
A Additional Results457

In addition to the aggregated results in the main paper, we also provide per-task results for all458

experiments and tasks in simulation. Our benchmark results are shown in Figure 7, and task transfer459

results are shown in Figure 10. Per-task results for all of our ablations are shown in Figure 8 and460

Figure 9.461

0

25

50

75

100

S
uc

ce
ss

 R
at

e 
(%

)

Push

0

25

50

75

100

N
or

m
al

iz
ed

 S
co

re

Hopper (medium)

0

25

50

75

100

N
or

m
al

iz
ed

 S
co

re

AntMaze (medium-play)

−50 −25 0 25 50
Environment steps (×103)

0

25

50

75

100

S
uc

ce
ss

 R
at

e 
(%

)

Pick

−500 −250 0 250 500
Environment steps (×103)

0

25

50

75

100

N
or

m
al

iz
ed

 S
co

re

Hopper (medium-replay)

−500 −250 0 250 500
Environment steps (×103)

0

25

50

75

100

N
or

m
al

iz
ed

 S
co

re

AntMaze (medium-diverse)

Ours TD-MPC TD-MPC (+offline) IQL

Figure 7. Comparison of our method against baselines. Offline pretraining is shaded gray. Mean
of 5 seeds; shaded area indicates 95% CIs.

0

25

50

75

100

S
uc

ce
ss

 R
at

e 
(%

)

Push

0

25

50

75

100

N
or

m
al

iz
ed

 S
co

re

Hopper (medium)

0

25

50

75

100

N
or

m
al

iz
ed

 S
co

re

AntMaze (medium-play)

−50 −25 0 25 50
Environment steps (×103)

0

25

50

75

100

S
uc

ce
ss

 R
at

e 
(%

)

Pick

−500 −250 0 250 500
Environment steps (×103)

0

25

50

75

100

N
or

m
al

iz
ed

 S
co

re

Hopper (medium-replay)

−500 −250 0 250 500
Environment steps (×103)

0

25

50

75

100

N
or

m
al

iz
ed

 S
co

re

AntMaze (medium-diverse)

Ours w/o in-sample learning
w/o value ensemble

w/o uncertainty penalty
w/o balanced sampling

Figure 8. Ablation results on all tasks. Offline pretraining is shaded gray. Mean of 5 seeds; shaded
area indicates 95% CIs.

12



0

25

50

75

100

S
uc

ce
ss

 R
at

e 
(%

)

Push

0

25

50

75

100

N
or

m
al

iz
ed

 S
co

re

Hopper (medium)

0

25

50

75

100

N
or

m
al

iz
ed

 S
co

re

AntMaze (medium-play)

−50 −25 0 25 50
Environment steps (×103)

0

25

50

75

100

S
uc

ce
ss

 R
at

e 
(%

)

Pick

−500 −250 0 250 500
Environment steps (×103)

0

25

50

75

100

N
or

m
al

iz
ed

 S
co

re

Hopper (medium-replay)

−500 −250 0 250 500
Environment steps (×103)

0

25

50

75

100

N
or

m
al

iz
ed

 S
co

re

AntMaze (medium-diverse)

λ=0 λ=1 λ=3 λ=10 λ=20

Figure 9. Ablation study on uncertainty coefficient (λ). Offline pretraining is shaded gray. Mean
of 5 seeds; shaded area indicates 95% CIs.

0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

Reach → Push Cube Reach → Push Cylinder Push Cube → Push Cylinder

0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

Reach → Push Sphere w/ Increased Lighting Push Cube → Push Sphere w/ Increased Lighting Reach → Push Cylinder w/ Altered Target Color

−40 −30 −20 −10 0 10 20 30 40 50
Environment steps (×103)

0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

Push Cube → Push Cylinder w/ Altered Target Color

−40 −30 −20 −10 0 10 20 30 40 50
Environment steps (×103)

Reach → Push Cube w/ Obstacle

−40 −30 −20 −10 0 10 20 30 40 50
Environment steps (×103)

Push Cube → Push Cube w/ Obstacle

Ours TD-MPC

Figure 10. Task transfer results. Success rate (%) of our method and TD-MPC trained from scratch
on all 9 simulated transfer tasks. We designed these tasks based on the xArm [27] task suite. Offline
pretraining is shaded gray. Mean of 5 seeds; shaded area indicates 95% CIs.

