
Appendices

We gather in the appendix the proofs of the theorems, propositions and lemmas stated in the main text.
In Section B, the reader will find a short proof of Lemma 2.1. In Section C, we prove Theorems 3.2
and 3.3 on the SGD dynamics. Sections D and E are reciprocally devoted to prove that the LPG
property holds in some spherical symmetric case and under some perturbative regime. In Section A
we include the experimental figures from the experiments run in the main text.
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A Experimental Figures and Discussion

Symmetric Case For the spherically symmetric setting, we experiment with the input distribution
that is uniform on the sphere. We are interested in verifying that, unlike the Gaussian case, strong
recovery depends on whether the initial correlation is sufficiently high to avoid local minima and
benefit from the LPG guarantee. This is not evident in the 2nd degree Gegenbauer case because it is
monotonic, but is clear from the 4th degree Gegenbauer link function.
In the infinite sample setting, Figure 3 exactly characterizes the loss landscape when learning the 4th
degree Gegenbauer under inputs uniform on Sd−1 for different values of d. Note that the largest zero
for d = 50 occurs at ≈ ±0.31, and the loss is monotonic for m values initialized outside that region.
This phenomenon persists for higher dimensions, and one may observe that d increases, the critical
points become smaller in magnitude, according to the scaling ≃

√
1/d.
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Figure 2: Correlation with the true signal throughout training, under different choices of link function
and input distribution.

The bottom right subplot in Figure 2 indicates training runs in this setting, where red lines are
initialized uniformly on the sphere, and blue lines are initialized uniformly conditioned on m =
0.4, which is slightly past the last zero of the polynomial. We observe that random initialization
infrequently exceeds the threshold necessary for strong recovery, but planting the initialization above
this threshold gives a high probability of recovery.

Non-Symmetric Case For the non-spherically symmetric setting, we compare the performance of
Gaussian inputs with inputs that are approximately Gaussian under a two-dimensional projection.
For simplicity, we loosen our assumptions slightly, and consider the input distribution as the d
dimensional product distribution of uniform random variables (rescaled to have unit variance), and
allow for a non-Lipschitz link function. Here, we are primarily interested in whether Assumption 4.12
is tight and s ≤ 2 is necessary for recovery, as well as whether Conjecture 4.18 holds in practice.
To evaluate, we compare strong recovery rates when training on a "tricky" function with s = 2
(chosen to be 1

2 (h2 − h3 − h4 + h5)) versus a function with s = 3 (simply the degree three hermite
polynomial h3). We make this choice for the s = 2 function in order to produce a function which is
not monotonic, for which learning is guaranteed as discussed in Yehudai and Shamir [2020].
In Figure 2 we observe that strong recovery reliably occurs for both the Gaussian and hypercube input
distributions when s = 2. There is more variance in the Gaussian runs, likely because the magnitude
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Figure 3: The 4th degree Gegenbauer polynomial with dimension 50, 75, 100. Each is equivalent (up
to rescaling) to the loss landscape of learning the 4th degree Gegenbauer in the appropriate dimension.
Points indicate largest zeros.

of the gradients will be larger due to the inclusion of high degree terms. But for s = 3, the Gaussian
distribution converges quickly while the hypercube distribution often cannot escape the equator.

B Proof of Lemma 2.1

Let us first recall the Lemma before writing a proof of it.

Lemma. For all a > 0, we have Pθ0(mθ0 ≥ a/
√
d) ≤ a−1e−a

2/4. Additionally, for any δ > 0 such
that max{a, δ} ≤

√
d/4, we have the lower bound: Pθ0(mθ0 ≥ a/

√
d) ≥ δ

4e
−(a+δ)2 .

Proof. By rotation invariance of the uniform distribution of the sphere, mθ0 is distributed according
to θ0[1], the first coordinate of the vector θ0 ∈ Sd−1. By a particular case of Stam’s formula [Stam,
1982, relation (3)], we know that for d ≥ 3, both are distributed according to the probability of
density, ∀t ∈ R,

τ(t) :=
Γ(d/2)√

πΓ((d− 1)/2)

(
1− t2

)(d−3)/2
1[−1,1].

First, note that we can upper and lower bound the constant by the following:√
d

3
≤ Γ(d/2)

Γ((d− 1)/2)
≤
√

d

2
,

for d ≥ 6 by [Laforgia and Natalini, 2013, equality 3.2], which was already proved in Gautschi
[1959].
Hence, in terms of the upper bound, we have:

Pθ0(mθ0 ≥ a/
√
d) ≤

√
d

2π

∫ 1

a/
√
d

(
1− t2

)(d−3)/2
dt

≤
√

d

2π

∫ 1

a/
√
d

e−
d−3
2 t2dt

≤ 1√
2π

d

a

∫ 1

a/
√
d

te−
d−3
2 t2dt

≤ 1

2a
e−a

2/4 ,

which concludes the first part of the result.

16



Second, let a ≤
√
d/4 and take any 0 < δ <

√
d/4. We have,

Pθ0(mθ0 ≥ a/
√
d) ≥

√
d

3π

∫ 1

a/
√
d

(
1− t2

)(d−3)/2
dt

≥
√

d

3π

∫ (a+δ)/
√
d

a/
√
d

(
1− t2

)(d−3)/2
dt

≥
√

d

3π

δ√
d

(
1− (a+ δ)2

d

)(d−3)/2

,

where the last inequality simply comes from the fact that t → (1 − t2)(d−3)/2 is non-increasing.
Going further, if we lower bound the term with the negative −3/2 power by 1, we have

Pθ0(mθ0 ≥ a/
√
d) ≥ δ

4
exp

(
d

2
log

(
1− (a+ δ)2

d

))
≥ δ

4
exp

(
− (a+ δ)2

2 (1− (a+ δ)2/d)

)
,

where the last inequality come from the classical bound log(1 + x) ≥ x/(1 + x), for x > −1.
Furthermore, as, (a+ δ)2 ≤ d/2, we have finally

Pθ0(mθ0 ≥ a/
√
d) ≥ δ

4
e−(a+δ)2 ,

which finalizes the proof of the Lemma. ■

C Proofs on the SGD dynamics: Section 3

We first recall the notations useful to fully describe the dynamics. In Section C.3, we prove Theo-
rem 3.2 about weak recovery. In Section C.4, we prove Theorem 3.3 about strong recovery. Finally,

C.1 Recalling the dynamics

For the sake of clarity, let us recall the notations and facts developed in the main text. The overall
loss classically corresponds to the average over all the data of a square penalisation l(θ, x) =
(ϕθ(x)− ϕθ∗(x))

2 so that
L(θ) = Eν [(ϕθ(x)− ϕθ∗(x))

2].

