+ ⟨wk
r,t, ξi⟩3∥wk

r,t∥2
)

+
m− 1

nm
Θ
(
⟨wk

r,t, ξi⟩3∥wk
r,t∥2∥ξi∥2 + ∥wk

r,t∥4⟨wk
r,t, ξi⟩∥ξi∥2

)
=
m− 1

m
Θ
(
⟨wk

r,t, ξi⟩5 + (χ4 + χ2)⟨wk
r,t, ξi⟩5∥µ∥−4 + (χ2 + χ)⟨wk

r,t, ξi⟩5∥µ∥−2
)

+
m− 1

χm
Θ
(
(χ2 + χ)⟨wk

r,t, ξi⟩5 + (χ4 + χ2)⟨wk
r,t, ξi⟩5∥µ∥−2

)
+
m− 1

m
Θ
(
ψk
r,t⟨wk

r,t, ξi⟩3 + (ψk
r,t)

2⟨wk
r,t, ξi⟩+ χ−1ψk

r,t⟨wk
r,t, ξi⟩3∥µ∥2 + χ−1(ψk

r,t)
2⟨wk

r,t, ξi⟩∥µ∥2

− χ−1
√
mψk

r,t∥µ∥2
)

=
m− 1

m
Θ
(
(χ2 + χ)⟨wk

r,t, ξi⟩5∥µ∥−2 + (χ4 + χ2)⟨wk
r,t, ξi⟩5∥µ∥−4 + (χ+ 1)⟨wk

r,t, ξi⟩5

+ (χ3 + χ)⟨wk
r,t, ξi⟩5∥µ∥−2

)
+
m− 1

m
Θ
(
ψk
r,t⟨wk

r,t, ξi⟩3 + (ψk
r,t)

2⟨wk
r,t, ξi⟩+ χ−1ψk

r,t⟨wk
r,t, ξi⟩3∥µ∥2 + χ−1(ψk

r,t)
2⟨wk

r,t, ξi⟩∥µ∥2

− χ−1
√
mψk

r,t∥µ∥2
)

Combining the above results, we have

⟨∇wr,t
L(Wk

t ), ξi⟩ = − 1

n
√
m
Θ
(
∥wk

r,t∥2∥ξi∥2
)
+ Ek

r,t,ξi

= − 1√
m
Θ
(
(χ+ 1)⟨wk

r,t, ξi⟩2 + χ−1ψk
r,t∥µ∥2

)
+Θ

(
χ4⟨wk

r,t, ξi⟩5 + (χ4 + χ3)⟨wk
r,t, ξi⟩5∥µ∥−2 + (χ4 + χ2)⟨wk

r,t, ξi⟩5∥µ∥−4
)

+Θ
(
(χ2 + χ)⟨wk

r,t, ξi⟩5∥µ∥−2 + (χ4 + χ2)⟨wk
r,t, ξi⟩5∥µ∥−4

+Θ
(
(χ+ 1)⟨wk

r,t, ξi⟩5 + (χ3 + χ)⟨wk
r,t, ξi⟩5∥µ∥−2

)
+Θ

(
ψk
r,tχ

2⟨wk
r,t, ξi⟩3 + (ψk

r,t)
2⟨wk

r,t, ξi⟩+ ψk
r,t⟨wk

r,t, ξi⟩3 + χ−1ψk
r,t⟨wk

r,t, ξi⟩3∥µ∥2

+ χ−1(ψk
r,t)

2⟨wk
r,t, ξi⟩∥µ∥2

)
In summary, we finally arrive at

⟨∇wr,tL(W
k
t ),µj⟩ = − 1√

m
Θ
(
∥wk

r,t∥2∥µ∥2
)
+ Ek

r,t,µj

= − 1√
m
Θ
(
(χ2 + χ)⟨wk

r,t, ξi⟩2 + ψk
r,t∥µ∥2

)
+Θ

(
(χ5 + χ4)⟨wk

r,t, ξi⟩5 + (χ5 + χ3)⟨wk
r,t, ξi⟩5∥µ∥−2

)
+Θ

(
χ⟨wk

r,t, ξi⟩5 + (χ3 + χ2)⟨wk
r,t, ξi⟩5∥µ∥−2 + (χ5 + χ3)⟨wk

r,t, ξi⟩5∥µ∥−4
)

+Θ(ψk
r,tχ

3⟨wk
r,t, ξi⟩3∥µ∥2 + (ψk

r,t)
2χ⟨wk

r,t, ξi⟩∥µ∥2 + χψk
r,t⟨wk

r,t, ξi⟩3
)

(45)

⟨∇wr,tL(W
k
t ), ξi⟩ = − 1

n
√
m
Θ
(
∥wk

r,t∥2∥ξi∥2
)
+ Ek

r,t,ξi

= − 1√
m
Θ
(
(χ+ 1)⟨wk

r,t, ξi⟩2 + χ−1ψk
r,t∥µ∥2

)
+Θ

(
χ4⟨wk

r,t, ξi⟩5 + (χ4 + χ3)⟨wk
r,t, ξi⟩5∥µ∥−2 + (χ4 + χ2)⟨wk

r,t, ξi⟩5∥µ∥−4
)

+Θ
(
(χ2 + χ)⟨wk

r,t, ξi⟩5∥µ∥−2 + (χ4 + χ2)⟨wk
r,t, ξi⟩5∥µ∥−4
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+Θ
(
(χ+ 1)⟨wk

r,t, ξi⟩5 + (χ3 + χ)⟨wk
r,t, ξi⟩5∥µ∥−2

)
+Θ

(
ψk
r,tχ

2⟨wk
r,t, ξi⟩3 + (ψk

r,t)
2⟨wk

r,t, ξi⟩+ ψk
r,t⟨wk

r,t, ξi⟩3 + χ−1ψk
r,t⟨wk

r,t, ξi⟩3∥µ∥2

+ χ−1(ψk
r,t)