13



Figure 11. Sample trajectories. We include eight trajectories from the offline dataset or evaluation
results, which illustrate all real-world tasks considered in this work. Successful trajectories are
marked green while failed trajectories are marked red.

B Tasks and Datasets462

B.1 Real-World Tasks and Datasets463

Figure 12. Real-world workspace.
Moving range of the end-effector and
the initialization range of target/object
are shaded in the image. The positions
for evaluation are labeled by crosses.

We implement two visuo-motor control tasks, reach and464

pick on a UFactory xArm 7 robot arm with an Intel Re-465

alSense Depth Camera D435 as the only external sensor.466

The observation space contains a 224 × 224 RGB im-467

age and an 8-dimensional robot proprioceptive state in-468

cluding the position, rotation, and the opening of the end-469

effector and a boolean value indicating whether the grip-470

per is stuck. Both tasks are illustrated in Figure 3 (second471

from the left). For safety reasons, we limit the moving472

range of the gripper in a 30cm× 30cm× 30cm cube, of473

which projection on the table is illustrated in Figure 12.474

To promote consistency between experiments, we evalu-475

ate agents on a set of fixed positions, visualized as red476

crosses in the aforementioned figure.477

Reach The objective of this task is to accurately position the red hexagonal prism, held by the478

gripper, above the blue square target. The action space of this task is defined by the first two dimen-479

sions, which correspond to the horizontal plane. The agent will receive a reward of 1 when the object480

is successfully placed above the target, and a reward of 0 otherwise. The offline dataset for reach481

comprises 100 trajectories collected using a behavior-cloning policy, which exhibits an approximate482

success rate of 50%. Additionally, there are 20 trajectories collected through teleoperation, where483

the agent moves randomly, including attempts to cross the boundaries of the allowable end-effector484

movement. These 20 trajectories are considered to be diverse and are utilized for conducting an485

ablation study around the quality of the offline dataset.486

Pick The objective of this task is to grasp and lift a red hexagonal prism by the gripper. The action487

space of this task contains the position of the end-effector and the opening of the gripper. The agent488

14



will receive a reward of 1 when the object is successfully lifted above a height threshold, a reward489

of 0.5 when the object is grasped but not lifted, and a reward of 0 otherwise. The offline dataset for490

pick comprises 200 trajectories collected using a BC policy that has an approximate success rate of491

50%. Figure 11 shows sample trajectories from our offline dataset for pick.492

Real-world transfer tasks We designed two transfer tasks for both reach and pick, as shown in493

Figure 3 (the second from right). As the red hexagonal prism is an important indicator of the end-494

effector position in reach, we modify the task by (1) placing an additional red hexagonal prism on495

the table, alongside the existing one, and (2) replacing the object with a small red ketchup bottle,496

whose bottom is not aligned with the end-effector. In pick, the red hexagonal prism is regarded as a497

target object. Therefore we (1) add two distractors, each with a distinct shape and color compared498

to the target object, and (2) change the color and shape of the object (from a red hexagonal prism499

to a green octagonal prism). We’ve shown by experiments that different modifications will have500

different effects on subsequent performance in finetuning, which demonstrates both the effectiveness501

and limitation of the offline-to-online pipeline we discussed.502

B.2 Simulation Tasks and Datasets503

xArm Push and pick are two visuo-motor control tasks in the xArm robot simulation environ-504

ment [27] implemented in MuJoCo. The observations consist of an 84 × 84 RGB image and a505

