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A LOAD BALANCING REGULARIZATION

To avoid some spaces to be overselected and balance the number of samples accepted by each selected
space. The following load balancing regularization technique (Shazeer et al., 2017) is employed.

The first additional loss is used to encourage all spaces to have equal importance. For a batch of X
inputs,

`1 “ CVp
ÿ

xPX

gpxqq2 (14)

where CVpvq “ variancepvq
meanpvq is the coefficient of variation.

The second additional loss ensures all active spaces to have a roughly equal number of training
examples.

`2 “ CVpLoadpXqq2 (15)

LoadpXqi “
ÿ

xPX

Φp
f1pxq ´ kthexcludingpfpxq, k, iq

lnp1` exppf2pxqq
qq (16)

where kthexcludingpv, k, iq is the kth highest component of v excluding component i. Φ is the CDF
of the standard normal distribution.

Two additional losses are added to the task specific loss and the final loss is defined as:

` “ `task ` µp`1 ` `2q (17)

where µ is a scaling factor which we set it to 0.001 by default without further tuning.

B SPHERICAL SPACE FOR HIERARCHICAL STRUCTURES

Suppose we have a simple tree with three vertices x, y, z and z is the parent of x and y, our goal is
to embed it into a sphere S while preserving the graph distance (the shortest path between a pair of
vertices).

Figure 8: Embed trees on
spheres.

The graph distance between x and y is denoted as dpx, yq, which is also
equal to dpx, zq ` dpz, yq. Thus we have:

dpx, yq

dpx, zq ` dpz, yq
“ 1 (18)

We would like the distance between them on the sphere S, denoted as
dSpx, yq, to be close to dpx, yq. Let z be on the pole of the sphere and
x, y be on the great circle. We have:

dSpx, yq

dSpx, zq ` dSpz, yq
Ñ 1, given that =yzxÑ π. (19)

As such, the spherical space also has the capability of modeling the
hierarchical structures.

C MORE DETAILS AND RESULTS

C.1 MORE PROPERTIES OF SWITCH SPACES

Our scoring function is not a standard distance metric as it does not satisfy the triangle inequality
since we cannot guarantee that two pairs of points have the same active component spaces.

In product space, product of Eb1 , ...,EbN is identical to the single space Eb1`...`bN . However, this is
not the case in switch space when K ă N because the active Euclidean spaces may vary.

C.2 ADDITIONAL EXPERIMENTAL RESULTS
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Params WN18RR FB15K-237
Learning Rate 0.01 0.005
Total Dimension 500 500
Batch Size 500 500
Max Epochs 200 200
# Negative Sample 50 50
N: # of total spaces 5 5
K: # of active spaces 2 4

Table 5: Hyper-parameters configuration for knowledge graph completion.
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Figure 9: More examples of the connected component on FB15K-237.

Table 4: More re-
sults.

WN18RR
MRR HR@3

A 0.526 0.546
B 0.521 0.544
C 0.525 0.547

Multiplying by the gating probability: We mentioned that the gating proba-
bility in equation (12) can be removed and we did not use it in our experiments.
We aslo conducted experiments without removing it on WN18RR. The MRR
and HR@3 are shown in Table 4 row A. As such, it is fair to say that multi-
plying the gating probability is optional.

Impact of input x of the gating network : We find that the performance of
using relation embeddings only (Table 4 row C) as the input of the gating
network is slightly better than that of using entity embedding only (Table 4 row B). Intuitively, the
relation is also a better indicator. For example, the relation “is-a-part-of" has a hierarchical property.
The optimal solution is obtained by combining both.

More examples: We present more case studies on FB15K-237 in Figures 9 and 10.
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Figure 10: More examples of the connected component on FB15K-237.