2⟨wk
r,t, ξi⟩∥µ∥2

)
(46)

We also examine ⟨∇wr,tL(W
k
t ),w

0
r,t⟩ as follows. We first upper bound for r′ ̸= r

⟨wk
r,t,w

0
r′,t⟩ = Θ(⟨wk

r,t,w
0
r,t⟩∥w0

r,t∥−2)⟨w0
r,t,w

0
r′,t⟩+Θ(⟨wk

r,t,µj⟩⟨w0
r′,t,µj⟩∥µ∥−2)

+ Θ
(
⟨wk

r,t, ξi⟩
) n∑
i=1

⟨w0
r′,t, ξi⟩∥ξi∥−2

= Õ(σ0) + Õ(σ0) + Õ(nσ0σ
−1
ξ d−1/2)

= Õ(σ0) + Õ(nσ0σ
−1
ξ d−1/2)

where we use (34) in the first equality and Lemma D.1, Lemma D.7 in the second equality.

Next we simplify the gradient as

⟨∇wr,t
L(Wk

t ),w
0
r,t⟩

= − 1√
m
Θ
(
⟨wk

r,t,µj + ξi⟩⟨wk
r,t,w

0
r,t⟩+ ∥wk

r,t∥2⟨w0
r,t,µj + ξi⟩

)
+

1

m
Θ
((

⟨wk
r,t,µj⟩4 + ⟨wk

r,t, ξi⟩4
)
⟨wk

r,t,w
0
r,t⟩+

(
⟨wk

r,t,µj⟩2 + ⟨wk
r,t, ξi⟩2

)
∥wk

r,t∥2⟨wk
r,t,w

0
r,t⟩
)

+
1

m
Θ
(
∥wk

r,t∥4⟨wk
r,t,w

0
r,t⟩+

(
⟨wk

r,t,µj⟩3⟨w0
r,t,µj⟩+ ⟨wk

r,t, ξi⟩3⟨w0
r,t, ξi⟩

)
∥wk

r,t∥2
)

+
1

m
Θ
((

⟨wk
r,t,µj⟩⟨w0

r,t,µj⟩+ ⟨wk
r,t, ξi⟩⟨w0

r,t, ξi⟩
)
∥wk

r,t∥4
)

+
m− 1

m
Θ
(
⟨wk

r,t,µj⟩4 + ⟨wk
r,t, ξi⟩4 + ∥wk

r,t∥2
(
⟨wk

r,t,µj⟩2 + ⟨wk
r,t, ξi⟩2

)
+ ∥wk

r,t∥4
)
Õ(σ0 + nσ0σ

−1
ξ d−1/2)

+
m− 1

m
Θ
((

⟨wk
r,t,µj⟩3⟨w0

r,t,µj⟩+ ⟨wk
r,t, ξi⟩3⟨w0

r,t, ξi⟩
)
∥wk

r,t∥2
)

+
m− 1

m
Θ
((

⟨wk
r,t,µj⟩⟨w0

r,t,µj⟩+ ⟨wk
r,t, ξi⟩⟨w0

r,t, ξi⟩
)
∥wk

r,t∥4
)

+
m− 1

m
Θ
((

⟨wk
r,t,µj⟩2 + ⟨wk

r,t, ξi⟩2
)
∥wk

r,t∥2⟨wk
r,t,w

0
r,t⟩
)

+
m− 1

m
Θ
(
∥wk

r,t∥4⟨wk
r,t,w

0
r,t⟩
)

= − 1√
m
Θ
(
⟨wk

r,t,µj + ξi⟩⟨wk
r,t,w

0
r,t⟩+ ∥wk

r,t∥2⟨w0
r,t,µj + ξi⟩

)
+

1

m
Θ
(
⟨wk

r,t,µj⟩4 + ⟨wk
r,t, ξi⟩4

)
⟨wk

r,t,w
0
r,t⟩

+Θ
((

⟨wk
r,t,µj⟩2 + ⟨wk

r,t, ξi⟩2
)
∥wk

r,t∥2 + ∥wk
r,t∥4

)
⟨wk

r,t,w
0
r,t⟩

+Θ
((

⟨wk
r,t,µj⟩3⟨w0

r,t,µj⟩+ ⟨wk
r,t, ξi⟩3⟨w0

r,t, ξi⟩
)
∥wk

r,t∥2
)

+Θ
((

⟨wk
r,t,µj⟩⟨w0

r,t,µj⟩+ ⟨wk
r,t, ξi⟩⟨w0

r,t, ξi⟩
)
∥wk

r,t∥4
)

(47)

where we use that ⟨wk
r,t,w

0
r,t⟩ ≥ Θ(σ2

0d) ≥ Õ(σ0 + nσ0σ
−1
ξ d−1/2) due to the condition that

σ0 ≥ Õ(max{nσ−1
ξ d−3/2, d−1}).

