Supplementary Material: Lightweight Learner for Shared Knowledge Lifelong Learning

Yunhao Ge¹ Yuecheng Li^{1*} Di Wu^{1*} Ao Xu^{1*} Adam M. Jones² Amanda Sofie Rios³ Iordanis Fostiropoulos¹ Shixian Wen⁴ Po-Hsuan Huang² Zachary William Murdock² Gozde Sahin¹ Shuo Ni¹ Kiran Lekkala¹ Sumedh Anand Sontakke¹ Laurent Itti^{1,2,5} yunhaoge@usc.edu liyueche@usc.edu dwu92983@usc.edu aoxu@usc.edu adammj@usc.edu amanda.rios@intel.com fostirop@usc.edu sx.wen@siat.ac.cn pohsuanh@usc.edu zmurdock@usc.edu gsahin@usc.edu shuoni@usc.edu klekkala@usc.edu ssontakk@usc.edu itti@usc.edu

¹ Thomas Lord Department of Computer Science, University of Southern California

² Neuroscience Graduate Program, University of Southern California

³ Intel Labs

- ⁴ Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
- ⁵ Dornsife Department of Psychology, University of Southern California

* Equal contribution as second author

Reviewed on OpenReview: https://openreview.net/forum?id=Jjl2c8kWUc

A Dataset subsampling details

Our SKILL-102 dataset comprises 102 distinct tasks that were obtained from previously published datasets. SKILL-102 is freely available for download on the project website: https://github.com/gyhandy/Shared-Knowledge-Lifelong-Learning.

Here, we subsampled the source datasets slightly, mainly to allow some of the baselines to converge in a reasonable amount of time. For dataset sampling, the following rules were used:

- For iNaturalist Insecta, since it contains a lot of classes, 500 classes were randomly sampled.
- For all other tasks, all classes are kept.
- For all tasks, round (54000/c) training images and round (6000/c) validation images and round (6000/c) test images are used for each class. If a class does not contain enough images, then all images for that class are used.
- The exact datasets as we used them in our experiments will be made available online after publication, to allow other researchers to reproduce (or beat!) our results.

The sequence of datasets and number of images in each dataset are shown in Fig. S5.

B GMMC number of clusters

Fig. S1 shows the GMMC performance with different numbers of clusters.

# of clusters	2	5	10	15	20	25	30	35	40
Accuracy	74.89%	76.98%	78.27%	82.06%	82.08%	82.38%	82.24%	81.79%	81.77%

Figure S1: On a small subset of tasks, we found that k = 25 GMMC clusters provided the best compromise between generalization and overfitting.

C Mahalanobis training MACs

The slope of MACs/image is higher until the number of training samples reaches 4,000. After that, the slope does not change. If we use 5 images per class to train, then the number of training samples would reach 4,000 after task 12. So for the majority of the tasks, the average MACs per image for training the Mahalanobis distance is around 250k.

Figure S2: MACs for Mahalanobis training (vertical axis) as a function of number of training images (horizontal axis).

D CPU analysis

We compute everything in terms of MACs/image processed. There are a few caveats:

- Data sharing does not occur per training image, but rather per task (e.g., share 25 GMMC cluster means+diagonal covariances per task). Hence we first compute communication bytes/task and then convert that to "MACs equivalent" by assuming that sharing 1 byte takes the equivalent of 1,000 MACs. This value is a hyper-parameter than can be tuned depending on network type. Over wired Ethernet, it corresponds to 1.5 million MACs per packet (with MTU of 1500 bytes).
- Mahalanobis training time increases with the number of tasks received to date, as shown in Fig. S2.
- ER training increases over time as more tasks are added:
 - We first train task 1 using the whole task 1 training set (subsampled version described above).
 - Then train task 2 using the whole task 2 training set + 10 images/class of task 1 (chosen randomly). In what follows we use γ to represent this fraction of data used for rehearsing of old tasks, and we denote by S a nominal dataset size per task (2,500 images on average). Hence, for task 2, the episodic buffer method uses $S \times (1 + \gamma)$ images. With a normalized training time of 1 to learn one task, learning task 2 for this baseline takes normalized time $1 + \gamma$.

- Then train task 3 using the whole task 3 training set + 10 images/class of task 1 + 10 images/class of task 2. Normalized training time $1 + 2\gamma$.
- Then train task 4 using the whole task 4 training set + 10 images/class of task 1 + 10 images/class of task 2 + 10 images/class of task 3. Normalized training time $1 + 3\gamma$.
- etc. So the total normalized training time for N tasks is $(1) + (1 + \gamma) + (1 + 2\gamma) + (1 + 3\gamma) + \dots + (1 + (N 1)\gamma) = N + \gamma(1 + 2 + \dots + N 1) = N + \gamma(N 1)(N 2)/2$. With N = 102, the total training time for all tasks is $N + 5050\gamma$. In our experiments, our subsampled training sets averaged 254 images/class and hence $\gamma = 10/254 = 0.04$ on average, leading to a total normalized training time of 304 (broken down as a cost of 102 to learn the from 102 datasets, plus 202 to rehearse old tasks as we learn new tasks).
- This is for $\gamma = 0.04$ but performance is low, so using a higher γ is warranted for the episodic buffer approach. This is very costly, though. In the limit of retaining all images, which would give best performance, the training time of this approach is 102 + 5050 = 5152 times the time it takes to learn one task. So, while the single-agent will require anywhere between $304 \times T$ and $5152 \times T$ to learn 102 tasks sequentially, our approach will learn all 102 tasks in parallel during just T.

Additional details used for our computations are in Fig. S3.

