
Published in Transactions on Machine Learning Research (05/2023)

Supplementary Material: Lightweight Learner for Shared
Knowledge Lifelong Learning

Yunhao Ge1 yunhaoge@usc.edu
Yuecheng Li1∗ liyueche@usc.edu
Di Wu1∗ dwu92983@usc.edu
Ao Xu1∗ aoxu@usc.edu
Adam M. Jones2 adammj@usc.edu
Amanda Sofie Rios3 amanda.rios@intel.com
Iordanis Fostiropoulos1 fostirop@usc.edu
Shixian Wen4 sx.wen@siat.ac.cn
Po-Hsuan Huang2 pohsuanh@usc.edu
Zachary William Murdock2 zmurdock@usc.edu
Gozde Sahin1 gsahin@usc.edu
Shuo Ni1 shuoni@usc.edu
Kiran Lekkala1 klekkala@usc.edu
Sumedh Anand Sontakke1 ssontakk@usc.edu
Laurent Itti1,2,5 itti@usc.edu

1 Thomas Lord Department of Computer Science, University of Southern California
2 Neuroscience Graduate Program, University of Southern California
3 Intel Labs
4 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
5 Dornsife Department of Psychology, University of Southern California
∗ Equal contribution as second author

Reviewed on OpenReview: https: // openreview. net/ forum? id= Jjl2c8kWUc

A Dataset subsampling details

Our SKILL-102 dataset comprises 102 distinct tasks that were obtained from previously published datasets.
SKILL-102 is freely available for download on the project website: https://github.com/gyhandy/
Shared-Knowledge-Lifelong-Learning.

Here, we subsampled the source datasets slightly, mainly to allow some of the baselines to converge in a
reasonable amount of time. For dataset sampling, the following rules were used:

• For iNaturalist Insecta, since it contains a lot of classes, 500 classes were randomly sampled.

• For all other tasks, all classes are kept.

• For all tasks, round(54000/c) training images and round(6000/c) validation images and
round(6000/c) test images are used for each class. If a class does not contain enough images,
then all images for that class are used.

• The exact datasets as we used them in our experiments will be made available online after publica-
tion, to allow other researchers to reproduce (or beat!) our results.

The sequence of datasets and number of images in each dataset are shown in Fig. S5.

1

https://openreview.net/forum?id=Jjl2c8kWUc
https://github.com/gyhandy/Shared-Knowledge-Lifelong-Learning
https://github.com/gyhandy/Shared-Knowledge-Lifelong-Learning


Published in Transactions on Machine Learning Research (05/2023)

B GMMC number of clusters

Fig. S1 shows the GMMC performance with different numbers of clusters.

Figure S1: On a small subset of tasks, we found that k = 25 GMMC clusters provided the best compromise
between generalization and overfitting.

C Mahalanobis training MACs

The slope of MACs/image is higher until the number of training samples reaches 4,000. After that, the
slope does not change. If we use 5 images per class to train, then the number of training samples would
reach 4,000 after task 12. So for the majority of the tasks, the average MACs per image for training the
Mahalanobis distance is around 250k.

Figure S2: MACs for Mahalanobis training (vertical axis) as a function of number of training images (hori-
zontal axis).

D CPU analysis

We compute everything in terms of MACs/image processed. There are a few caveats:

• Data sharing does not occur per training image, but rather per task (e.g., share 25 GMMC cluster
means+diagonal covariances per task). Hence we first compute communication bytes/task and then
convert that to "MACs equivalent" by assuming that sharing 1 byte takes the equivalent of 1,000
MACs. This value is a hyper-parameter than can be tuned depending on network type. Over wired
Ethernet, it corresponds to 1.5 million MACs per packet (with MTU of 1500 bytes).

• Mahalanobis training time increases with the number of tasks received to date, as shown in Fig. S2.

• ER training increases over time as more tasks are added:
– We first train task 1 using the whole task 1 training set (subsampled version described above).
– Then train task 2 using the whole task 2 training set + 10 images/class of task 1 (chosen

randomly). In what follows we use γ to represent this fraction of data used for rehearsing of old
tasks, and we denote by S a nominal dataset size per task (2,500 images on average). Hence,
for task 2, the episodic buffer method uses S × (1 + γ) images. With a normalized training time
of 1 to learn one task, learning task 2 for this baseline takes normalized time 1 + γ.

2



Published in Transactions on Machine Learning Research (05/2023)

– Then train task 3 using the whole task 3 training set + 10 images/class of task 1 + 10 im-
ages/class of task 2. Normalized training time 1 + 2γ.