To recover the signal given by θ∗, we run online stochastic gradient descent on the sphere Sd−1.
This corresponds to have at each iteration t ∈ N∗ a fresh sample xt independent of the filtration
Ft = σ(x1, . . . , xt−1) and perform a spherical gradient step, with step-size δ > 0, with respect to
θ → l(θ, xt):

θt+1 =
θt − δ∇S

θ l(θt, xt)∣∣θt − δ∇S
θ l(θt, xt)

∣∣ , (25)

initialized at θ0 uniformly on the sphere: θ0 ∼ Unif(Sd−1). Recall that we use the notation ∇S
θ to

denote the spherical gradient, that is

∇S
θ l(θ, x) = ∇θl(θ, x)− (∇θl(θ, x) · θ)θ.

Let us introduce the following frequently used notations: for all t ∈ N∗, we denote the normalization
by rt := r(θt, xt) =

∣∣θt − δ∇S
θ l(θt, xt)

∣∣ and the martingale induced by the stochastic gradient
descent as Mt = M(θt, xt) = l(θt, xt)− Eν [l(θt, x)].

C.2 Tracking the correlation.

Recall that the relevant signature of the dynamics is the one-dimensional correlation: mt = θt · θ∗.
Let us re-write the iterative recursion followed by (mt)t≥0, with the notation recalled above, for
t ∈ N∗,

mt+1 =
1

rt

(
mt − δ∇Sl(θt, xt) · θ∗

)
=

1

rt

(
mt − δ∇SL(θt) · θ∗ − δ∇SMt · θ∗

)
. (26)

We want to lower bound the right hand side of (26). We begin by a lower bound on 1/rt.
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Lemma C.1 (Bound on rt). For all t ∈ N∗, we have 1/rt ≥ 1− δ2 |∇θl(θt, xt)|2.

Proof. For all t ∈ N∗, we have, by orthogonality of as θt and ∇S
θ l(θt, xt), that

r2t =
∣∣θt − δ∇S

θ l(θt, xt)
∣∣2 = 1 + δ2

∣∣∇S
θ l(θt, xt)

∣∣2 ≤ 1 + δ2 |∇θl(θt, xt)|2 .

Hence, from the inequality (1 + u)−1/2 ≥ 1− u for all u > 0, we conclude the proof. ■

Thanks the fact that L satisfies LPG(s, b/
√
d), ie −∇SL(θ) · θ∗ ≥ C(1−m)(m− b/

√
d)s−1, we

have that the dynamics satisfies the following inequality between iterates:

mt+1 ≥ mt + Cδ (1−mt)

(
mt −

b√
d

)s−1

− δ∇SMt · θ∗ − δ2|mt| |∇θl(θt, xt)|2 − δ3ξt,

(27)

where ξt = |∇θl(θt, xt)|2 |∇Sl(θt, xt) · θ∗|. All the terms of the inequality have a natural origin: the
second term is the ideal term coming from the gradient flow and the growth condition, the third term
corresponds to the martingale increments coming form the noise induced by SGD and the two final
terms are simply discretization errors coming from discrete nature of the procedure and the projection
step.
However, to have a tight dependency with respect to the dimension, we need to be extra careful. This
is why, following Arous et al. [2021], we decompose this term introducing a threshold M > 0, to be
fixed later, such that:

|mt| |∇θl(θt, xt)|2 = |mt| |∇θl(θt, xt)|2 1{|∇θl(θt,xt)|2≤M} + |mt| |∇θl(θt, xt)|2 1{|∇θl(θt,xt)|2>M}

With the same notations and summing all these terms until time T ∈ N∗, we can write

mT ≥ m0 + Cδ

T−1∑
t=0

(1−mt)(mt − b/
√
d)s−1 − δ

T−1∑
t=0

∇SMt · θ∗ − δ2
T−1∑
t=0

|mt| |∇θlt|2 1{|∇θlt|2≤M}

− δ2
T−1∑
t=0

|mt| |∇θlt|2 1{|∇θlt|2>M} − δ3
T−1∑
t=0

ξt,

where we use, for the sake of compactness, the shortcut notation lt = l(xt, θt). The strategy of the
proof is the following: the first term is the drift term that makes the correlation grow, the second term
is simply a martingale term that we deal with via standard martingale inequality, and the forth and
fifth term are discretization error that we will bound loosely. The difficulty comes from the third term:
the proof is based on the fact that we use a “part” of the drift term (say half) to control it. This is why
we decide to rewrite finally our inequality as,

mT ≥ m0 + δ
C

2

T−1∑
t=0

(1−mt)(mt − b/
√
d)s−1 − δ

T−1∑
t=0

∇SMt · θ∗ − δ

T−1∑
t=0

Dt (28)

− δ2
T−1∑
t=0

|mt| |∇θlt|2 1{|∇θlt|2>M} − δ3
T−1∑
t=0

ξt,

where we have defined Dt := C
2 (1 − mt)(mt − b/

√
d)s−1 − δ|mt| |∇θlt|2 1{|∇θlt|2≤M}. The

following section show how to control these five terms in a quantitative way.