In order to identify the dominant terms of (45) and (46), we separate the analysis for three cases
depending on the scale of n · SNR2. For each case, we also consider two sub-cases depending on the
scale of ⟨wk

r,t, ξi⟩. Recall that we define ψk
r,t = ⟨wk

r,t,w
0
r,t⟩2∥w0

r,t∥−2
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• When χ = n · SNR2 = Θ(1),

– If ⟨wk
r,t, ξi⟩2 ≥ Θ(ψk

r,t), we can identify the dominant terms as

1√
m
∥wk

r,t∥∥µ∥2 = − 1√
m
Θ
(
⟨wk

r,t, ξi⟩2
)
, Ek

r,t,µj
= Θ(⟨wk

r,t, ξi⟩5)

1

n
√
m
∥wk

r,t∥2∥ξi∥2 = − 1√
m
Θ
(
⟨wk

r,t, ξi⟩2
)
, Ek

r,t,ξi = Θ(⟨wk
r,t, ξi⟩5)

Hence, we can see at k = T2, when ⟨wT2
r,t, ξi⟩ = Θ(m−1/6) and ⟨wT2

r,t,µj⟩ =

Θ(χm−1/6) = Θ(m−1/6) (by the condition of χ), we have ET2
r,t,µj

= Θ( 1√
m
∥wT2

r,t∥∥µ∥2)
and ET2

r,t,ξi
= Θ( 1

n
√
m
∥wT2

r,t∥2∥ξi∥2).
It remains to show that ET2

r,t,w0 = 1√
m
Θ
(
(⟨wT2

r,t,µj + ξ⟩ −
√
m∥wT2

r,t∥4)⟨w
T2
r,t,w

0
r,t⟩ +

∥wT2
r,t∥2⟨w0

r,t,µj + ξ⟩
)
. We compute that ∥wT2

r,t∥2 = Θ
(
⟨wT2

r,t, ξi⟩2 + ψT2
r,t

)
= Θ(m−1/3),

which implies

1√
m

(
(⟨wT2

r,t,µj + ξ⟩ −
√
m∥wT2

r,t∥2)⟨w
T2
r,t,w

0
r,t⟩+ ∥wT2

r,t∥2⟨w0
r,t,µj + ξ⟩

)
=

1√
m
Θ
(
m−1/6⟨wT2

r,t,w
0
r,t⟩+m−1/3⟨w0

r,t,µj + ξ⟩
)

= Θ
(
m−2/3⟨wT2

r,t,w
0
r,t⟩+m−5/6⟨w0

r,t,µj + ξ⟩
)

= ET2

r,t,w0

based on the derivation in (47). In this case, we can show ψk
r,t ≤ ⟨wk

r,t, ξi⟩2 = Θ(m−1/3)

is feasible given the lower bound on ⟨wk
r,t,w

0
r,t⟩ = Ω(σ0

√
dm−1/6) in A (k). This verifies

D(T2),E (T2) in the case where ⟨wk
r,t, ξi⟩2 ≥ Θ(ψk

r,t).

– If ⟨wk
r,t, ξi⟩2 = o(ψk

r,t), we show ⟨∇wr,t
L(Wk

t ),w
0
r,t⟩ ̸= 0 and thus cannot converge.

More specifically, we can identify the dominant terms as

1√
m
∥wk

r,t∥∥µ∥2 = − 1√
m
Θ
(
ψk
r,t

)
, Ek

r,t,µj
= Θ((ψk

r,t)
2⟨wk

r,t, ξi⟩)

1

n
√
m
∥wk

r,t∥2∥ξi∥2 = − 1√
m
Θ
(
ψk
r,t

)
, Ek

r,t,ξi = Θ((ψk
r,t)

2⟨wk
r,t, ξi⟩).

Thus, we see Ek
r,t,µj

= Θ( 1√
m
∥wk

r,t∥∥µ∥2) and Ek
r,t,ξi

= Θ( 1
n
√
m
∥wk

r,t∥2∥ξi∥2) only

when ⟨wk
r,t, ξi⟩ = Θ(m−1/2(ψk

r,t)
−1) = ⟨wk

r,t,µj⟩. This implies that ψk
r,t ≥ Θ(m−1/3)

and thus ∥wk
r,t∥2 = Θ(ψk

r,t) ≥ Θ(m−1/3). We show in this case, the gradient along
direction w0

r,t is negative. Examining ⟨∇wr,t
L(Wk

t ),w
0
r,t⟩, we see

1√
m

(
(⟨wk

r,t,µj + ξ⟩ −
√
m∥wk

r,t∥4)⟨wk
r,t,w

0
r,t⟩+ ∥wk

r,t∥2⟨w0
r,t,µj + ξ⟩

)
=

1√
m

(
Θ(m−1/2(ψk

r,t)
−1 −

√
m(ψk

r,t)
2)⟨wk

r,t,w
0
r,t⟩+Θ(ψk

r,t)⟨w0
r,t,µj + ξ⟩

)
= Θ

(
m−1(ψk

r,t)
−1⟨wk

r,t,w
0
r,t⟩ − (ψk

r,t)
2⟨wk

r,t,w
0
r,t⟩+m−1/2ψk

r,t⟨w0
r,t,µj + ξ⟩

)
Ek

r,t,w0 = Θ
(
(m−3(ψk

r,t)
−4 +m−1(ψk

r,t)
−1 + (ψk

r,t)
2)⟨wk

r,t,w
0
r,t⟩
)

+Θ
(
(m−3/2(ψk

r,t)
−2 +m−1/2ψk

r,t)⟨w0
r,t,µj + ξ⟩

)
= Θ((ψk

r,t)
2⟨wk

r,t,w
0
r,t⟩+m−1/2ψk

r,t⟨w0
r,t,µj + ξ⟩)

where we use that ψk
r,t ≥ Θ(m−1/3). It is clear that that due to the condition ψk

r,t ≥
Θ(m−1/3), it satisfies ⟨∇wr,t

L(Wk
t ),w

0
r,t⟩ < 0, which then concludes that ψk

r,t would
decrease and cannot reach stationary point.