– Then train task 4 using the whole task 4 training set + 10 images/class of task 1 + 10 im-
ages/class of task 2 + 10 images/class of task 3. Normalized training time 1 + 3γ.

– etc. So the total normalized training time for N tasks is (1) + (1 + γ) + (1 + 2γ) + (1 + 3γ) +
... + (1 + (N − 1)γ) = N + γ(1 + 2 + ... + N − 1) = N + γ(N − 1)(N − 2)/2. With N = 102,
the total training time for all tasks is N + 5050γ. In our experiments, our subsampled training
sets averaged 254 images/class and hence γ = 10/254 = 0.04 on average, leading to a total
normalized training time of 304 (broken down as a cost of 102 to learn the from 102 datasets,
plus 202 to rehearse old tasks as we learn new tasks).

– This is for γ = 0.04 but performance is low, so using a higher γ is warranted for the episodic
buffer approach. This is very costly, though. In the limit of retaining all images, which would
give best performance, the training time of this approach is 102 + 5050 = 5152 times the time
it takes to learn one task. So, while the single-agent will require anywhere between 304 × T and
5152 × T to learn 102 tasks sequentially, our approach will learn all 102 tasks in parallel during
just T .

Additional details used for our computations are in Fig. S3.

Figure S3: Additional details for how we compute MACs and speedup. Different assumptions (e.g., higher
or lower MACs/byte transmitted) can be used, which would update the results in the main paper Figs. 9
and 10.

E Summary of our new SKILL-102 for image classification

Fig. S5 shows a summary of 102 datasets we are using along with the accuracy of all our methods. Note that
TM stands for Task Mapper. The red text indicates datasets with large domain gap which were mentioned
in Sec. 6, the blue text indicates datasets with poor GMMC accuracy which are further examined below.
Fig. S6 shows the baselines performance on SKILL-102.

F Cases of low accuracy in GMMC

In this section, we analyze in details the failures of GMMC on three datasets: Office Home Art, Dragon Ball,
and Malacca Historical Buildings.

In certain cases, several datasets may share a common characteristic, such as all of them are anime pictures
(e.g. Dragon Ball, Pokemon, and One-Piece). GMMC may capture the tasks’ characteristics as animation
but fail to further distinguish different tasks. On the other side, Mahalanobis focus on the characteristics

3



Published in Transactions on Machine Learning Research (05/2023)

Figure S4: Here we analyze the top 3 tasks into which images may be misclassified by GMMC. a) Out of 18
test images from the (very small) Dragon Ball Dataset, 4 are correctly classified as belonging to Dragon Ball
Dataset, 11 are misclassified as belonging to the One Piece dataset, and 2 are misclassified as belonging to
the Pokemon dataset. Since all three datasets contain cartoon images, GMMC was confused to classify some
images into an incorrect dataset. b) Out of 252 test images from Office Home Art, 86 are correctly classified,
33 are classified as belonging to the Stanford Online Product dataset, and 20 are classified as Office Home
Product dataset. These three datasets have many objects in common such as bicycles, chairs, and tables.
Hence, it is easy for GMMC to get confused. c) Out of 18 test images from Malacca Historical Buildings, 7
were correctly classified, 5 are classified as Art Images, and 5 are classified as belonging to the Watermark
dataset. The Art Image and Watermark datasets contain a large variety of images which may confuse the
GMMC to make wrong predictions.

classwise, witch captures the difference among classes (e.g., Wukong vs. Abra characters in Fig. S4-a) and
hence is able to distinguish them.

Another case is that two tasks may share similar objects (e.g., Office Home Art, Office Home, and Stanford
Online Products; Fig. S4-b). Although represented in different tasks, these are the same types of objects
in the real life. We address these GMMC confusions with our proposed "corrective approach" that would
declare correct classification for equivalent labels belonging to different tasks.

Other cases may include that one task is too general; for example, Watermark non Watermark includes a
large variety of images with or without a watermark which may also confuse GMMC as many similar images
are present in other datasets (Fig. S4-c).