Teacher	Student	Runtime	Parameters		Computed from parameters	
7.58E+11	0.00E+00	8.44E+09 unfrozen xception MACs/image	# tasks (=N)	102	GMMC shared bytes/task	409600
0.00E+00	0.00E+00	8.44E+09 frozen backbone MACs/image	MACs/byte transmitted	1000	last layer bytes/task	404391
1.21E+07	0.00E+00	1.01E+05 last layer only MACs/image	bytes/parameter	4	BB biases bytes/task	201248
1.08E+09	0.00E+00	3.58E+07 BB only MACs/image	bytes/image	268203	Mahalanobis bytes/task	66165680.1
4.96E+06	0.00E+00	8.55E+07 GMMC MACs/image	# xception weights	20884814	SUPSUP bytes/task	3000000
2.50E+05	2.50E+05	6.07E+08 Mahalanobis MACs/image	xception latent dims	2048		
8.56E+11	0.00E+00	8.44E+09 EWC MACs/image	xception forward MACs	8.44E+09		
3.07E+11	0.00E+00	3.42E+09 PSP MACs/image	# GMMC clusters	25		
2.22E+12	0.00E+00	8.44E+09 ER MACs/image	GMMC params/cluster	4096		
4.95E+11	0.00E+00	4.15E+09 SUPSUP MACs/image	avg classes/task	49.34		
7.61E+11	0.00E+00	8.44E+09 EWC-ONLINE MACs/image	median classes/task	12.00		
7.65E+11	0.00E+00	8.44E+09 LwF MACs/image	avg train img/task	20011.95		
1.02E+12	0.00E+00	8.44E+09 SI MACs/image	avg test img/task	2386.93		
1.01E+12	0.00E+00	8.44E+09 MAS MACs/image	Mahalanobis img/class	5		
7.58E+11	0.00E+00	8.48E+09 BB backbone MACs/image	# BB biases	50312		
			# training epochs (avg)	30		
			# train images	2041219		
			# test images	243467		
			ER replay Factor	2.931372549		

Figure S3: Additional details for how we compute MACs and speedup. Different assumptions (e.g., higher or lower MACs/byte transmitted) can be used, which would update the results in the main paper Figs. 9 and 10.

E Summary of our new SKILL-102 for image classification

Fig. S5 shows a summary of 102 datasets we are using along with the accuracy of all our methods. Note that TM stands for Task Mapper. The red text indicates datasets with large domain gap which were mentioned in Sec. 6, the blue text indicates datasets with poor GMMC accuracy which are further examined below. Fig. S6 shows the baselines performance on SKILL-102.

F Cases of low accuracy in GMMC

In this section, we analyze in details the failures of GMMC on three datasets: Office Home Art, Dragon Ball, and Malacca Historical Buildings.

In certain cases, several datasets may share a common characteristic, such as all of them are anime pictures (e.g. Dragon Ball, Pokemon, and One-Piece). GMMC may capture the tasks' characteristics as animation but fail to further distinguish different tasks. On the other side, Mahalanobis focus on the characteristics

Figure S4: Here we analyze the top 3 tasks into which images may be misclassified by GMMC. a) Out of 18 test images from the (very small) Dragon Ball Dataset, 4 are correctly classified as belonging to Dragon Ball Dataset, 11 are misclassified as belonging to the One Piece dataset, and 2 are misclassified as belonging to the Pokemon dataset. Since all three datasets contain cartoon images, GMMC was confused to classify some images into an incorrect dataset. b) Out of 252 test images from Office Home Art, 86 are correctly classified, 33 are classified as belonging to the Stanford Online Product dataset, and 20 are classified as Office Home Product dataset. These three datasets have many objects in common such as bicycles, chairs, and tables. Hence, it is easy for GMMC to get confused. c) Out of 18 test images from Malacca Historical Buildings, 7 were correctly classified, 5 are classified as Art Images, and 5 are classified as belonging to the Watermark dataset. The Art Image and Watermark datasets contain a large variety of images which may confuse the GMMC to make wrong predictions.

classwise, witch captures the difference among classes (e.g., Wukong vs. Abra characters in Fig. S4-a) and hence is able to distinguish them.

Another case is that two tasks may share similar objects (e.g., Office Home Art, Office Home, and Stanford Online Products; Fig. S4-b). Although represented in different tasks, these are the same types of objects in the real life. We address these GMMC confusions with our proposed "corrective approach" that would declare correct classification for equivalent labels belonging to different tasks.

Other cases may include that one task is too general; for example, Watermark non Watermark includes a large variety of images with or without a watermark which may also confuse GMMC as many similar images are present in other datasets (Fig. S4-c).

G Amount of data shared by LLL

The analysis below includes 2 options not exercised in the main text of this paper:

- Head2Toe: If the input domain encountered by an agent is very different than what the frozen backbone was trained on, sharing only the last layer(s) + BPN biases may not always work well, because the features in the backbone are not able to well represent the new domain. Our backbone is pretrained on ImageNet, which is appropriate for many image classification and visually-guided RL tasks in the natural world. However, the latent features may not be well suited for highly artificial worlds. This was recently addressed by (Evci et al., 2022), who showed that this problem can be alleviated using a last layer that connects to several intermediary layers, or even to every layer in the network, as opposed to only the penultimate layer. Hence, instead of sharing the last layer, we may share a so-called *Head2toe* layer when a large domain shift is encountered. Note that AR will also be used in this case as it is another way to counter large domain shifts: the AR pattern essentially recasts an input from a very different domain back into the ImageNet domain, then allowing the frozen backbone to extract rich and meaningful features in that domain. Also see Parisi et al. (2022) for ideas similar to Head2toe, with applications in RL.
- Adversarial reprogramming (AR) (Elsayed et al., 2018): Adversarial reprogramming is quite similar in spirit to BB, with the main difference being that it operates in the input (image) space as opposed to BB operating in the activation space. In adversarial reprogramming, one computes a single noise pattern for each task. This pattern is then added to inputs for a new task and fed through the original network. The original network processes the combined input + noise and generates an

Published in	n Transactions	on Machine	Learning Research	(05/2023)
--------------	----------------	------------	-------------------	-----------