• When χ = n · SNR2 = Ω̃(1),
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– If χ2⟨wk
r,t, ξi⟩2 ≥ Θ(ψk

r,t), we can simplify (45) and (46) to

1√
m
∥wk

r,t∥∥µ∥2 = − 1√
m
Θ
(
χ2⟨wk

r,t, ξi⟩2
)
, Ek

r,t,µj
= Θ(χ5⟨wk

r,t, ξi⟩5)

1

n
√
m
∥wk

r,t∥2∥ξi∥2 = − 1√
m
Θ
(
χ⟨wk

r,t, ξi⟩2
)
, Ek

r,t,ξi = Θ(χ4⟨wk
r,t, ξi⟩5)

Hence, we can see at k = T2, when ⟨wT2
r,t, ξi⟩ = Θ(χ−1m−1/6) and thus ⟨wT2

r,t,µj⟩ =

Θ(m−1/6), we have ET2
r,t,µj

= Θ( 1√
m
∥wT2

r,t∥∥µ∥2) and ET2

r,t,ξi
= Θ( 1

n
√
m
∥wT2

r,t∥2∥ξi∥2).
Next we show ET2

r,t,w0 = 1√
m
Θ
(
(⟨wT2

r,t,µj + ξ⟩ −
√
m∥wT2

r,t∥4)⟨w
T2
r,t,w

0
r,t⟩ +

∥wT2
r,t∥2⟨w0

r,t,µj + ξ⟩
)
. We first compute that ∥wT2

r,t∥2 = Θ
(
χ2⟨wT2

r,t, ξi⟩2 + ψT2
r,t

)
=

Θ(m−1/3), which implies

1√
m

(
(⟨wT2

r,t,µj + ξ⟩ −
√
m∥wT2

r,t∥2)⟨w
T2
r,t,w

0
r,t⟩+ ∥wT2

r,t∥2⟨w0
r,t,µj + ξ⟩

)
=

1√
m
Θ
(
m−1/6⟨wT2

r,t,w
0
r,t⟩+m−1/3⟨w0

r,t,µj + ξ⟩
)

= Θ
(
m−2/3⟨wT2

r,t,w
0
r,t⟩+m−5/6⟨w0

r,t,µj + ξ⟩
)

= ET2

r,t,w0

based on the derivation in (47). In this case, we can show ψk
r,t ≤ χ2⟨wk

r,t, ξi⟩2 = Θ(m−1/3)

is feasible given the lower bound on ⟨wk
r,t,w

0
r,t⟩ = Ω(σ0

√
dm−1/6) in A (k). This verifies

D(T2),E (T2) in the case where χ2⟨wk
r,t, ξi⟩2 ≥ Θ(ψk

r,t).

– If χ2⟨wk
r,t, ξi⟩2 = o(ψk

r,t), we can follow a similar argument to show that
⟨∇wr,t

L(Wk
t ),w

0
r,t⟩ ≠ 0. Specifically, we can simplify (45) and (46) to

1√
m
∥wk

r,t∥∥µ∥2 = − 1√
m
Θ
(
ψk
r,t

)
, Ek

r,t,µj
= Θ((ψk

r,t)
2χ⟨wk

r,t, ξi⟩)

1

n
√
m
∥wk

r,t∥2∥ξi∥2 = − η√
m
Θ
(
χ−1ψk

r,t

)
, Ek

r,t,ξi = Θ((ψk
r,t)

2⟨wk
r,t, ξi⟩).

Thus, we see Ek
r,t,µj

= Θ( 1√
m
∥wk

r,t∥∥µ∥2) and Ek
r,t,ξi

= Θ( 1
n
√
m
∥wk

r,t∥2∥ξi∥2) only

when χ⟨wk
r,t, ξi⟩ = Θ((ψk

r,t)
−1m−1/2), which implies ψk

r,t ≥ Θ(m−1/3). However, by a
similar argument as the case n · SNR2 = Θ(1), we can show ⟨∇wr,t

L(Wk
t ),w

0
r,t⟩ < 0,

which then concludes that ψk
r,t would decrease and cannot reach stationary point.

• When χ−1 = n−1SNR−2 = Ω̃(1),

– If ⟨wk
r,t, ξi⟩2 ≥ Θ(χ−1ψk

r,t), we can simplify (45) and (46) into

1√
m
∥wk

r,t∥∥µ∥2 = − 1√
m
Θ
(
χ⟨wk

r,t, ξi⟩2
)
, Ek

r,t,µj
= Θ(χ⟨wk

r,t, ξi⟩5)

1

n
√
m
∥wk

r,t∥2∥ξi∥2 = − 1√
m
Θ
(
⟨wk

r,t, ξi⟩2
)
, Ek

r,t,ξi = Θ(⟨wk
r,t, ξi⟩5)

Hence, we can see at k = T2, when ⟨wT2
r,t, ξi⟩ = Θ(m−1/6) and ⟨wT2

r,t,µj⟩ = Θ(χm−1/6),
we have ET2

r,t,µj
= Θ( 1√

m
∥wT2

r,t∥∥µ∥2) and ET2

r,t,ξi
= Θ( 1

n
√
m
∥wT2

r,t∥2∥ξi∥2). In this case,
we can show ψk

r,t ≤ χ⟨wk
r,t, ξi⟩2 is feasible given the lower bound on ⟨wk

r,t,w
0
r,t⟩ =

Ω(σ0σ
−1
ξ n1/2m−1/6) in A (k) when χ−1 = Ω̃(1).

Next we can check that at T2, max{⟨wT2
r,t,µj⟩, ⟨wT1

r,t, ξi⟩} = ⟨wT2
r,t, ξi⟩ = Θ(m−1/6).