G Amount of data shared by LLL

The analysis below includes 2 options not exercised in the main text of this paper:

• Head2Toe: If the input domain encountered by an agent is very different than what the frozen
backbone was trained on, sharing only the last layer(s) + BPN biases may not always work well,
because the features in the backbone are not able to well represent the new domain. Our backbone is
pretrained on ImageNet, which is appropriate for many image classification and visually-guided RL
tasks in the natural world. However, the latent features may not be well suited for highly artificial
worlds. This was recently addressed by (Evci et al., 2022), who showed that this problem can be
alleviated using a last layer that connects to several intermediary layers, or even to every layer in the
network, as opposed to only the penultimate layer. Hence, instead of sharing the last layer, we may
share a so-called Head2toe layer when a large domain shift is encountered. Note that AR will also
be used in this case as it is another way to counter large domain shifts: the AR pattern essentially
recasts an input from a very different domain back into the ImageNet domain, then allowing the
frozen backbone to extract rich and meaningful features in that domain. Also see Parisi et al. (2022)
for ideas similar to Head2toe, with applications in RL.

• Adversarial reprogramming (AR) (Elsayed et al., 2018): Adversarial reprogramming is quite
similar in spirit to BB, with the main difference being that it operates in the input (image) space
as opposed to BB operating in the activation space. In adversarial reprogramming, one computes a
single noise pattern for each task. This pattern is then added to inputs for a new task and fed through
the original network. The original network processes the combined input + noise and generates an

4



Published in Transactions on Machine Learning Research (05/2023)

Figure S5: Basic stats of dataset and accuracy. TM=task mapper.
5



Published in Transactions on Machine Learning Research (05/2023)

Figure S6: Accuracy of baselines after all 102 tasks have been learned in the order shown.
6



Published in Transactions on Machine Learning Research (05/2023)

output, which is then remapped onto the desired output domain. Unfortunately, the CPU cost of
this approach is prohibitive with respect to 0.5N speedup.

We denote the number of BB biases by N in what follows (for xception, N = 17, 472). If Head2toe connects
to the same feature maps as BB, then the number of weights is N × c for c output classes. We assume that
each task is modeled with k GMMC clusters (k = 25 currently), and each is represented by a 2048D mean
and 2048D diagonal covariance. We denote by 4 the number of bytes per floating point number.

For a classification task with c classes: An agent receives an image as input and produces a vector of c output
values (on SKILL-102, c is 49.34 on average), where the highest output value is the most likely image class
for the input image (Table S1).

Shared params and data Size (bytes) Implemented: N = 17, 472, c = 49.34, k = 25
Last layer weights 2048 × c × 4 404 KBytes
BB biases N × 4 70 KBytes
GMMC clusters k × (2048 + 2048)× 4 409 KBytes
Optional: Head2toe adds N × c × 4 adds 3.45 MBytes
Optional: AR pattern adds 299 × 299 × 3 adds 268 KBytes
Alternative: 5 images/task for MAHA 5 × 299 × 299 × 3 1.34 MBytes

Table S1: Total average sharing per task in our current implementation with GMMC+BB: 404+70+409 =
883 KBytes/task; for Mahalanobis+BB: 404+70+1341=1.81 MBytes/task.

H GMMC visual explanation

A visual explanation of how GMMC works in LLL agents is shown in Fig. S7.

Figure S7: GMMC task mapper. (left) Each teacher clusters its entire training set into a number of Gaussian
clusters. Here, a variable number of clusters is shown for each task, but in our results we use 25 clusters
for every task. Each teacher then shares the mean and diagonal covariance of its clusters with all students.
(right) Students just aggregate all received clusters in a bank, keeping track of which task any given cluster
comes from. At test time, a sample is evaluated against all clusters received so far, and the task associated
with the cluster closest to the test sample is chosen.

7



Published in Transactions on Machine Learning Research (05/2023)

I Pairs of similar classes according to CLIP

Table S2, Table S3, Table S4, and Table S5 show examples of pairs of similar classes according to CLIP
embedding. The first and the second column are the names of similar class pairs from two different tasks (i.e
iFood2019 and Food-101). The third column is the cosine similarity score between the CLIP embeddings of
the name of the class pairs.

Table S2: Matched Class for MIT_Indoor_Scene and
House_Room_Images

learned_class(weight source) target_class score
0 Dinning dining_room 0.9106
1 Kitchen kitchen 0.9995
2 Bathroom bathroom 1.0
3 Bedroom bedroom 1.0
4 Livingroom livingroom 1.0

Table S3: Matched Class for Office-Home_Product and Stand-
ford_Online_Products

learned_class(weight source) target_class score
0 stapler Paper_Clip 0.757
1 toaster Oven 0.838
2 coffee Mug 0.882
3 cabinet File_Cabinet 0.9126
4 lamp Lamp_Shade 0.9453
5 sofa Couch 0.9736
6 bicycle Bike 0.978
7 mug Mug 1
8 chair Chair 1
9 fan Fan 1