C.3 Weak recovery

Good initialization. During all this section, we condition on the event {m0 ≥ 5b/
√
d}.

Before stating these lemmas, let us introduce some new notations. As already introduce, we recall
that we denote Sη := {θ ∈ Sd−1, mθ ≥ η}, the spherical cap of level η ∈ (0, 1). Moreover for
α ∈ (−1, 1), similarly to what is done in Ben Arous et al. [2021], we define the following stopping
times τ+α := inf{t ≥ 0, mθt ≥ α} and τ−α := inf{t ≥ 0, mθt ≤ α} reciprocally as the first time
when (θt)t≥0 enters in Sα or leaves Sα.
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C.3.1 Proof of Theorem 3.2

Thanks to Lemmas C.2, C.3, C.4, C.5 and C.6, that serve bounding all the terms in the mT inequality,
there exists a constant K that depend solely on the model such that we have the following lower
bound: for all λ > 0, conditionally to the event on the events {T ≤ τ+1/2 ∧ τ−

2b/
√
d
} ,

mT ≥ m0 +
C

2s+1
δ

T−1∑
t=0

ms−1
t − 4λ,

with probability larger that 1−
(
KTδ2

λ2
+ exp

(
− λ2

2K2δ2T + λδ(C + δM)

)
+

KTd2δ2

λM
+

KTdδ3

λ

)
.

Now we choose λ = b/
√
d and M = d3/2 so that

mT ≥ b√
d
+

C

2s+1
δ

T−1∑
t=0

ms−1
t ,

with probability at least 1− pδ,M (T ), where we defined naturally

pδ,M (T ) :=

(
KTdδ2

b2
+ exp

(
− b2

2K2dδ2T + b
√
dδ(C + δM)

)
+

KTd5/2δ2

bM
+

KTd3/2δ3

b

)
.

Let us upper bound the probability pδ,M (T ). Let us set ε > 0 a small constant. First, in the
exponential term, the term b

√
dδ(C + δd3/2) is negligible in virtue of the fact that in any of the cases

of Theorem 3.2, we have δ ≤ ε/d. Moreover, for the sake of clarity, we gather all constant K,C, b as
one constant generic K, as these depend only on the data distribution and the link function. Hence,
for d large enough,

pδ,M (T ) ≤ K

(
dTδ2 + exp

(
− 1

dTδ2

)
+ dTδ2 + d3/2Tδ3

)
,

and as d3/2Tδ3 ≲ dTδ2 for the range of δ we choose, we have pδ,M (T ) ≤
K
(
dTδ2 + exp

(
− 1
dTδ2

))
, and considering that we will take in any case dTδ2 ≤ 1, as we have the

inequality exp
(
− 1
dTδ2

)
≤ dTδ2, so that finally

pδ,M (T ) ≤ KdTδ2

We divide the proof into the three cases s = 1, s = 2, s ≥ 3.
Case s = 1, δ = ε/d. In this case, we have that with probability 1− pδ,M (T ),

mT ≥ b√
d
+

Cδ

2s
T.

The right and side is larger than 1/2 as soon as δT ≥ 2s/C. From this we have that with probability
at least 1− pδ,M (T ), the hitting time is upper bounded by

τ+1/2 ≤ 2s

Cδ
.

Now, taking δ = εd−1, we can check that for ε small enough, dTδ2 ≤ 2sε/C = εO(1) so that we
have that with probability at least 1− Kε, we have

τ+1/2 ≤ K

ε
d.

Case s = 2, δ = ε/(d log d). Now by a discrete version of Grönwall inequality, recalled in
Lemma C.10, we have with probability at least 1− pδ,M (T ),

mT − b√
d
≥ b√

d

(
1 + δ

C

2

)T
≥ b√

d
eCδT ,
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for d large enough. And as the right hand side is larger than 1/2 + b/
√
d whenever,

δT ≥ 1

C
log(

√
d/4b),

for d large enough compared to b. Then taking such a T , with probability at least 1− pδ,M (T ) , the
hitting time is upper bounded by

τ+1/2 ≤ 2

Cδ
log (d) .

Now, taking δ = εd−1(log d)−1, we can check that for ε small enough, dTδ2 ≤ ε
C = εO(1) so that

we have that with probability at least 1− Kε, we have

τ+1/2 ≤ K

ε
d log(d)2.

Case s ≥ 3, δ = εd−s/2. Now by the discrete version of Bihari-LaSalle inequality, recalled in
Lemma C.10, we have with probability at least 1− pδ,M (T ),

mT − b√
d
≥ b√

d

(
1− δ

C(s− 2)

2

(
b√
d

)s−2

T

)− 1
s−2

.

And as the right hand side is larger than 1/2 + b/
√
d whenever,

δT ≥ d(s−2)/2

C(s− 2)bs−2
,

for d large enough compare to b. Then taking such a T , with probability at least 1− pδ,M (T ), the
hitting time is upper bounded by

τ+1/2 ≤ 1

Cbs−2

d
s−2
2

δ
.

Now, taking δ = εd−s/2, we can check that for ε small enough, dTδ2 ≤ ε
C(s−2)bs−2 = εO(1) so

that we have that with probability at least 1− Kε, we have

τ+1/2 ≤ K

ε
ds−1.

C.3.2 Technical intermediate result to lower bound each term of Eq. (28)

Lemma C.2 (ODE term). Conditioned to the event {T ≤ τ+1/2 ∧ τ−
2b/

√
d
} , we have the inequality

T−1∑
t=0

(1−mt)(mt − b/
√
d)s−1 ≥ 1

2s

T−1∑
t=0

ms−1
t .

Proof. This simply results from the fact that for all t ≤ T − 1, we have {t ≤ τ+1/2 ∧ τ−
2b/

√
d
} ⊂

{T ≤ τ+1/2 ∧ τ−
2b/

√
d
} , so that we can use the inequalities 1 −m ≥ 1/2 and m − b/

√
d ≥ m/2.