4-dimensional robot proprioceptive state including the position of the end-effector and the opening506

of the gripper. The action space is the control signal for this 4-dimensional robot state. The tasks507

are visualized in Figure 3 (left). push requires the robot to push a green cube to the red target. The508

goal in pick is to pick up a cube and lift it above a height threshold. Handcrafted dense rewards are509

used for these two tasks. We collected the offline data for offline-to-online finetuning experiments510

by training TD-MPC agents from scratch on these tasks. We saved the first 40k environment steps511

(800 trajectories) in the replay buffer as an offline dataset for each task. Figure 13 gives an overview512

of the offline data distribution for the two tasks.513

−30 −25 −20 −15 −10 −5
Episode Return

0

5

10

15

20

C
ou

nt

Push

0 5 10 15 20 25 30
Episode Return

0

10

20

30

40

50

60

C
ou

nt

Pick

Figure 13. Offline dataset statistics for xArm tasks in simulation. We plot the distribution of
episode returns for trajectories in the two offline datasets. The red line indicates the mean perfor-
mance achieved by our method after online finetuning.

Transfer tasks We designed nine transfer tasks based on reach (the same task as real reach but514

simplified because of the knowledge of ground-truth positions) and push in simulation to evaluate515

the generalization capability of offline pretrained model. Compared to real-world tasks, the online516

budget is abundant in simulation, thus we increase the disparity between offline and online tasks such517

as finetuning on a totally different task. As the target point for both tasks is a red circle, we directly518

use reach as offline pretrain task and online finetuning on different instances of push including push519

cube, push sphere, push cylinder, and push cube with an obstacle. All these tasks are illustrated in520

Figure 14.521

15



(a) Reach.

(b) Push.

(c) Push sphere with increased lighting.

(d) Push cylinder.

(e) Push with obstacle.

Figure 14. Transfer tasks in our simulated xArm environments. We consider a total of 9 trans-
fer settings in simulation. We here visualize a trajectory for each of the tasks used in our xArm
experiments. Task labels correspond to those shown in Figure 10.

D4RL We consider four representative tasks from two domains (Hopper and AntMaze) in the522

D4RL [26] benchmark. Each domain contains two data compositions. Hopper is a Gym locomotion523

domain where the goal is to make hops that move in the forward (right) direction. Observations524

contain the positions and velocities of different body parts of the hopper. The action space is a 3-525

dimension space controlling the torques applied on the three joints of the hopper. Hopper (medium)526

uses 1M samples from a policy trained to approximately 1/3 the performance of the expert, while527

Hopper (medium-replay) uses the replay buffer of a policy trained up to the performance of the528

16



medium agent. Antmaze is a navigation domain with a complex 8-DoF quadruped robot. We use529

the medium maze layout, which is shown in Figure 3 (left). The play dataset contains 1M samples530

generated by commanding specific hand-picked goal locations from hand-picked initial positions,531

and the diverse dataset contains 1M samples generated by commanding random goal locations in532

the maze and navigating the ant to them. This domain is notoriously challenging because of the533

need to “stitch” suboptimal trajectories. These four tasks are officially named hopper-medium-v2,534

hopper-medium-replay-v2, antmaze-medium-play-v2 and antmaze-medium-diverse-v2535

in the D4RL benchmark.536

C Implementation Details537

Q-ensemble and uncertainty estimation We provide PyTorch-style pseudo-code for the imple-538

mentation of the Q-ensemble and uncertainty estimation discussed in Section 3.2. Here Qs is a list539

of Q-networks. We use the minimum value of two randomly selected Q-networks for Q-value es-540

timation, and the uncertainty is estimated by the standard deviation of all Q-values. We use five541