Further,

∥wT2
r,t∥2 = Θ

(
⟨wT2

r,t,µj⟩2 + ⟨wT2
r,t,µj⟩⟨wT2

r,t, ξi⟩+ ⟨wT2
r,t,w

0
r,t⟩2∥w0

r,t∥−2
)
= Θ(χm−1/3)
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where the second equality is by ⟨wT2
r,t,w

0
r,t⟩2∥w0

r,t∥−2 = ψT2
r,t ≤ Θ(χm−1/3). This leads to

1√
m

(
(⟨wT2

r,t,µj + ξ⟩ −
√
m∥wT2

r,t∥4)⟨w
T2
r,t,w

0
r,t⟩+ ∥wT2

r,t∥2⟨w0
r,t,µj + ξ⟩

)
= Θ

(
m−2/3⟨wT2

r,t,w
0
r,t⟩+ χm−5/6⟨w0

r,t,µj + ξ⟩
)

ET2

r,t,w0 = Θ
(
(m−1 + χ)m−2/3⟨wT2

r,t,w
0
r,t⟩+ χm−5/6⟨w0

r,t,µj + ξ⟩
)

whereET2

r,t,w0 = 1√
m

(
(⟨wT2

r,t,µj+ξ⟩−
√
m∥wT2

r,t∥4)⟨w
T2
r,t,w

0
r,t⟩+∥wT2

r,t∥2⟨w0
r,t,µj+ξ⟩

)
holds due to m = Θ(1). This verifies D(T2),E (T2).

– If ⟨wk
r,t, ξi⟩2 < Θ(χ−1ψk

r,t), we can simplify (45) and (46) into

1√
m
∥wk

r,t∥∥µ∥2 = − 1√
m
Θ
(
ψk
r,t

)
, Ek

r,t,µj
= Θ((ψk

r,t)
2⟨wk

r,t, ξi⟩χ+ ψk
r,t⟨wk

r,t, ξi⟩3χ)

1

n
√
m
∥wk

r,t∥2∥ξi∥2 = − 1√
m
Θ
(
χ−1ψk

r,t

)
, Ek

r,t,ξi = Θ(χ−1ψk
r,t⟨wk

r,t, ξi⟩3 + χ−1(ψk
r,t)

2⟨wk
r,t, ξi⟩)

* If ⟨wk
r,t, ξi⟩2 ≥ Θ(ψk

r,t), the equalities become

1√
m
∥wk

r,t∥∥µ∥2 = − 1√
m
Θ
(
ψk
r,t

)
, Ek

r,t,µj
= Θ(ψk

r,t⟨wk
r,t, ξi⟩3χ)

1

n
√
m
∥wk

r,t∥2∥ξi∥2 = − 1√
m
Θ
(
χ−1ψk

r,t

)
, Ek

r,t,ξi = Θ(χ−1ψk
r,t⟨wk

r,t, ξi⟩3),

and Ek
r,t,µj

= Θ( 1√
m
∥wk

r,t∥∥µ∥2) when ⟨wk
r,t, ξi⟩ = Θ(m−1/6χ−1/3) and Ek

r,t,ξi
=

Θ( 1
n
√
m
∥wk

r,t∥2∥ξi∥2) when ⟨wk
r,t, ξi⟩ = Θ(m−1/6). Due to the scale that χ−1 = Ω̃(1),

two equalities cannot hold at the same time.
* If ⟨wk

r,t, ξi⟩2 < Θ(ψk
r,t), the equalities become

1√
m
∥wk

r,t∥∥µ∥2 = − 1√
m
Θ
(
ψk
r,t

)
, Ek

r,t,µj
= Θ((ψk

r,t)
2⟨wk

r,t, ξi⟩χ)

1

n
√
m
∥wk

r,t∥2∥ξi∥2 = − 1√
m
Θ
(
χ−1ψk

r,t

)
, Ek

r,t,ξi = Θ(χ−1(ψk
r,t)

2⟨wk
r,t, ξi⟩).

Thus Ek
r,t,µj

= Θ( 1√
m
∥wk

r,t∥∥µ∥2) when ⟨wk
r,t, ξi⟩ = Θ(χ−1(ψk

r,t)
−1) and Ek

r,t,ξi
=

Θ( 1
n
√
m
∥wk

r,t∥2∥ξi∥2) when ⟨wk
r,t, ξi⟩ = Θ((ψk

r,t)
−1), which clearly cannot be satis-

fied at the same time given χ−1 = Ω̃(1).
To conclude, we verify that when ⟨wk

r,t, ξi⟩2 ≤ Θ(χ−1ψk
r,t), E

k
r,t,µj

= Θ( 1√
m
∥wk

r,t∥∥µ∥2)
or Ek

r,t,ξi
= Θ( 1

n
√
m
∥wk

r,t∥2∥ξi∥2) cannot be satisfied.

In summary, we obtain the following results:

• When n · SNR2 = Θ(1), we can show Ek
r,t,µj

= Θ( 1√
m
∥wk

r,t∥∥µ∥2) and Ek
r,t,ξi

=

Θ( 1
n
√
m
∥wk

r,t∥2∥ξi∥2) when ⟨wk
r,t, ξi⟩ = Θ(m−1/6).

• When n · SNR2 = Ω̃(1), we can show Ek
r,t,µj

= Θ( 1√
m
∥wk

r,t∥∥µ∥2) and Ek
r,t,ξi

=

Θ( 1
n
√
m
∥wk

r,t∥2∥ξi∥2) when ⟨wk
r,t, ξi⟩ = Θ(χ−1m−1/6).

• When n−1 · SNR−2 = Ω̃(1), we can show Ek
r,t,µj

= Θ( 1√
m
∥wk

r,t∥∥µ∥2) and Ek
r,t,ξi

=

Θ( 1
n
√
m
∥wk

r,t∥2∥ξi∥2) when ⟨wk
r,t, ξi⟩ = Θ(m−1/6).