Summing these terms until T − 1 gives the proof of the lemma. ■

Lemma C.3 (First martingale term). For all λ > 0, we have that

P

(
sup
t≤T

δ

∣∣∣∣∣
t−1∑
k=0

∇SMk · θ∗
∣∣∣∣∣ ≥ λ

)
≤ KTδ2

λ2
, (29)

where K > 0, that depends solely on the model through f, ν.

Proof. This is a consequence of Doob’s maximal inequality for (sub)martingale. Indeed, for t ≤ T ,
let Ht−1 =

∑t−1
k=0 ∇SMk ·θ∗. We have that Ht is a Ft-adapted martingale and we have the following
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upper bounded on its variance:

E[H2
t−1] = E

(t−1∑
k=0

∇SMk · θ∗
)2


= E

[
t−1∑
k=0

(
∇SMk · θ∗

)2]
≤ t sup

θ
Ex
[(
∇SMk · θ∗

)2]
≤ Kt,

where the last inequality comes from the Lemma C.8. Now, thanks to Doob’s maximal inequality, we
have for all λ > 0,

P
(
sup
t≤T

δ|Ht−1| ≥ λ

)
≤

E[H2
T−1]δ

2

λ2
≤ KTδ2

λ2
,

and this concludes the proof of the lemma. ■

Lemma C.4 (Submartingale term). For all λ > 0, if for all t ≤ T , mt ∈ [2b/
√
d, 1/2], and δ is such

that δ ≤ ε/d, with a small enough constant ε > 0, we have that

P

(
δ

T−1∑
t=0

Dt ≤ −λ

)
≤ exp

(
− λ2

2K2δ2T + λδ(C + δM)

)
(30)

where K > 0, that depends solely on the model through f, ν.

Proof. First, recall that we have defined Dt = C
2 (1 − mt)(mt − b/

√
d)s−1 −

δ|mt| |∇θlt|2 1{|∇θlt|2≤M}. Let us notice that if mt ∈ [2b/
√
d, 1/2], then 1 − mt ≥ 1/2 and

(mt − b/
√
d)s−1 ≥ ms−1

t /2s−1. Hence, if mt lies in such an interval,

Dt ≥
C

2s+1
ms−1
t − δ|mt| |∇θlt|2 1{|∇θlt|2≤M}

≥ C

2s+1
ms−1
t

(
1− 2s+1δ

|∇θlt|2 1{|∇θlt|2≤M}

Cms−2
t

)
.

Now, for δ such that E
[
1− 2s+1δ

|∇θlt|21{|∇θlt|2≤M}

Cms−2
t

| Ft−1

]
≥ 0,

(∑t
k=1 Dk

)
t≥0

is a submartin-

gale, which is true as soon as

δ ≤ Cms−2
t

2s+1 supθ E
[
|∇θlt|2 1{|∇θlt|2≤M} | Ft−1

] ,
which is itself true if

δ ≤ C

4s supθ E
[
|∇θlt|2

] ,
which is implied by the condition required in the lemma given the upper bound on E[|∇θlt|2] provided
in Lemma C.8. In order to apply Freedman tail inequality for this submartingale, let us provide upper
bound on the increments as well as their variance. Indeed, we have, for all t ≥ 0,

|Dt| ≤
C|1−mt||mt − b

√
d|s−1

2
+ δ|mt| |∇θlt|2 1{|∇θlt|2≤M}

≤ C + δM

2
,
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and in virtue of the inequality (a+ b)2 ≤ 2(a2 + b2), we have

E
[
D2
t | Ft−1

]
≤ 2

(
C2|1−mt|2|mt − b

√
d|2(s−1)

4
+ δ2|mt|2E

[
|∇θlt|4 1{|∇θlt|2≤M}

])

≤
C2 + δ2E

[
|∇l|4

]
2

≤ C2 +Kδ2d2

2

≤ K2.

Hence, by the Freedman tail inequality recalled in Theorem C.9, for all λ > 0,

P

(
δ

T−1∑
t=0

Dt ≤ −λ

)
≤ exp

(
− λ2

2K2δ2T + λδ(C + δM)

)
,

which concludes the proof of the Lemma. ■

Lemma C.5 (First discretization term). We have that, almost surely

P

(
sup
t≤T

δ2
T−1∑
t=0

|mt| |∇θlt|2 1{|∇θlt|2>M} ≥ λ

)
≤ KTδ2d2

λM
, (31)

where K > 0 depends solely on the model through f, ν.

Proof. This term is handled via a combination of Markov and Cauchy-Schwartz inequalities. First,
notice that,

sup
t≤T

δ2
T−1∑
t=0

|mt| |∇θlt|2 1{|∇θlt|2>M} ≤ Tδ2 sup
t≤T

{
|mt| |∇θlt|2 1{|∇θlt|2>M}

}
.

Furthermore, for all t ≤ T , all λ > 0, via Markov inequality, then Cauchy-Schwartz inequality,

P
(
|mt| |∇θlt|2 1{|∇θlt|2>M} ≥ λ

)
≤

E
[
|mt| |∇θlt|2 1{|∇θlt|2>M}

]
λ

≤

√
E
[
|∇θlt|4

]√
P
(
|∇θlt|2 > M

)
λ

≤

√
E
[
|∇θlt|4

]√
E
[
|∇θlt|4

]
/M2

λ

≤
E
[
|∇θlt|4

]
λM

≤ Kd2

λM
,

where the last inequality is due to Lemma C.8. Multiplying this bound by Tδ2 ends the proof the
lemma. ■