Note: TM = Task Manner		S	ample Data	set		Train	Full Dataset	Test	Perfect Ta	sk Mapper	TM	GMMC	RR	TM	MAHA	RR
Dataset Name	# of classe	s # of images	# of image	s # of images	# of classes	# of images	# of images	# of images	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
102_Category_Flower_Dataset	102	6455	865	865	102	6455	865	865	93.64%	95.95%	92.95%	87.63%	89.36%	95.38%	90.29%	92.02%
Mil_Indoor_scenes Caltech-UCSD_Birds_200	200	9405	1587	1587	200	9405	1587	1587	76.69%	77.88%	96.47%	56.96% 71.70%	57.72%	85.63% 99.50%	67.49% 74.06%	68.30% 73.97%
Stanford_Cars	196	12723	1693	1693	196	12723	1693	1693	53.93%	63.85%	97.22%	53.16%	62.67%	99.65%	53.69%	63.67%
Fine-Grained_Visual_Classification_of_Aircraft VOC 2012 Human Action Subset	70	8000 3424	1000 435	1000 435	70 11	8000 3424	1000 435	1000 435	46.10% 71.95%	70.60% 73.79%	99.20% 70.80%	45.80% 56.78%	70.30% 56.09%	99.20% 67.36%	45.90% 52.87%	70.50% 52.64%
Chars74k	62	8902	1150	1150	62	8902	1150	1150	59.57%	70.26%	84.70%	52.61%	61.91%	86.78%	54.43%	64.09%
Stanford_Street_View_House_Numbers	10	54000	6000	6000	10	504323	63047	63047	74.35%	95.10%	93.18%	69.28%	88.65%	89.55%	66.58%	85.20%
iNaturalist_Fungi	313	53161	6121	6121	341	74541	9409	9409	57.34%	61.36%	88.76%	51.23%	55.14%	93.89%	54.88%	58.98%
iNaturalist_Amphibia	170	38220	4815	4815	170	38220	4815	4815	37.20%	39.50%	82.78%	33.25%	35.31%	81.77%	33.79%	35.76%
iNaturalist_Arachnida iNaturalist_Mollusca	153 169	33674 36921	4245 4659	4245 4659	153 169	33674 36921	4245 4659	4245 4659	52.49% 65.06%	56.09% 67.91%	84.66% 84.67%	46.15% 56.62%	48.95% 59.33%	85.82% 87.55%	48.20% 59.61%	50.91% 61.79%
iNaturalist_Actinopterygii	183	37195	4723	4723	183	37195	4723	4723	61.00%	63.10%	89.86%	56.55%	58.48%	92.25%	58.27%	60.41%
iNaturalist_Insecta	500	54000 E4000	6000	6000	2526	549151	69336	69336	66.23%	71.30%	71.87%	50.20%	54.17%	88.22%	62.27%	66.85%
Sketches	250	15999	2000	2000	250	15999	2000	2000	59.70%	65.80%	98.55%	58.50%	64.55%	99.65%	59.45%	65.55%
WikiArt_Dataset	27	34522	4037	4037	27	62917	7880	7880	50.61%	54.47%	68.91%	34.33%	37.60%	69.93%	36.64%	38.92%
Describable_Textures_Dataset GTSRB	47	4497 41463	563 5184	563	47	4497 41463	563	563 5184	72.47% 96.66%	74.07% 99.69%	64.83% 97.78%	50.09% 94.54%	97.51%	77.80% 96.01%	92.92%	60.57% 95.79%
CelebA	5	40566	4622	4622	5	99837	12483	12483	82.04%	91.19%	97.34%	80.46%	88.92%	95.61%	79.27%	87.43%
Office-Home_Clipart Office-Home_Product	65 65	3300 3361	445 454	445 454	65 65	3300 3361	445 454	445 454	77.53% 90.97%	79.55% 89.87%	61.12% 45.59%	47.64% 42.51%	50.11% 42.29%	68.31% 71.81%	55.51% 68.94%	57.30% 69.16%
Office-Home_Art	65	1793	252	252	65	1793	252	252	80.95%	79.76%	34.13%	29.76%	29.76%	48.02%	42.86%	43.65%
Food-101	101	54035	5959	5959	101	80738	10100	10100	66.64%	68.43%	78.54%	52.69%	53.83%	81.66%	56.37%	57.61%
PatchCamelyon	2	54000	6000	6000	2	221983	27750	27750	87.63%	88.65%	98.63%	86.38%	87.35%	77.02%	67.30%	67.80%
Diabetic_Retinopathy_Detection	5	28096	3515	3515	5	28096	3515	3515	75.07%	76.75%	93.89%	71.01%	72.48%	72.34%	54.43%	55.80%
RVL-CDIP HistAerial	16	54000 50637	5763	5763	16	318696	39846 13747	39846 13747	69.47% 86.73%	76.33% 87.65%	97.15% 97.78%	67.47% 84.87%	74.37%	96.73% 94.88%	67.18% 82.58%	74.00% 83.65%
OrigamiSet1.0	3	1193	151	151	3	1193	151	151	82.12%	83.44%	86.75%	70.86%	70.86%	83.44%	66.89%	67.55%
Brazilian_Coins	5	2443	308	308	5	2443	308	308	85.06% 28.72%	93.18% 29.42%	97.73% 79.15%	83.12%	91.56% 23.21%	99.35% 73.68%	85.06%	92.86%
Rice_Image_Dataset	5	54000	6000	6000	5	59761	7471	7471	99.38%	100.00%	99.87%	99.25%	99.87%	99.95%	99.33%	99.95%
Vegetable_images_Dataset	15	16796	2100	2100	15	16796	2100	2100	100.00%	100.00%	95.14%	95.14%	95.14%	93.57%	93.57%	93.57%
garbage_classification Facial Expression Recognition 2013	12	12383 27175	1555 3401	1555 3401	12	12383 27175	1555 3401	1555 3401	94.98% 53.87%	95.63% 60.01%	62.19% 98.06%	59.42% 52.78%	60.39% 58.78%	48.87% 96.30%	46.69% 52.04%	46.82% 58.13%
7000_Labeled_Pokemon	150	5305	749	749	150	5305	749	749	69.83%	83.04%	81.04%	58.74%	68.09%	84.78%	63.95%	73.16%
Manga_Facial_Expressions	7	357	49 130	49 130	7	357	49 130	49 130	53.06% 98.46%	55.10% 99.23%	65.31% 86.15%	34.69% 85.38%	36.73%	95.92%	48.98% 98.46%	51.02% 99.23%
Oregon_Wildlife	20	5648	714	714	20	5648	714	714	88.38%	87.68%	91.60%	82.77%	82.07%	89.50%	81.65%	81.23%
Blood_Cell_Images_Dataset	4	10005	1254	1254	4	10005	1254	1254	83.33%	87.00%	100.00%	83.33%	87.00%	99.84%	83.17%	86.84%
APTOS_2019_Blindness_Detection	5	2798	353	353	5	2798	353	353	79.60%	79.32%	88.95%	70.54%	71.10%	99.29% 92.35%	72.52%	71.67%
Cataract_Dataset	4	479	61	61	4	479	61	61	60.66%	60.66%	65.57%	45.90%	47.54%	95.08%	59.02%	60.66%
Freiburg_Groceries_Dataset Fashion Product Images Dataset	25 43	3921 34885	506 4384	506 4384	25 43	3921 34885	506 4384	506 4384	78.66% 95.87%	79.05% 96.44%	94.66% 71.92%	74.90% 69.41%	75.30% 69.80%	95.06% 63.16%	75.69% 60.22%	75.69% 60.61%
Apparel_Images_Dataset	24	9080	1146	1146	24	9080	1146	1146	83.33%	94.42%	70.77%	60.82%	67.02%	73.47%	63.44%	70.51%
Zalando_Clothing_and_Models	6	8527	1070	1070	6	8527	1070	1070	88.88%	90.75%	89.44%	79.07%	81.12%	80.47%	71.50%	72.62%
Images_LEGO_Bricks	50	32000	4000	4000	50	32000	4000	4000	81.88%	90.05%	99.35%	43.00% 81.28%	89.43%	99.53%	81.43%	89.58%