Combining the definition of T2, we complete the proof for Claim D.2.
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Proof of Claim D.3. By the definition of T2 and Lemma D.5, we know that for all T1 ≤ k ≤ T2,
the gradients can be written as

⟨∇wr,tL(W
k
t ),µj⟩ = Θ

(
− 1√

m
∥wk

r,t∥2∥µ∥2
)

⟨∇wr,t
L(Wk

t ), ξi⟩ = Θ
(
− 1

n
√
m
∥wk

r,t∥2∥ξi∥2
)

and thus (35), (36) are satisfied, which verifies B(k). In addition, this suggests, for all T1 ≤
k ≤ T2, the increase in ⟨wk

r,t, ξi⟩, ⟨wk
r,t,µj⟩ is monotonic. Combining with D(T2), we have

⟨wk
r,t,µj⟩, ⟨wk

r,t, ξi⟩ = O(m−1/6) = Õ(1) for all T1 ≤ k ≤ T2, thus verifying A (k).

Hence, the proof completes the induction on k and verify the claims
A (k),B(k),C (k),D(T2),E (T2), T1 ≤ k ≤ T2.

Finally, we derive an upper bound on T2. Because for all T1 ≤ k ≤ T2, we can decompose ∥wk
r,t∥2

from Lemma D.4 as

∥wk
r,t∥2 = Θ

(
⟨wk

r,t,µj⟩2∥µ∥−2 + χ⟨wk
r,t, ξi⟩2∥µ∥−2 + ∥w0

r,t∥2
)
≥ Θ(σ2

0d)

Therefore, we can upper bound the update in (35), (36) for T1 ≤ k ≤ T2 by a liner growth as

⟨wk+1
r,t ,µj⟩ = ⟨wk

r,t,µj⟩+Θ
( η√

m
∥wk

r,t∥2∥µ∥2
)
≥ ⟨wk

r,t,µj⟩+Θ
(
ηm−1/2σ2

0d
)

⟨wk+1
r,t , ξi⟩ = ⟨wk

r,t, ξi⟩+Θ
( η

n
√
m
∥wk

r,t∥2∥ξi∥2
)
≥ ⟨wk

r,t, ξi⟩+Θ
(
ηχ−1m−1/2σ2

0d
)
.

Therefore, we can upper bound as T2 ≤ Θ(max{η−1m1/3σ−2
0 d−1, η−1m1/3nσ−2

0 σ2
ξ}).

D.5 STATIONARY POINT

This section analyzes the stationary point with the conditions at the end of the second stage.

Theorem D.1. Under Condition D.1, suppose (1) ⟨w∗
r,t,µj⟩ = Θ(⟨w∗

r′,t,µj′⟩) = Õ(1), (2)
⟨w∗

r,t, ξi⟩ = Θ(⟨w∗
r′,t, ξi′⟩) = Õ(1), (3) ∥w∗

r,t∥2 = Θ(∥w∗
r′,t∥2) and (4) ⟨w∗

r,t,w
∗
r′,t⟩ =

Θ(∥w∗
r,t∥2) (5) ⟨w∗

r,t,w
0
r,t⟩ = Θ(⟨w∗

r′,t,w
0
r′,t⟩) = Ω(min{σ0σ−1

ξ n1/2m−1/6, σ0
√
dm−1/6}) hold

for all j = ±1, r ∈ [m], i ∈ [m]. Then there exists a stationary point W∗
t , i.e., ∇wr,t

L(W∗
t ) = 0

that satisfies

|⟨w∗
r,t,µj⟩|/|⟨w∗

r,t, ξi⟩| = Θ(n · SNR2),

with ⟨w∗
r,t, ξi⟩ = Θ(n−1 · SNR−2 · m−1/6), ⟨w∗

r,t,w
0
r,t⟩∥w0

r,t∥−1 ≤ Θ(⟨w∗
r,t,µj⟩) if n ·

SNR2 = Ω(1), and ⟨w∗
r,t, ξi⟩ = Θ(m−1/6), ⟨w∗

r,t,w
0
r,t⟩∥w0

r,t∥−1 ≤ Θ(
√
n · SNR2⟨w∗

r,t, ξi⟩)
if n−1 · SNR−2 = Ω(1).

Proof of Theorem D.1. The analysis mostly follows from Lemma D.8. Due to the concentration of
neurons, we can derive

⟨∇wr,tL(W
∗
t ),µj⟩

= − 1√
m
Θ
(
⟨w∗

r,t,µj⟩2 + ∥w∗
r,t∥2∥µj∥2 + ⟨w∗

r,t, ξi⟩⟨w∗
r,t,µj⟩

)
+Θ

(
⟨w∗

r,t,µj⟩5 + ⟨w∗
r,t,µj⟩3∥w∗

r,t∥2 + ∥w∗
r,t∥4⟨w∗

r,t,µj⟩+ ⟨w∗
r,t,µj⟩3∥w∗

r,t∥2∥µj∥2

+ ∥w∗
r,t∥4⟨w∗

r,t,µj⟩∥µj∥2 + ⟨w∗
r,t, ξi⟩4⟨w∗

r,t,µj⟩+ ⟨w∗
r,t, ξi⟩2∥w∗

r,t∥2⟨w∗
r,t,µj⟩

)
⟨∇wr,t

L(W∗
t ), ξi⟩

= − 1√
m
Θ
(
⟨w∗

r,t,µj⟩⟨w∗
r,t, ξi⟩+ ⟨w∗

r,t, ξi⟩2 +
1

n
∥w∗

r,t∥2∥ξi∥2
)