Lemma C.6 (Second discretization term). For all λ > 0, we have that

P

(
sup
t≤T

δ3
t−1∑
k=0

ξk ≥ λ

)
≤ KTdδ3

λ
, (32)

where K > 0 depends solely on the model through f, ν.
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Proof. Recall that ξk = |∇θl(θk, xk)|2 |∇Sl(θk, xk) · θ∗|. The bound follows from an application of
Markov’s inequality. Indeed, since all the terms of the sum are positive, the supremum is attained in
t = T − 1, and we shall only consider this case. For λ > 0,

P

(
δ3

T−1∑
t=0

ξt ≥ λ

)
≤ δ3

λ
E

[
T−1∑
t=0

ξt

]

≤ Tδ3

λ
sup
θ

{
Ex[|∇θl(θ, x)|2 |∇Sl(θ, x) · θ∗|]

}
≤ Tδ3

λ
sup
θ

{√
Ex
[
[|∇θl(θ, x)|4

]√
Ex [|∇Sl(θ, x) · θ∗|2]

}

≤ Tδ3

λ

√
sup
θ

Ex
[
[|∇θl(θ, x)|4

]√
sup
θ

Ex [|∇Sl(θ, x) · θ∗|2]

≤ Tδ3

λ

√
sup
θ

Ex
[
[|∇θl(θ, x)|4

]√
sup
θ

Ex [|∇Sl(θ, x) · θ∗|2]

≤ Tδ3

λ

√
Kd2

√
K

≤ KTdδ3

λ
,

where the penultimate inequality comes from Lemma C.8. ■

C.4 Strong recovery

The reasoning is almost identical to the one of the previous section, except from the fact that instead
of tracking the growing movement on (mt)t≥0, we will track the decaying movement of (1−mt)t≥0.

C.4.1 Upper bound on the residual

As said in the main text, we place ourselves after the weak recovery time. Thanks to the Markovian
property of the SGD dynamics, we have the equality between all time s > 0 marginal laws of(

θτ+
1/2

+s

∣∣∣∣ τ+1/2, θτ+
1/2

)
Law
=

(
θs

∣∣∣∣ θs = θτ+
1/2

)
,

and hence the strong recovery question is equivalent to study the dynamics with initialization such
that mθ = 1/2. As demonstrated before we have that P(τ+1/2 < ∞) ≥ 1− Kε so that up to ε terms,
this conditioning does not hurt the probability of the later events. In fact this conditioning seems even
artificial as it seems provable that τ+1/2 is almost surely finite. Yet, we leave this more precise study
for another time.

C.4.2 A (slightly) different decomposition

Let us define for all t ∈ N, the residual ut = 1−mt+τ+
1/2

> 0, and thanks to the lower bound given
by Eq. (27), we have

ut+1 ≤ ut − Cδut(mt − b/
√
d)s−1 + δ∇SMt · θ∗ + δ2|mt||∇l(xt, θt)|2 + δ3ξt,

From there, the proof is similar to the weak recovery case, except that the extra-care we used for the
term δ2|mt||∇l(xt, θt)|2 is not necessary. We use simply the decomposition of this term in a second
martingale term

Nt = |mt||∇l(xt, θt)|2 − E
[
|mt||∇l(xt, θt)|2|Ft−1

]
and the drift that we directly upper bound as E

[
|mt||∇l(xt, θt)|2|Ft−1

]
≤ Kd. Now similarly to

Lemma C.3, we have the upper bound:
Lemma C.7 (New martingale term). For all λ > 0, we have that

P

(
sup
t≤T

δ2

∣∣∣∣∣
t−1∑
k=0

Nk

∣∣∣∣∣ ≥ λ

)
≤ Kd2Tδ4

λ2
, (33)

where K > 0, that depends solely on the model through f, ν.
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Proof. This is a consequence of Doob’s maximal inequality for the martingale. Indeed, for t ≤ T , let
Ht−1 =

∑t−1
k=0 Nk. We have that Nt is a Ft-adapted martingale and we have the following upper

bounded on its variance:

E[N2
t−1] = E

(t−1∑
k=0

∇SMk · θ∗
)2


= E

[
t−1∑
k=0

N2
k

]
≤ t sup

θ
Ex (Nk)

2

≤ Kd2t,

where the last inequality comes from the Lemma C.8. Now, thanks to Doob’s maximal inequality, we
have for all λ > 0,

P
(
sup
t≤T

δ2|Ht−1| ≥ λ

)
≤

E[H2
T−1]δ

4

λ2
≤ Kd2Tδ4

λ2
,

and this concludes the proof of the lemma. ■

Now, everything is in order to prove the Theorem 3.3.

C.4.3 Proof of Theorem 3.3

Let us fix a small number ε > 0. As previously, thanks to Lemmas C.3, C.6, C.7, there exists
K > 0 that depends solely on the model such that we have the following upper bound: for all λ, and
t ≤ τ−1/3 ∧ τ+1−ε summing between times 0 and t,

ut ≤ u0 −
Cδ

4s−1

t−1∑
k=0

uk +Kδ2d+ 3λ,

with probability larger that 1−
(
Ktδ2

λ2
+

Kd2tδ4

λ2
+

Ktdδ3

λ

)
and d large enough. Let us choose

λ = 1/16 and δ small enough so that Kδ2d ≤ λ. Hence, realizing that u0 ≤ 1/2, we have

ut ≤
3

4
− Cδ

4s−1

t−1∑
k=0

uk ,

with probability at least 1− Ktδ2(1 + d2δ2 + dδ) ≳ 1− Ktδ2, as we choose in any case δ = εO(1).
Note that we used the same convention as in the weak recovery case that K denotes any constant that
simply depend on the model. We have by Grönwall inequality (Lemma C.10)

ut ≤
3

4

(
1− Cδ

4s−1

)t
≤ 3

4
e−

Cδ

4s−1 t.