C.3 EXPERIMENTAL DETAILS ON KNOWLEDGE GRAPH COMPLETION

Datasets We use two standard datasets including WN18RR (Bordes et al., 2013; Dettmers et al.,
2018) and FB15K-237 (Bordes et al., 2013; Dettmers et al., 2018). WN18RR is taken from WordNet,
a lexical database of semantic relations between words. It has 40, 943 entities, 11 relations, and
86, 835{3, 034{3, 134 training/validation/test triples. FB15K-237 is a subset of the Freebase knowl-
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Model WN18RR FB15K-237
embedding
dim Model Size Embedding

Dim Model Size

TransE/DistMult/ConvE tuned from
{128, 256, 512} max 20.97M tuned from

{128, 256, 512} max 7.57M

BoxE/MurP/TuckER 500 20.48M 500 7.39M
RotE/RotH 500 20.49M 500 7.63M
QuatE 4000 16.38M 4000 58.64M
RotatE 1000 40.95M 2000 29.32M
ComplEx-N3 1000 40.95M 1000 14.78M
SwisE 500 20.49M 500 7.63M

Table 6: Model size comparison on the knowledge graph completion task.

Dataset C1 C2 #Interactions density

MovieLens 100K 943 1682 100,000 0.063
MovieLens 1M 6040 3706 1,000,209 0.045

Table 7: Statistics of MovieLens 100K and MovieLens 1M.

edge graph, which is a global resource consisting of common and general information. It has 14, 541
entities, 237 relations, and 272, 115{17, 535{20, 466 training/validation/test triples.

Implementation Details The total dimension is fixed to 500 for fair comparison. The model
size comparison is shown in Table 6. Learning rate is tuned among t0.01, 0.005, 0.001u. For all
experiments, we reports the average over 5 runs. We set the kernel size to 5 and stride to 3 for
convolution operation in the gating network. N is set to 5 and K is tuned among t1, 2, 3, 4u. The
number of negative samples (uniformly sampled) per factual triple is set to 50. Optimizer Adam is
used for model learning. Hyper-parameters are determined based on validation sets. We perform
early stopping if the validation MRR stops increasing after 10 epochs. The key hyper-parameters are
shown in Table 5.

Related work on knowledge graph completion A number of embedding techniques have been
explored for knowledge graphs. Representative Euclidean models are RESCAL (Nickel et al.,
2011), DistMult (Yang et al., 2015), TransE (Bordes et al., 2013), TuckER (Balazevic et al., 2019b),
ConvE (Dettmers et al., 2018), RotE (Chami et al., 2020b), R-GCN (Schlichtkrull et al., 2018), and
BoxE (Abboud et al., 2020). Complex/Hypercomplex number models such as ComplEx (Trouillon
et al., 2016; Lacroix et al., 2018), RotatE (Sun et al., 2019), QuatE (Zhang et al., 2019) have shown
better capability in modeling asymmetric relations. Recently, learning KG embeddings in hyperbolic
spaces has gain increasing popularity. Hyperbolic models such as MurP (Balazevic et al., 2019a) and
RotH (Chami et al., 2020b) can effectively capture the hierarchical relational patterns in KGs. As
can be concluded from the literature, it is important for the KGE models to have the capability in
capturing the relational and structural patterns in real-world KGs. However, current models usually
focus on specific patterns and lose sight of the big picture. Our model SwisE is capable of modeling
not only different relational patterns (symmetric, antisymmetric, and inversive, etc.) but also various
structural patterns (hierarchical, cyclical, etc) of KGs.

C.4 EXPERIMENTAL DETAILS ON RECOMMENDER SYSTEMS

We conduct our experiments on two datasets: MovieLens 100K and MovieLens 1M (Harper &
Konstan, 2015). We hold 70% actions in each user’s interactions as the training set, 10% actions as
the validation set for model tuning and the remaining 20% actions as the test set. All interactions
(e.g., ratings) are binarized following the implicit feedback setting Rendle et al. (2009). We estimate
the global average curvature with the algorithm described in (Gu et al., 2019) for the two datasets
and obtain 0.190 for MovieLens 100K and 0.695 for MovieLens 1M, which suggests that they lean
towards Euclidean/cyclical structures. Statistics of them are in Table 7.

For all models, the total dimension is fixed to 100 for fair comparison.As such, the model sizes are
the same. The curvatures for spherical and hyperbolic models are set to 1 and ´1, respectively. N is
set to 5 and K is tuned among t1, 2, 3, 4u. Regularization rate is chosen from t0.1, 0.01, 0.001u. m
is fixed to 0.5. Adam is also adopted as the optimizer.
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