10 kettle Kettle 1

Table S4: Matched Class for UIUC_Sports_Event_Dataset and
199_Sports
labellong

learned_class(weight source) target_class score
0 bocce bowling 0.7837
1 badminton tennis 0.823
2 sailing sailboat racing 0.9
3 snowboarding snow boarding 0.9355
4 RockClimbing rock climbing 0.989
5 polo polo 0.9995
6 croque_madame croque_madame 1
7 Rowing rowing 1

Table S5: Food-101 vs iFood2019

learned_class(weight source) target_class score
0 cheese_plate grilled_cheese_sandwich 0.8574
1 cup_cakes cupcake 0.904

8



Published in Transactions on Machine Learning Research (05/2023)

2 steak steak_au_poivre 0.9185
3 scallops scallop 0.929
4 breakfast_burrito burrito 0.939
5 nachos nacho 0.9517
6 dumplings dumpling 0.9536
7 mussels mussel 0.955
8 churros churro 0.9585
9 spring_rolls spring_roll 0.9585

10 chicken_wings chicken_wing 0.9604
11 escargots escargot 0.962
12 waffles waffle 0.966
13 baby_back_ribs baby_back_rib 0.966
14 oysters oyster 0.9663
15 beignets beignet 0.97
16 tacos taco 0.9727
17 donuts donut 0.9756
18 crab_cakes crab_cake 0.9756
19 deviled_eggs deviled_egg 0.976
20 macarons macaron 0.9775
21 pancakes pancake 0.982
22 pad_thai pad_thai 0.999
23 grilled_salmon grilled_salmon 0.999
24 fried_calamari fried_calamari 0.999
25 omelette omelette 0.9995
26 beef_carpaccio beef_carpaccio 0.9995
27 hamburger hamburger 0.9995
28 clam_chowder clam_chowder 0.9995
29 chocolate_cake chocolate_cake 0.9995
30 lobster_roll_sandwich lobster_roll_sandwich 0.9995
31 macaroni_and_cheese macaroni_and_cheese 0.9995
32 seaweed_salad seaweed_salad 0.9995
33 shrimp_and_grits shrimp_and_grits 0.9995
34 sushi sushi 0.9995
35 creme_brulee creme_brulee 0.9995
36 sashimi sashimi 0.9995
37 cheesecake cheesecake 0.9995
38 chicken_curry chicken_curry 0.9995
39 fried_rice fried_rice 0.9995
40 pork_chop pork_chop 0.9995
41 bruschetta bruschetta 0.9995
42 edamame edamame 0.9995
43 cannoli cannoli 0.9995
44 caprese_salad caprese_salad 0.9995
45 red_velvet_cake red_velvet_cake 0.9995
46 spaghetti_bolognese spaghetti_bolognese 1
47 spaghetti_carbonara spaghetti_carbonara 1
48 takoyaki takoyaki 1
49 tiramisu tiramisu 1
50 tuna_tartare tuna_tartare 1

9



Published in Transactions on Machine Learning Research (05/2023)

J Performance on Visual Domain Decathlon

We also perform our methods on a well-known benchmark Visual Domain Decathlon (Ke et al., 2020) in
Fig. S8. The baselines and our method implementations are the same as the experiments in SKILL-102
dataset.

Figure S8: Average absolute accuracy on 10 Visual Domain Decathlon tasks learned so far, as a function of
the number of tasks learned.

10



Published in Transactions on Machine Learning Research (05/2023)

References
Gamaleldin F Elsayed, Ian Goodfellow, and Jascha Sohl-Dickstein. Adversarial reprogramming of neural

networks. arXiv preprint arXiv:1806.11146, 2018.

Utku Evci, Vincent Dumoulin, Hugo Larochelle, and Michael C Mozer. Head2toe: Utilizing intermediate
representations for better transfer learning. arXiv preprint arXiv:2201.03529, 2022.

Zixuan Ke, Bing Liu, and Xingchang Huang. Continual learning of a mixed sequence of similar and dissimilar
tasks. Advances in Neural Information Processing Systems, 33:18493–18504, 2020.

Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsurprising effec-
tiveness of pre-trained vision models for control. arXiv preprint arXiv:2203.03580, 2022.

11


	Dataset subsampling details
	GMMC number of clusters
	Mahalanobis training MACs
	CPU analysis
	Summary of our new SKILL-102 for image classification
	Cases of low accuracy in GMMC
	Amount of data shared by LLL
	GMMC visual explanation
	Pairs of similar classes according to CLIP
	Performance on Visual Domain Decathlon