Hence, as the right end side is smaller than ε for the time

tδ ≥ 4s−1

C
log(1/ε),

we choose such a t, so that with probability at least 1 − Kδ log(1/ε), the delayed hitting time
τ+1−ε := inf{t ≥ 0, ut ≤ ε} satisfies

τ+1−ε ≤
4s−1

Cδ
log(1/ε),

and taking δ = ε/d gives that with a probability at least 1− Kε log(1/ε)/d, we have

τ+1−ε ≤
4s−1

Cε
d log(1/ε).

Considering that d is large and ε is simply a constant we get that 1− Kε log(1/ε)/d ≥ 1− Kε and
and this concludes the proof of Theorem 3.3.
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C.5 Some technical bounds

We end this section by providing (i) some necessary technical technical bound on the quantities
appearing in the SGD controls (ii) some discrete versions of Grönwall-type lemmas.

C.5.1 Technical bounds on models expectations

Lemma C.8 (Technical bounds). We have that there exists a constant K > 0 solely depending on
the function ϕ and the distribution ν such that:

sup
θ∈Sd−1

Ex
[
⟨∇S

θM(x, θ), θ∗⟩2
]
≤ K , and sup

θ
Ex
[
|∇Sl(θ, x) · θ∗|2

]
] ≤ K (34)

sup
θ∈Sd−1

Ex[|∇θl(θ, x)|2] ≤ Kd, (35)

sup
θ∈Sd−1

Ex[|∇θl(θ, x)|4] ≤ Kd2. (36)

Proof. In all the following proof we consider any θ ∈ Sd−1. Notice that we have the following
calculation that is common to all the bounds we cover

∇l(θ, x) = xϕ′(x · θ)ϕ(x · θ∗)

We treat the three bounds separately.
First terms. We have that for all x ∈ Rd,

M(x, θ) = l(x, θ)− Eν [l(x, θ)],

hence

∇S
θM(x, θ) = ∇S

θ l(x, θ)− Eν [∇S
θ l(x, θ)]

= ∇θl(x, θ)− Eν [∇θl(x, θ)]− (θ · ∇θl(x, θ))θ + Eν [(θ · ∇θl(x, θ))θ],

and finally,

∇S
θM(x, θ) · θ∗ = ∇θl(x, θ) · θ∗ − Eν [∇θl(x, θ) · θ∗]− (θ · ∇θl(x, θ))m+ Eν [(θ · ∇θl(x, θ))m].

hence thanks to applying the inequality (a+ b)2 ≤ 2a2 + 2b2, this amounts to bound first

Ex (∇θl(x, θ) · θ∗)2 = Ex
[
(x · θ∗)2 ϕ′2(x · θ)ϕ2(x · θ∗)

]
≤ K,

and second

Ex ((∇θl(x, θ) · θ)m)
2 ≤ Ex

[
(x · θ)2 ϕ′2(x · θ)ϕ2(x · θ∗)

]
≤ K.

Second term. We have

Ex |∇θl(x, θ)|2 = Ex
[
|x|2ϕ′2(x · θ)ϕ2(x · θ∗)

]
≤ Kd .

Third term. We have similarly

Ex |∇θl(x, θ)|4 = Ex
[
|x|4ϕ′2(x · θ)ϕ2(x · θ∗)

]
≤ Kd2 .

■

C.5.2 Standard tail probabilities for submartingales

We recall here a theorem on submartingales from Freedman. This is an adaptation from Theorem 4.1
stated in Freedman [1975].
Theorem C.9 (Submartinagle tail bound). Suppose that (Xt)t∈N is random sequence adapted to a
filtration (Ft)t∈N. For T ≥ 1, suppose there exist a, b > 0 such that E[Xt | Ft−1] ≥ 0, the almost
sure upper-bound supt≤T |Xt| ≤ a as well as supt≤T E[X2

t | Ft−1] ≤ b, then for all λ > 0,

P

(
T∑
k=1

Xk ≤ −λ

)
≤ exp

(
− λ2

2(Tb+ λa)

)
(37)
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C.5.3 Discrete Grönwall and Bihari-Lasalle bounds

We now turn to stating a classical comparison lemma for recursive inequalities.
Lemma C.10 (Grönwall and Bihari-Lasalle). We have the bounds for the recursive inequalities:

Case s = 2. Suppose (mt)t∈N satisfies for s ≥ 3, and positives numbers a, b > 0, and b < a/2 ∧ 1,

mt ≥ a+ b

t−1∑
k=0

mk, then, mt ≥ a (1 + b)
t (38)

mt ≤ a− b

t−1∑
k=0

mk, then, mt ≤ a (1− b)
t
. (39)

Case s ≥ 3. Suppose (mt)t∈N satisfies for s ≥ 3, and positives numbers a, b > 0:

mt ≥ a+ b

t−1∑
k=0

ms−1
k , then, mt ≥ a

(
1− (s− 2)bas−2t

)− 1
s−2 . (40)

Proof. The case s = 2 is known to be the discrete version of the Grönwall lemma and is treated in all
standard textbooks, the case s ≥ 3 referred to as the Bihari-Lasalle inequality is for example proven
in Appendix C of Arous et al. [2021]. ■

D The LPG property in the symmetric case: proofs of Section 4.1

D.1 Useful Facts about Gegenbauer Polynomials

We recall known facts on Gegenbauer Polynomials.

Definitions. Recall that Pj,d denotes the Gegenbauer polynomial of degree j and dimension d,
normalized so that Pj,d(1) = 1 for all j, d. We denote also P̄j,λ the Gegenbauer polynomials
normalized so that ∥P̄j,λ∥2L2(R,u2λ+2)

= π21−2λ Γ(j+2λ)
(j+λ)Γ2(λ)Γ(j+1) . Throughout the proof, we will use

either d, and from time to time the mute symbol λ to denote the dimension variable of Gegenbauer
polynomials. They satisfy the following recurrence:

(j + 1)P̄j+1,λ(t) = 2(j + λ)tP̄j,λ(t)− (j + 2λ− 1)P̄j−1,λ(t) , (41)

with first terms: P̄0,λ(t) = 1 and P̄1,λ(t) = 2λt.