Art_Images_Type_Classification	5	5684	713	713	5	5684	713	713	88.64%	90.88%	67.32%	61.85%	62.69%	65.92%	61.85%	62.41%
Multi-Class_Weather_Dataset Simpsons_Characters_Data	4	875 17464	2209	2209	4	875 17464	2209	2209	92.86% 72.88%	98.21% 87.37%	96.51%	64.29% 70.67%	64.29% 84.97%	72.32% 94.66%	69.64% 70.35%	72.32% 84.07%
Intel_Image_Classification	6	13597	1703	1703	6	13597	1703	1703	92.48%	92.60%	83.21%	77.33%	77.75%	84.20%	77.80%	78.21%
House_Room_Image_Dataset UIUC Sports Event Dataset	5	4136 1258	519 160	519 160	5	4136 1258	519 160	519 160	88.63% 100.00%	88.63% 99.37%	86.51% 69.38%	76.88% 69.38%	76.88% 68.75%	68.02% 73.13%	60.50% 73.13%	60.50% 72.50%
Land-Use_Scene_Classification	21	8399	1050	1050	21	8399	1050	1050	96.00%	96.29%	86.86%	83.43%	83.52%	88.48%	85.05%	85.33%
ASL_Alphabets_Dataset	29 82	53998 15486	6003 1982	6003 1982	29 82	69600 15486	8700 1982	8700 1982	99.78% 52.72%	99.95% 64.78%	99.60% 86.63%	99.38% 47.68%	99.55% 57.82%	99.78% 83.40%	99.57% 46.97%	99.73% 56.66%
Russian_Letter_Dataset	33	30097	3785	3785	33	30097	3785	3785	81.51%	93.34%	99.05%	80.74%	92.47%	99.10%	80.98%	92.52%
UMIST_Face_Database	20	788	112	112	20	788	112	112	100.00%	100.00%	91.96%	91.96%	91.96%	100.00%	100.00%	100.00%
Oxford_Buildings	11	665	90	90	11	665	90	90	42.69% 85.56%	44.55% 83.33%	74.44%	50.82% 68.89%	65.56%	90.00%	57.28% 78.89%	58.92% 76.67%
Texture_Dataset	64	6808	861	861	64	6808	861	861	99.65%	99.88%	90.59%	90.36%	90.48%	98.03%	97.68%	97.91%
electronic-components Hurricane_Damage_Dataset	36	8087 16838	1033 2106	1033	36	16838	1033 2106	1033 2106	47.82% 95.82%	46.08% 97.91%	88.38% 96.44%	42.01% 92.64%	41.14% 94.54%	88.67% 88.79%	42.21% 85.61%	41.24% 87.32%
chest_xray	2	4658	583	583	2	4658	583	583	96.74%	97.60%	99.49%	96.23%	97.08%	97.08%	93.83%	94.68%
PAD-UFES-20 Brain Tumor Dataset	6	1807 2292	231 289	231 289	6 4	1807 2292	231 289	231 289	64.50% 87.89%	67.10% 92.39%	74.89% 97.92%	49.35% 86.16%	50.22% 90.66%	85.71% 99.65%	54.98% 87.54%	57.14% 92.04%
Kannada-MNIST	10	48000	6000	6000	10	48000	6000	6000	98.12%	99.42%	99.60%	97.73%	99.05%	99.90%	98.02%	99.32%
Breast_Ultrasound	30	620 45575	79 5700	79 5700	3 30	620 45575	79 5700	79 5700	82.28% 26.46%	83.54% 27.89%	84.81% 83.44%	69.62% 21.21%	72.15%	96.20% 82.89%	79.75% 21.47%	81.01% 22.68%
boat-types-recognition	9	1160	150	150	9	1160	150	150	93.33%	93.33%	74.67%	72.00%	71.33%	76.67%	73.33%	72.67%
rock-classification	7	1620	206	206	7	1620	206	206	75.73%	76.21%	57.77%	45.15%	44.17%	63.11% 91.36%	49.03%	48.54%
dragon-ball-super-saiyan-dataset	6	112	18	18	6	112	18	18	50.00%	55.56%	22.22%	22.22%	16.67%	94.44%	44.44%	50.00%
concrete-crack	2	30720	3841	3841	2	30720	3841	3841	99.84%	99.92%	98.54%	98.44%	98.49%	95.81%	95.68%	95.76%
Malacca_Historical_Buildings Satellite_Images_to_Predict_African_Poverty	4	20455	2558	2558	3 4	20455	2558	2558	77.01%	100.00% 81.04%	38.89% 90.34%	58.89% 69.62%	38.89% 73.53%	100.00% 79.75%	62.16%	65.01%
Skin_Cancer_MNIST_HAM10000	7	8003	1005	1005	7	8003	1005	1005	77.91%	77.31%	96.42%	75.82%	75.02%	89.95%	70.95%	70.15%
watermarked-not-watermarked-images Large-Scale Fish Dataset	2	24917 7526	3115 941	3115 941	2	24917 7526	3115 941	3115 941	70.88% 99.89%	82.02% 100.00%	54.70% 98.51%	39.07% 98.41%	45.04% 98.51%	29.82% 97.56%	21.25% 97.45%	24.69% 97.56%
DeepWeedsX	9	13996	1756	1756	9	13996	1756	1756	81.66%	84.17%	94.99%	77.68%	79.84%	91.80%	74.83%	76.88%
IP102_Dataset	102	36302	4303	4303	102	60089 1304	7564	7564	59.08%	59.49%	69.77% 96.97%	41.90%	42.57%	66.77%	41.78%	42.41%
planets-and-moons-dataset polish-craft-beer-labels	100	6275	848	848	100	6275	848	848	99.41%	100.00%	99.29%	98.70%	99.29%	100.00%	99.41%	100.00%
Kvasir-Capsule_Dataset	14	30208	3784	3784	14	30208	3784	3784	93.97%	96.51%	99.84%	93.90%	96.43%	98.84%	92.97%	95.40%
NEU-Surface-Defect-Database colorectal-histology-mnist	6	1439 3992	180 504	180 504	8	1439 3992	180 504	180 504	88.69%	100.00% 87.50%	87.78% 94.25%	87.78% 84.13%	87.78%	99.44% 97.02%	99.44% 85.71%	99.44% 84.72%
100_Sports	100	11558	1500	1500	100	11558	1500	1500	92.27%	92.73%	78.07%	72.20%	72.13%	92.40%	86.33%	86.20%
Labeled_Surgical_Tools_and_Images Mechanical Tools Classification Dataset	5	2400 5861	302 737	302 737	5	2400 5861	302 737	302 737	85.76% 91.18%	94.70% 90.64%	97.02% 79.10%	83.11% 73.81%	92.05% 73.00%	92.05% 62.14%	78.48% 58.21%	87.75% 57.26%
Galaxy10	10	14083	1766	1766	10	14083	1766	1766	63.53%	77.01%	99.55%	63.08%	76.61%	99.60%	63.25%	76.73%
Stanford_Online_Products	12	54000	6000 3150	6000	12	94375 25192	11804 3150	11804 3150	81.57% 86.57%	80.82%	72.95%	62.50% 72.83%	62.10% 75.87%	53.45% 93.40%	45.30% 80.79%	44.78% 83.81%
FaceMask_Dataset	3	11001	1377	1377	3	11001	1377	1377	98.55%	98.77%	88.96%	87.65%	88.02%	83.22%	82.21%	82.57%
OnePiece_Dataset	18	9191	1156	1156	18	9191	1156	1156	78.11%	84.69%	86.07%	67.30%	73.10%	84.95%	67.65%	73.18%
liab_80m CLEVR_v1.0	8	54000	6000	6000	8	67994	8503	8503	48.73%	73.65%	99.90%	48.68%	73.55%	99.97%	48.73%	73.63%
ilab_atari	67	52735	5921	5921	67	295048	36911	36911	99.97%	100.00%	99.09%	99.07%	99.09%	99.27%	99.24%	99.27%
ilab_deepvp Total # / Average Accuracy	9 5033	53911 2041225	6003 243464	6003 243464	9 7059	59422 4126063	7433 518043	7433 518043	58.09% 77.92%	90.07% 81.57%	97.63% 84.94%	57.45% 67.43%	88.77% 70.58%	90.35% 87.10%	54.67% 68.87%	83.47% 72.10%