+Θ
(
⟨w∗

r,t, ξi⟩5 + ⟨w∗
r,t, ξi⟩3∥w∗

r,t∥2 + ⟨w∗
r,t,µj⟩4⟨w∗

r,t, ξi⟩+ ⟨w∗
r,t,µj⟩2∥w∗

r,t∥2⟨w∗
r,t, ξi⟩
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+ ∥w∗
r,t∥4⟨w∗

r,t, ξi⟩+
1

n
⟨w∗

r,t, ξi⟩3∥w∗
r,t∥2∥ξi∥2 +

1

n
∥w∗

r,t∥4⟨w∗
r,t, ξi⟩∥ξi∥2

)
⟨∇wr,tL(W

∗
t ),w

0
r,t⟩

= − 1√
m
Θ
(
⟨w∗

r,t,µj + ξi⟩⟨w∗
r,t,w

0
r,t⟩+ ∥w∗

r,t∥2⟨w0
r,t,µj + ξi⟩

)
+

1

m
Θ
(
⟨w∗

r,t,µj⟩4 + ⟨w∗
r,t, ξi⟩4

)
⟨w∗

r,t,w
0
r,t⟩+Θ

((
⟨w∗

r,t,µj⟩2 + ⟨w∗
r,t, ξi⟩2

)
∥w∗

r,t∥2
)
⟨w∗

r,t,w
0
r,t⟩

+Θ
(
∥w∗

r,t∥4⟨w∗
r,t,w

0
r,t⟩+

(
⟨w∗

r,t,µj⟩3⟨w0
r,t,µj⟩+ ⟨w∗

r,t, ξi⟩3⟨w0
r,t, ξi⟩

)
∥w∗

r,t∥2
)

+Θ
((

⟨w∗
r,t,µj⟩⟨w0

r,t,µj⟩+ ⟨w∗
r,t, ξi⟩⟨w0

r,t, ξi⟩
)
∥w∗

r,t∥4
)

And we can verify that W∗
t is a stationary point if and only if for all j = ±1, r ∈ [m], i ∈ [n],

⟨∇wr,t
L(W∗

t ),µj⟩ = ⟨∇wr,t
L(W∗

t ), ξi⟩ = ⟨∇wr,t
L(W∗

t ),w
0
r,t⟩ = 0. This leads to the following

equation system:
√
mΘ

(
⟨w∗

r,t,µj⟩5 + ⟨w∗
r,t,µj⟩3∥w∗

r,t∥2 + ⟨w∗
r,t, ξi⟩4⟨w∗

r,t,µj⟩+ ∥w∗
r,t∥4⟨w∗

r,t,µj⟩

+ ⟨w∗
r,t, ξi⟩2∥w∗

r,t∥2⟨w∗
r,t,µj⟩+ ⟨w∗

r,t,µj⟩3∥w∗
r,t∥2∥µj∥2 + ∥w∗

r,t∥4⟨w∗
r,t,µj⟩∥µj∥2

)
= Θ

(
⟨w∗

r,t, ξi⟩⟨w∗
r,t,µj⟩+ ⟨w∗

r,t,µj⟩2 + ∥w∗
r,t∥2∥µj∥2

)
(48)

√
mΘ

(
⟨w∗

r,t, ξi⟩5 + ⟨w∗
r,t, ξi⟩3∥w∗

r,t∥2 + ⟨w∗
r,t,µj⟩4⟨w∗

r,t, ξi⟩+ ∥w∗
r,t∥4⟨w∗

r,t, ξi⟩

+ ⟨w∗
r,t,µj⟩2∥w∗

r,t∥2⟨w∗
r,t, ξi⟩+

1

n
⟨w∗

r,t, ξi⟩3∥w∗
r,t∥2∥ξi∥2 +

1

n
∥w∗

r,t∥4⟨w∗
r,t, ξi⟩∥ξi∥2

)
= Θ

(
⟨w∗

r,t,µj⟩⟨w∗
r,t, ξi⟩+ ⟨w∗

r,t, ξi⟩2 +
1

n
∥w∗

r,t∥2∥ξi∥2
)

(49)

√
mΘ

( 1

m

(
⟨w∗

r,t,µj⟩4 + ⟨w∗
r,t, ξi⟩4

)
⟨w∗

r,t,w
0
r,t⟩+

(
⟨w∗

r,t,µj⟩2 + ⟨w∗
r,t, ξi⟩2

)
∥w∗

r,t∥2⟨w∗
r,t,w

0
r,t⟩

+ ∥w∗
r,t∥4⟨w∗

r,t,w
0
r,t⟩+

(
⟨w∗

r,t,µj⟩3⟨w0
r,t,µj⟩+ ⟨w∗

r,t, ξi⟩3⟨w0
r,t, ξi⟩

)
∥w∗

r,t∥2

+
(
⟨w∗

r,t,µj⟩⟨w0
r,t,µj⟩+ ⟨w∗

r,t, ξi⟩⟨w0
r,t, ξi⟩

)
∥w∗

r,t∥4
)

= Θ
(
⟨w∗

r,t,µj + ξi⟩⟨w∗
r,t,w

0
r,t⟩+ ∥w∗

r,t∥2⟨w0
r,t,µj + ξi⟩

)
(50)

In order to solve the system, we let τi,j :=
⟨w∗

r,t,µj⟩
⟨w∗

r,t,ξi⟩ for any i ∈ [n], j = ±1. We let τ = Θ(τi,j).
We first consider solving (48) and (49) and then analyze (50).

Furthermore, because the claims (1-4) are assumed, we can leverage Lemma D.4 to decompose

∥w∗
r,t∥2 = Θ

(
⟨w∗

r,t,µj⟩2∥µ∥−2 + n · SNR2⟨w∗
r,t, ξi⟩2∥µ∥−2 + ⟨w∗

r,t,w
0
r,t⟩2∥w0

r,t∥−2
)

= Θ
(
(τ2 + n · SNR2)⟨w∗

r,t, ξi⟩2∥µ∥−2 + ⟨w∗
r,t,w

0
r,t⟩2∥w0

r,t∥−2
)

where the third equality is by the scale of ⟨w∗
r,t,µj⟩ and ⟨w∗

r,t, ξi⟩.