Rodrigues Formula for Gegenbauer Polynomials. The Gegenbauer polynomials can be repre-
sented as repeated derivatives of a simple polynome.
Proposition D.1 ([Frye and Efthimiou, 2012, Proposition 4.19]). We have the formula

Pj,d(t) =
(−1)j

2j(j + (d− 3)/2)j
(1− t2)(3−d)/2

(
d

dt

)j
(1− t2)j+(d−3)/2 , (42)

where (x)j =
∏j−1
k=0(x− k) is the falling factorial.

Hecke-Funk Formula. Recall that we use the notation τd to denote the uniform distribution on
the sphere and ud the distribution of, e.g., its first coordinate: ud ∝ (1− t2)(d−3)/21[−1,1].

Theorem D.2 ([Frye and Efthimiou, 2012, Theorem 4.24]). For θ, θ′ ∈ Sd−1, f ∈ L2
ud
(R) and

j ∈ N,

⟨fθ, (Pj,d)θ′⟩τd = Ωd−2Pj,d(θ · θ′)⟨f, Pj,d⟩ud

= Ωd−2Pj,d(θ · θ′)
∫ 1

−1

f(t)Pj,d(t)(1− t2)(d−3)/2dt . (43)

Fact D.3. [Derivative Representation] We have the following derivation property for all j, d:

P ′
j,d =

j(j + d− 2)

(d− 1)
Pj−1,d+2 . (44)
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Proof. Recall the normalization relationships λ = d
2 − 1, P̄j,λ(1) = Γ(j+2λ)

Γ(j+1)Γ(2λ) , Pj,d =
Γ(j+1)Γ(d−2)

Γ(j+d−2) P̄j, d2−1, as well as the identity P̄ ′
j,λ = 2λP̄j−1,λ+1. Thus,

P ′
j,d =

Γ(j + 1)Γ(d− 2)

Γ(j + d− 2)
P̄ ′
j, d2−1

= 2
Γ(j + 1)Γ(d− 2)

Γ(j + d− 2)
(
d

2
− 1)P̄j−1, d2

= (d− 2)
Γ(j + 1)Γ(d− 2)

Γ(j + d− 2)

Γ(j − 1 + d)

Γ(j)Γ(d)
Pj−1,d+2

=
j(j + d− 2)

(d− 1)
Pj−1,d+2 (45)

■

We have the following bound of the location of the largest root zj,d of Pj,d:
Fact D.4 (Bound on the Largest Root,[Area et al., 2004, Corollary 2.3]).

zj,d ≤

√
(j − 1)(j + d− 4)

(j + d/2− 3)(j + d/2− 2)
cos(π/(j + 1)) . (46)

And we have the following bound on the Taylor expansion of the Gegenbauer polynomials:
Fact D.5 (Taylor Upper bound beyond largest root).

Pj,d(t) ≥ (t− zj,d)
j , for t ≥ zj,d ,

Proof. Note that all families of orthogonal polynomials have exclusively real, simple roots. Therefore,
by Rolle’s theorem, the j− 1 critical points of Pj,d must be interlaced with the j zeroes. So all zeroes
of P ′

j,d are upper bounded by zj,d. Futhermore, by Fact D.3, P ′
j,d is itself an orthogonal polynomial.

So applying this argument recursively, we see the zeros of P (k)
j,d for k ≤ j are all upper bounded by

zj,d.

Note also by Fact D.3 that, because Pj,d(1) = 1 for any choice of j and d, it follows that P (k)
j,d (1) > 0.

This implies P
(k)
j,d (zj,d) > 0, as in order to flip signs there would need to be a zero in the range

[zj,d, 1] which we’ve confirmed above cannot exist.
Now, consider a Taylor expansion

Pj,d(t) =

j∑
i=0

ci(t− zj,d)
i (47)

Observe that P (k)
j,d (zj,d) = k!ck, and therefore by the above argument we have ck > 0. So it remains

to show that cj ≥ 1.
Consider applying Fact D.3 repeatedly, then we have:

P
(j)
j,d (1) =

j!
∏j
l=1(j + d− 3 + l)∏j
l=1(d− 3 + 2l)

(48)

= j!

j∏
l=1

j + d− 3 + l

d− 3 + 2l
(49)

≥ j! (50)

And from the fact that P (j)
j,d (1) = j!cj , we conclude cj ≥ 1. ■
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D.2 Proof of Proposition 4.1

Proposition D.6 (Loss representation, restated). The βj,d defined in (14) have the integral represen-
tation

βj,d = ⟨ϕ,Kjϕ⟩L2(R,η) , (51)

where Kj is a positive semi-definite integral operator of L2
η that depend solely on ρ and ϕ, with kernel

Kj(t, t′) =
Ωd−2N(j, d)

Ωd−1

∫ ∞

0

Pj(r
−1t)Pj(r

−1t′)ūd(r
−1t)ūd(r

−1t′)ρ(dr) , (52)

where we defined the conditional density

ūd(r
−1t) =

r−1ud(r
−1t)∫∞

0
(r′)−1ud((r′)−1t)ρ(dr′)

.

Moreover, we have

Eη[ϕ2] =
Ωd−2

Ωd−1

∑
j

βj,d =
Γ((d− 2)/2)√
πΓ((d− 1)/2)

∑
j

βj,d . (53)

Proof. The marginal conditioned on ∥x∥ = r is precisely given by η(x1 = t | ∥x∥ = r) =
r−1ud(r

−1t), so

η(t) =

∫ ∞

0

r−1ud(r
−1t)ρ(dr) .