Figure S5: Basic stats of dataset and accuracy. TM=task mapper. 5

Published in Transactions on Machine Learning Research (05/202	Puł	blished	in	Transactions -	on	Machine	Learning	Research	(05)	/202	3
--	-----	---------	----	----------------	----	---------	----------	----------	------	------	---

Dataset Name	EWC	PSP	ER	MAS	SI	LwF	Online-EWC	SUPSUP
102_Category_Flower_Dataset	0.58%	1.04%	57.23%	1.62%	0.92%	0.35%	0.46%	50.64%
MIT_Indoor_Scenes	3.21%	3.02%	9.01%	4.91%	2.71%	2.02%	1.89%	28.86%
Caltech-UCSD_Birds_200	0.25%	0.42%	21.24%	0.67%	0.50%	0.59%	0.34%	12.59%
Stanford_Cars	0.41%	0.59%	13.59%	0.65%	0.47%	0.41%	0.35%	6.44%
Fine-Grained_Visual_Classification_of_Aircraft	1.70%	1.90%	19.70%	5.80%	2.90%	2.40%	2.90%	24.10%
Chars74k	0.96%	3.22%	22.00%	3.13%	1.48%	0.17%	0.70%	73.22%
Stanford Street View House Numbers	11.05%	9.98%	55.85%	9.52%	10.43%	9.32%	8.80%	91.93%
iNaturalist_Reptilia	0.44%	0.20%	2.56%	0.32%	0.34%	0.30%	0.32%	1.70%
iNaturalist_Fungi	0.31%	0.34%	13.67%	0.28%	0.29%	0.20%	0.42%	8.45%
iNaturalist_Amphibia	0.56%	0.69%	3.26%	0.66%	0.46%	0.69%	0.62%	4.11%
iNaturalist_Arachnida	0.64%	0.73%	6.12%	0.97%	0.64%	0.90%	0.49%	5.91%
iNaturalist_Mollusca	0.75%	0.64%	11.05%	0.69%	0.56%	0.67%	0.71%	8.97%
iNaturalist_Actinopterygii	0.70%	0.51%	9.65%	0.83%	0.38%	0.42%	0.57%	5.27%
	10.35%	10 37%	19.03%	10 22%	11 77%	9.25%	10 17%	5.77% 81.62%
Sketches	0.25%	0.65%	43.60%	0.40%	0.45%	0.05%	0.45%	19.65%
WikiArt_Dataset	3.12%	6.69%	4.58%	6.47%	1.41%	2.65%	4.24%	26.13%
Describable_Textures_Dataset	1.95%	1.95%	12.08%	4.26%	1.42%	1.60%	1.95%	20.60%
GTSRB	3.67%	4.26%	74.46%	5.34%	3.03%	4.57%	2.91%	86.67%
CelebA	12.12%	25.98%	50.58%	25.94%	25.96%	20.45%	10.80%	80.44%
Office-Home_Clipart	1.35%	1.57%	21.12%	3.15%	1.57%	1.57%	1.80%	39.55%
Office-Home_Product	2.20%	1.10%	26.21%	1.32%	2.20%	1.76%	0.44%	44.05%
Office-Home_Art	4.76%	1.59%	3.97%	4.37%	1.19%	3.97%	3.1/%	9.92%
FuroSAT	12.22%	10.41%	50.37%	20.96%	11.11%	7.85%	8.26%	84.11%
PatchCamelvon	12.60%	49.75%	41.08%	51.27%	52.48%	3.48%	7.28%	83.58%
Diabetic_Retinopathy_Detection	52.96%	32.09%	15.99%	72.40%	70.15%	26.15%	5.88%	72.57%
RVL-CDIP	6.33%	7.72%	29.40%	5.97%	6.33%	4.15%	8.07%	65.43%
HistAerial	8.47%	24.08%	49.44%	23.10%	15.50%	10.93%	1.94%	63.28%
OrigamiSet1.0	36.42%	34.44%	6.62%	50.33%	23.18%	16.56%	13.25%	43.05%
Brazilian_Coins	16.56%	4.55%	51.62%	21.43%	19.81%	1.62%	3.57%	93.18%
IMaterialist_Fashion_2019	1.43%	2.07%	1.68%	17.57%	0.42%	1.17%	0.82%	24.71%
Kice_Image_Dataset	9 90%	51.83%	51 71%	53.10% 6.95%	7 90%	5 86%	9.72%	95.00%
garbage classification	4.50%	33.57%	5.72%	37.49%	5.40%	6.69%	5.98%	68.75%
Facial_Expression_Recognition 2013	12.88%	24.26%	26.64%	17.82%	17.17%	14.64%	11.76%	44.46%
7000_Labeled_Pokemon	0.40%	0.93%	53.81%	0.80%	0.67%	0.40%	0.67%	43.93%
Manga_Facial_Expressions	12.24%	18.37%	40.82%	22.45%	14.29%	16.33%	14.29%	30.61%
10_Monkey_Species	9.23%	1.54%	43.85%	11.54%	9.23%	7.69%	9.23%	43.08%
Oregon_Wildlife	6.02%	6.58%	12.89%	5.04%	5.88%	6.30%	4.76%	31.65%
Blood_Cell_Images_Dataset	21.93%	17.86%	35.41%	24.96%	25.20%	14.27%	15.95%	93.70%
APTOS 2019 Blindness Detection	11.76%	51.41%	57.50% 43.63%	51.92%	29.78%	20.96%	5 95%	67 99%
Cataract Dataset	16.39%	47.54%	50.82%	39.34%	16.39%	9.84%	19.67%	49.18%
Freiburg_Groceries_Dataset	7.31%	3.75%	22.13%	8.50%	5.14%	4.55%	4.94%	44.07%
Fashion_Product_Images_Dataset	0.25%	34.08%	40.08%	36.95%	4.88%	0.57%	0.59%	43.25%
Apparel_Images_Dataset	4.28%	8.99%	30.37%	6.11%	8.55%	4.89%	5.15%	82.02%
Zalando_Clothing_and_Models	8.97%	41.40%	32.34%	46.07%	16.26%	24.11%	19.72%	72.43%