Q-networks in our implementation.542

def Q_estimate(Qs, z, a):
x = torch.cat([z, a], dim=-1) # concatenate (latent) state and action
idxs = random_choice(len(Qs), 2, replace=False) # randomly select two distinct Qs
q1, q2 = Qs[idxs[0]](x), Qs[idxs[1]](x)
return torch.min(q1, q2) # return the minimum of the two as Q value estimation

def Q_uncertainty(Qs, z, a):
x = torch.cat([z, a], dim=-1) # concatenate (latent) state and action
qs = torch.stack(list(q(x) for q in Qs), dim=0)
uncertainty = qs.std(dim=0) # compute the standard deviation as uncertainty
return uncertainty

Network architecture For the real robot tasks and simulated xArm tasks where observations con-543

tain both an RGB image and a robot proprioceptive state, we separately embed them into feature544

vectors of the same dimensions with a convolutional neural network and a 2-layer MLP respectively,545

and do element-wise addition to get a fused feature vector. For D4RL tasks where observations are546

state features, only the state encoder is used. We use five Q-networks to implement the Q-ensemble547

for uncertainty estimation. All Q-networks have the same architecture. An additional V network is548

used for state value estimation as discussed in Section 3.1.549

Hyperparameters We list the hyperparameters of our algorithm in Table 5. The hyperparameters550

related to our key contributions are highlighted .551

Other details We apply image shift augmentation [49] to image observations, and use Prioritized552

Experience Replay (PER; [50]) when sampling from replay buffers.553

D Baselines554

TD-MPC We use the same architecture and hyperparameters for our method and our two555

TD-MPC baselines as in the public TD-MPC implementation from https://github.com/556

nicklashansen/tdmpc, except that we use two encoders, one for each modality, in the real robot557

and xArm tasks that use both visual inputs and robot proprioceptive information. For the TD-MPC558

(+offline) baseline, we naı̈vely pretrain the model on offline data and then finetune it with online RL559

without any changes to hyperparameters.560

IQL We use the official implementation from https://github.com/ikostrikov/implicit_561

q_learning for the IQL baseline. We use the same hyperparameters that the authors used562

for D4RL tasks. For xArm tasks, we perform a grid search over the hyperparameters τ ∈563

17

https://github.com/nicklashansen/tdmpc
https://github.com/nicklashansen/tdmpc
https://github.com/nicklashansen/tdmpc
https://github.com/ikostrikov/implicit_q_learning
https://github.com/ikostrikov/implicit_q_learning
https://github.com/ikostrikov/implicit_q_learning


Table 5. Hyperparameters.
Hyperparameter Value

Expectile (τ ) 0.9 (AntMaze, xArm)
0.7 (Hopper)

AWR temperature (β) 10.0 (AntMaze)
3.0 (Hopper, xArm)

Uncertainty coefficient (λ) 1 (xArm)
3 (AntMaze)
20 (Hopper)

Q ensemble size 5
Batch size 256
Learning rate 3e-4
Optimizer Adam(β1 = 0.9, β2 = 0.999)
Discount 0.99 (D4RL)

0.9 (xArm)
Action repeat 1 (D4RL)

2 (xArm)
Value loss coefficient 0.1
Reward loss coefficient 0.5
Latent dynamics loss coefficient 20
Temporal coefficient 0.5
Target network update frequency 2
Polyak 0.99
MLP hidden size 512
Latent state dimension 50
Population size 512
Elite fraction 50
Policy fraction 0.1
Planning iterations 6 (xArm)

1 (D4RL)
Planning horizon 5
Planning temperature 0.5
Planning momentum coefficient 0.1

{0.5, 0.6, 0.7, 0.8, 0.9, 0.95} and β ∈ {0.5, 1.0, 3.0, 10.0}, and we find that expectile τ = 0.95564

and temperature β = 10.0 achieves the best results. We add the same image encoder as ours to the565

IQL implementation in visuo-motor control tasks.566

18


	Additional Results
	Tasks and Datasets
	Real-World Tasks and Datasets
	Simulation Tasks and Datasets

	Implementation Details
	Baselines