Next, we separately consider three SNR conditions, namely (1) n · SNR2 = Θ(1); (2) n · SNR2 ≥
Ω̃(1); and (3) n−1 · SNR−2 ≥ Ω̃(1).

1. When n · SNR2 = Θ(1): we first can bound ⟨w∗
r,t,w

0
r,t⟩∥w0

r,t∥−1 ≤ Θ(⟨w∗
r,t,µj⟩) and derive

∥w∗
r,t∥2 = max{Θ(⟨w∗

r,t,µ⟩2),Θ(⟨w∗
r,t, ξi⟩2)}∥µ∥−2

Next, we can simplify (48) and (49) depending on the scale of τ .

• When τ = Ω̃(1), we have ∥w∗
r,t∥2 = Θ(⟨w∗

r,t,µj⟩2)∥µj∥−2 and the equations reduce to{
Θ(

√
mτ5⟨w∗

r,t, ξi⟩5) = Θ(τ2⟨w∗
r,t, ξi⟩2)

Θ(
√
mτ4⟨w∗

r,t, ξi⟩5) = Θ(τ2⟨w∗
r,t, ξi⟩2)

It is clear to see for τ = Ω̃(1), the equations cannot be jointly satisfied.
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• When τ−1 = Ω̃(1), we have ∥w∗
r,t∥2 = Θ(⟨w∗

r,t, ξi⟩2)∥µj∥−2 and the equations reduce to{
Θ(

√
mτ⟨w∗

r,t, ξi⟩5) = Θ(⟨w∗
r,t, ξi⟩2)

Θ(
√
m⟨w∗

r,t, ξi⟩5) = Θ(⟨w∗
r,t, ξi⟩2)

which cannot be satisfied simultaneously for τ−1 = Ω̃(1).
• When τ = Θ(1), ∥w∗

r,t∥2 = Θ(⟨w∗
r,t,µj⟩2)∥µj∥−2 = Θ(⟨w∗

r,t, ξi⟩2)∥µj∥−2 and thus we
can simplify the equations to{

Θ(
√
m⟨w∗

r,t, ξi⟩5) = Θ(⟨w∗
r,t, ξi⟩2)

Θ(
√
m⟨w∗

r,t, ξi⟩5) = Θ(⟨w∗
r,t, ξi⟩2)

which has a solution with ⟨w∗
r,t, ξi⟩ = Θ(m−1/6) = ⟨w∗

r,t,µj⟩, thus verifying the scale and
τ = Θ(n ·SNR2). Then we can verify (50) holds under the scale of ⟨w∗

r,t, ξi⟩, ⟨w∗
r,t,µj⟩ =

Θ(m−1/6) and ∥w∗
r,t∥2 = Θ(m−1/3). With the same argument as in Lemma D.8, we can

show ⟨∇wr,t
L(W∗

t ),w
0
r,t⟩ = 0.

2. When n · SNR2 = Ω̃(1): we first can bound ⟨w∗
r,t,w

0
r,t⟩∥w0

r,t∥−1 ≤ Θ(⟨w∗
r,t,µj⟩) and derive

∥w∗
r,t∥2 = max{Θ(τ2),Θ(nSNR2)}⟨w∗

r,t, ξi⟩2∥µ∥−2.

We only consider the scale when τ = Θ(n · SNR2), where we can simplify ∥w∗
r,t∥2 =

Θ(τ2)⟨w∗
r,t, ξi⟩2∥µj∥−2 and thus the system becomes{

Θ(
√
mτ5⟨w∗

r,t, ξi⟩5) = Θ(τ2⟨w∗
r,t, ξi⟩2)

Θ(
√
mτ4⟨w∗

r,t, ξi⟩5) = Θ(τ⟨w∗
r,t, ξi⟩2)

In order to satisfy both equations, we require ⟨w∗
r,t, ξi⟩ = Θ(τ−1m−1/6) and ⟨w∗

r,t,µj⟩ =

Θ(m−1/6), which verifies the scale. We can then verify (50) holds under such condition. With
the same argument as in Lemma D.8, we can show ⟨∇wr,t

L(W∗
t ),w

0
r,t⟩ = 0.

3. When n−1 · SNR−2 = Ω̃(1): we first can bound ⟨w∗
r,t,w

0
r,t⟩∥w0

r,t∥−1 ≤
Θ(

√
n · SNR2⟨w∗

r,t, ξi⟩) and derive

∥w∗
r,t∥2 = max{Θ(τ2),Θ(nSNR2)}⟨w∗

r,t, ξi⟩2∥µj∥−2.

We only consider the scale when τ = Θ(n · SNR2), where we can simplify ∥w∗
r,t∥2 = Θ(n ·

SNR2)⟨w∗
r,t, ξi⟩2∥µj∥−2 and thus the system becomes{

Θ(
√
mτ⟨w∗

r,t, ξi⟩5) = Θ(nSNR2⟨w∗
r,t, ξi⟩2)

Θ(
√
m⟨w∗

r,t, ξi⟩5) = Θ(⟨w∗
r,t, ξi⟩2)

which can be satisfied when ⟨w∗
r,t, ξi⟩ = Θ(m−1/6) and ⟨w∗

r,t,µj⟩ = Θ(τm−1/6) and thus
verify the scale. In this case, we can also verify that (50) holds under the condition thatm = Θ(1).
With the same argument as in Lemma D.8, we can show ⟨∇wr,tL(W

∗
t ),w

0
r,t⟩ = 0.

This concludes the proof that suppose the scales and concentration are the same as the end of second
stage, then there exists a stationary point where ⟨w∗

r,t,µj⟩/⟨w∗
r,t, ξi⟩ = Θ(n · SNR2).
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