PlantDoc-Dataset	5.28%	4.15%	13.96%	7.17%	3.77%	3.77%	3.77%	18.11%
Images_LEGO_Bricks	1.68%	3.33%	28.90%	1.73%	2.18%	2.70%	2.60%	4.45%
Art_Images_Type_Classification	13.46%	33.94%	8.42%	37.59%	10.83%	21.46%	10.10% 6.25%	/6./2% 83.02%
Simpsons Characters Data	2.04%	3.98%	23.00%	10.82%	5.93%	2.22%	2.90%	77.14%
Intel_Image_Classification	12.16%	31.24%	21.96%	20.26%	15.68%	9.92%	6.28%	80.50%
House_Room_Image_Dataset	21.19%	26.40%	10.79%	19.27%	17.73%	26.20%	18.69%	47.78%
UIUC_Sports_Event_Dataset	10.00%	20.00%	20.63%	28.75%	13.13%	12.50%	10.00%	61.25%
Land-Use_Scene_Classification	7.52%	7.05%	34.38%	14.00%	4.76%	3.81%	3.52%	67.90%
ASL_Alphabets_Dataset	4.45%	32.13%	58.35%	5.43%	3.28%	3.28%	4.11%	96.39%
Yoga-82	1.21%	1.06%	12.46%	2.57%	1.46%	0.91%	1.21%	27.70%
Russian_Letter_Dataset	2.99%	24.11%	44.76% 89.79%	5.5/%	1.59% 6.25%	0.58% 4.46%	4.83%	80.92% 99.11%
iFood2019	0.37%	0.78%	6,57%	0.63%	0.45%	0.22%	0,28%	4,58%
Oxford Buildings	10.00%	25.56%	50.00%	38.89%	38.89%	4.44%	6.67%	52.22%
Texture_Dataset	1.74%	3.48%	80.60%	6.27%	1.05%	1.51%	1.28%	91.99%
electronic-components	2.81%	2.71%	9.68%	4.74%	3.19%	4.07%	3.78%	24.10%
Hurricane_Damage_Dataset	4.51%	85.57%	48.81%	65.34%	34.24%	20.47%	45.77%	94.82%
chest_xray	7.38%	71.36%	63.81%	72.90%	27.10%	6.86%	2.23%	95.71%
PAD-UFES-20	12.99%	32.47%	23.38%	31.60%	17.75%	11.69%	1.73%	50.65%
Brain_Tumor_Dataset	13.15%	37.37%	59.52% 93.65%	30.10%	26.64%	8.30%	9 57%	/9.93%
Breast Ultrasound	0,00%	59.49%	45.57%	17.72%	54.43%	29.11%	13,92%	70,89%
BookCover30	3.67%	4.33%	3.56%	4.46%	2.81%	3.02%	3.77%	12.56%
boat-types-recognition	18.00%	22.00%	8.00%	34.00%	17.33%	13.33%	9.33%	34.00%
rock-classification	11.65%	26.21%	6.80%	24.27%	17.48%	9.71%	10.19%	31.55%
dermnet	5.02%	5.57%	13.10%	5.07%	2.79%	3.85%	3.07%	26.42%
dragon-ball-super-saiyan-dataset	22.22%	27.78%	33.33%	0.00%	16.67%	27.78%	16.67%	33.33%
concrete-crack	8.10%	98.54%	81.31%	49.00%	45.77%	1.17%	0.83%	99.11%
Maiacca_Historical_Buildings	5.56%	77.78%	88.89%	33.33%	33.33%	8 20%	1 64%	64 10%
Skin Cancer MNIST HAM10000	1.49%	61.49%	31.74%	66.77%	66.37%	2.69%	15.32%	71.94%
watermarked-not-watermarked-images	13.32%	57.37%	1.06%	54.64%	50.75%	9.47%	4.01%	79.78%
Large-Scale_Fish_Dataset	11.37%	51.33%	74.18%	13.28%	10.95%	9.56%	10.41%	96.28%
DeepWeedsX	17.65%	53.02%	29.33%	51.88%	51.20%	10.59%	35.88%	65.95%
IP102_Dataset	0.49%	3.25%	8.58%	1.86%	1.46%	0.65%	0.91%	14.36%
planets-and-moons-dataset	7.88%	43.64%	96.36%	11.52%	7.88%	9.70%	6.67%	100.00%
polish-craft-beer-labels	1.53%	11.91%	95.87%	2.83%	1.53%	0.59%	0.12%	95.40%
KVasir-Capsule_Dataset	10.00%	73.80%	50.75% 81.11%	32.50%	25.08%	6.67%	7 22%	90.12%
colorectal-histology-maist	6.35%	28.37%	64.68%	31.75%	12.50%	8.73%	4.96%	89.68%
100 Sports	1.93%	4.73%	28.27%	3.80%	1.47%	0.93%	1.67%	40.20%
Labeled_Surgical_Tools_and_Images	12.25%	32.78%	53.31%	45.03%	24.83%	11.26%	13.58%	90.40%
Mechanical_Tools_Classification_Dataset	5.29%	26.73%	6.65%	32.16%	25.64%	9.77%	7.33%	43.83%
Galaxy10	11.61%	14.84%	39.30%	12.29%	14.95%	5.95%	11.49%	51.02%
Stanford_Online_Products	9.12%	26.77%	8.83%	20.92%	8.47%	8.47%	7.92%	39.28%
NWPU-RESISC45	1.97%	23.30%	41.40%	11.81%	2.25%	2.25%	2.03%	53.08%
FaceMask_Dataset	13.94%	80.46%	75.16%	62.31%	29.99%	8.50%	9.44%	94.34% 55.10%
Uneriece_Dataset	8.87%	40.27%	46.00%	26.33%	7.60%	7.73%	7.93%	67.00%
CLEVR v1.0	10.12%	60.70%	29.35%	18.32%	20.47%	11.03%	13.17%	65.72%
ilab_atari	6.23%	99.93%	99.71%	14.63%	1.45%	7.50%	5.57%	99.27%
ilab_deepvp	91.84%	88.59%	93.02%	90.60%	41.41%	89.91%	92.09%	84.41%

Average Accuracy8.86%25.49%35.32%20.54%13.89%8.41%7.77%56.22%Figure S6: Accuracy of baselines after all 102 tasks have been learned in the order shown.

output, which is then remapped onto the desired output domain. Unfortunately, the CPU cost of this approach is prohibitive with respect to 0.5N speedup.

We denote the number of BB biases by \mathcal{N} in what follows (for xception, $\mathcal{N} = 17, 472$). If Head2toe connects to the same feature maps as BB, then the number of weights is $\mathcal{N} \times c$ for c output classes. We assume that each task is modeled with k GMMC clusters (k = 25 currently), and each is represented by a 2048D mean and 2048D diagonal covariance. We denote by 4 the number of bytes per floating point number.

For a classification task with c classes: An agent receives an image as input and produces a vector of c output values (on SKILL-102, c is 49.34 on average), where the highest output value is the most likely image class for the input image (Table S1).

Shared params and data	Size (bytes)	Implemented: $\mathcal{N} = 17, 472, c = 49.34, k = 25$
Last layer weights	$2048 \times c \times 4$	404 KBytes
BB biases	$\mathcal{N} imes$ 4	70 KBytes
GMMC clusters	$k \times (2048 + 2048) \times 4$	409 KBytes
Optional: Head2toe	adds $\mathcal{N} imes c imes 4$	adds 3.45 MBytes
Optional: AR pattern	adds $299\times299\times3$	adds 268 KBytes
Alternative: 5 images/task for MAHA	$5\times299\times299\times3$	1.34 MBytes

Table S1: Total average sharing per task in our current implementation with GMMC+BB: $404+70+409 = 883 \ KBytes/task$; for Mahalanobis+BB: $404+70+1341=1.81 \ MBytes/task$.

H GMMC visual explanation

A visual explanation of how GMMC works in LLL agents is shown in Fig. S7.

Figure S7: GMMC task mapper. (left) Each teacher clusters its entire training set into a number of Gaussian clusters. Here, a variable number of clusters is shown for each task, but in our results we use 25 clusters for every task. Each teacher then shares the mean and diagonal covariance of its clusters with all students. (right) Students just aggregate all received clusters in a bank, keeping track of which task any given cluster comes from. At test time, a sample is evaluated against all clusters received so far, and the task associated with the cluster closest to the test sample is chosen.

I Pairs of similar classes according to CLIP

7

Rowing

Table S2, Table S3, Table S4, and Table S5 show examples of pairs of similar classes according to CLIP embedding. The first and the second column are the names of similar class pairs from two different tasks (i.e iFood2019 and Food-101). The third column is the cosine similarity score between the CLIP embeddings of the name of the class pairs.

Table	S2: Matched Class for	MIT_Indoor_	Scene and
House_	_Room_Images		
	learned_class(weight source)	$target_class$	score
0	Dinning	dining_room	0.9106
1	Kitchen	kitchen	0.9995
2	Bathroom	bathroom	1.0
3	Bedroom	bedroom	1.0
4	Livingroom	livingroom	1.0

Table S3: Matched Class for Office-Home_Product and Stand-ford_Online_Products

	learned_class(weight source)	$target_class$	score
0	stapler	Paper_Clip	0.757
1	toaster	Oven	0.838
2	coffee	Mug	0.882
3	cabinet	File_Cabinet	0.9126
4	lamp	Lamp_Shade	0.9453
5	sofa	Couch	0.9736
6	bicycle	Bike	0.978
7	mug	Mug	1
8	chair	Chair	1
9	fan	Fan	1
10	kettle	Kettle	1

Table S4: Matched Class for UIUC_Sports_Event_Dataset and 199_Sports labellong

laben	ong		
	learned_class(weight source)	$target_class$	score
0	bocce	bowling	0.7837
1	badminton	tennis	0.823
2	sailing	sailboat racing	0.9
3	snowboarding	snow boarding	0.9355
4	RockClimbing	rock climbing	0.989
5	polo	polo	0.9995
6	croque_madame	croque_madame	1

Table S5: Food-101 vs iFood2019

rowing

1

	learned_class(weight source)	target_class	score
0	cheese_plate	$grilled_cheese_sandwich$	0.8574
1	cup_cakes	cupcake	0.904

2	steak	steak_au_poivre	0.9185
3	scallops	scallop	0.929
4	breakfast_burrito	burrito	0.939
5	nachos	nacho	0.9517
6	dumplings	dumpling	0.9536
7	mussels	mussel	0.955
8	churros	churro	0.9585
9	spring_rolls	spring_roll	0.9585
10	chicken_wings	chicken_wing	0.9604
11	escargots	escargot	0.962
12	waffles	waffle	0.966
13	baby_back_ribs	baby_back_rib	0.966
14	oysters	oyster	0.9663
15	beignets	beignet	0.97
16	tacos	taco	0.9727
17	donuts	donut	0.9756
18	crab_cakes	crab_cake	0.9756
19	deviled eggs	deviled egg	0.976
20	macarons	macaron	0.9775
21	pancakes	pancake	0.982
22	pad_thai	pad_thai	0.999
23	grilled_salmon	grilled_salmon	0.999
24	fried_calamari	fried_calamari	0.999
25	omelette	omelette	0.9995
26	beef_carpaccio	beef_carpaccio	0.9995
27	hamburger	hamburger	0.9995
28	clam_chowder	clam_chowder	0.9995
29	chocolate_cake	chocolate_cake	0.9995
30	lobster_roll_sandwich	$lobster_roll_sandwich$	0.9995
31	macaroni_and_cheese	$macaroni_and_cheese$	0.9995
32	seaweed_salad	seaweed_salad	0.9995
33	shrimp_and_grits	shrimp_and_grits	0.9995
34	sushi	sushi	0.9995
35	creme_brulee	creme_brulee	0.9995
36	sashimi	sashimi	0.9995
37	cheesecake	cheesecake	0.9995
38	chicken_curry	chicken_curry	0.9995
39	fried_rice	fried_rice	0.9995
40	pork_chop	pork_chop	0.9995
41	bruschetta	bruschetta	0.9995
42	edamame	edamame	0.9995
43	cannoli	cannoli	0.9995
44	caprese_salad	caprese_salad	0.9995
45	red_velvet_cake	red_velvet_cake	0.9995
46	$spaghetti_bolognese$	$spaghetti_bolognese$	1
47	$spaghetti_carbonara$	$spaghetti_carbonara$	1
48	takoyaki	takoyaki	1
49	tiramisu	tiramisu	1
50	tuna_tartare	tuna_tartare	1

J Performance on Visual Domain Decathlon

We also perform our methods on a well-known benchmark Visual Domain Decathlon (Ke et al., 2020) in Fig. S8. The baselines and our method implementations are the same as the experiments in SKILL-102 dataset.

Figure S8: Average absolute accuracy on 10 Visual Domain Decathlon tasks learned so far, as a function of the number of tasks learned.

References

- Gamaleldin F Elsayed, Ian Goodfellow, and Jascha Sohl-Dickstein. Adversarial reprogramming of neural networks. arXiv preprint arXiv:1806.11146, 2018.
- Utku Evci, Vincent Dumoulin, Hugo Larochelle, and Michael C Mozer. Head2toe: Utilizing intermediate representations for better transfer learning. arXiv preprint arXiv:2201.03529, 2022.
- Zixuan Ke, Bing Liu, and Xingchang Huang. Continual learning of a mixed sequence of similar and dissimilar tasks. Advances in Neural Information Processing Systems, 33:18493–18504, 2020.
- Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsurprising effectiveness of pre-trained vision models for control. arXiv preprint arXiv:2203.03580, 2022.