We have

αj,r = ∥Pj∥−2

∫ 1

−1

Pj(t)ϕ
(r)(t)τd(dt) = ∥Pj∥−2

∫ 1

−1

Pj(t)ϕ(rt)ud(t)dt

=
Ωd−2N(j, d)

Ωd−1
r−1

∫ ∞

−∞
ϕ(t)Pj(r

−1t)(1− r−2t2)
(d−3)/2
+ dt , (54)

so

βj,d =
Ωd−2N(j, d)

Ωd−1

∫ ∞

0

r−2

∫∫ ∞

−∞
ϕ(t)Pj(r

−1t)(1− r−2t2)
(d−3)/2
+ ϕ(t′)Pj(r

−1t′)(1− r−2(t′)2)
(d−3)/2
+ dtdt′ρ(dr)

= ⟨ϕ,Kjϕ⟩L2(R,η) , (55)

with the L2(R, η) positive semi-definite integral kernel operator

Kj(t, t
′) =

Ωd−2N(j, d)

Ωd−1
η(t)−1η(t′)−1

∫ ∞

0

r−2Pj(r
−1t)(1− r−2t2)

(d−3)/2
+ Pj(r

−1t′)(1− r−2(t′)2)
(d−3)/2
+ ρ(dr)

=
Ωd−2N(j, d)

Ωd−1

∫ ∞

0

Pj(r
−1t)Pj(r

−1t′)ūd(r
−1t)ūd(r

−1t′)ρ(dr) , (56)

where we defined the conditional density

ūd(r
−1t) =

r−1ud(r
−1t)∫∞

0
(r′)−1ud((r′)−1t)ρ(dr′)

.

Finally, let us establish (57). We have

Eηϕ2 = Eρ[Ex1|∥x∥=rEϕ(x1)
2]

= Eρ[Eud
(ϕ(r))2]

= Eρ
∑
j

α2
j,d,r∥Pj∥2

= Eρ
∑
j

α2
j,d,r

Ωd−1

Ωd−2N(j, d)

=
Ωd−1

Ωd−2
Eρ
∑
j

ᾱ2
j,r,d =

Ωd−1

Ωd−2

∑
j

βj,d . (57)

■
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D.3 Proof of Proposition 4.2

Proof. If βj,d = 0 for j < s, then αj,r,d = 0 for j < s and ρ-ae r. We want to show that for any
polynomial Q of degree j′ < s, we must have ⟨ϕ,Q⟩η = 0.

For each r, consider Q(r)(t) = Q(rt), which is also a polynomial of degree j′ < s, and its
decomposition as Q(r) =

∑j′

j=0 bj,j′,rPj,d, which only involves terms of degree j′ < s since
Gegenbauer polynomials of degree up to r span all polynomials of degree up to r. We have

⟨ϕ,Q⟩η = Eη[ϕ(x)Q(x)]

= EρEx1|∥x∥=r[ϕ(x)Q(x)]

= EρEud
[ϕ(r)(x)Q(r)(x)]

= Eρ[
∑
j≤j′

bj,j′,rαj,r,d] = 0 . (58)

■

D.4 Proof of Proposition 4.3

Proposition 4.3 (Spectral characterization of LPG). Suppose there exist constants K,C > 0 and
s ∈ N such that we both have βs,d ≥ C and

∑
j>s βj,dj(j + d− 2)υj−1,d+2 ≤ Kd(3−s)/2 . Then,

taking s∗ as the infimum of such s, L has the property LPG(s∗ − 1, zs∗,d). In particular, whenever
s∗ ≪ d, we have zs∗,d ≤ 2

√
s∗/d.

Proof. Assume first that there are C̄, ζ̄ such that
P ′
s,d(t) ≥ C̄(t− ζ̄)s−1 , for t ≥ ζ̄ . (59)

Now, let

B =
1

d− 1

∑
j≥s

βj,dj(j + d− 2)υj−1,d+2 < 1 , (60)

and define

ζ∗ :=

(
B

βs,dC̄

)1/(s−1)

+ ζ̄ . (61)

From (59), (60) and (61) we verify that ℓ′(m) =
∑
j βj,dP

′
j,d(m) satisfies, for m ≥ ζ∗,

ℓ′(m) ≥ βs,dC̄
(
(m− ζ̄)s−1 − (m− ζ∗)s−1

)
≥ βs,dC̄

[(
1− ζ̄

1− ζ∗

)s−1

− 1

]
(m− ζ∗)s−1 .

Finally, we have that for any j, d, the largest root zj,d satisfies zj,d ≤
√

(j−1)(j+2d−2)
(j+d−2)(j+d−1) ≃ j/

√
d and

Pj,d(t) ≥
1

2
(t− zj,d)

s , for t ≥ zj,d ,

which implies that

P ′
s,d(t) ≥

s(s+ d− 2)

2(d− 1)
(t− zs−1,d+2)

s−1 , for t ≥ zs−1,d+2 . (62)

We thus have C̄ = s(s+d−2)
2(d−1) with ζ̄ = zs−1,d+2.

Finally, we verify that
d(s−1)/2

s(s+ d− 2)

∑
j>s

βj,dj(j + d− 2)υj−1,d+2 ≤ K (63)

ensures a local polynomial growth of order s− 1 at scale O(1/
√
d). Indeed, plugging (63) into (60),

together with βs,d ≥ C yields(
B

βs,dC̄

)1/(s−1)

≤ (CK)1/(s−1)d−1/2 , (64)

which shows that ζ∗ = O(1/
√
d). Finally, we observe that C̄ ≥ s = Θ(1) if s < d.

■
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D.5 Proof of Theorem 4.5

Proof. To prove the theorem, we will establish the sufficient conditions of Proposition 4.3 under
our mild assumptions. The key technical results we need are explicit bounds for υj,d and for the
sum

∑
j j

2βj,d, established in the following two lemmas. Since the parameter λ = d/2− 1 is more
convenient to express many relationships in Gegenbauer polynomials, we will adopt it in this proof
instead of d, without loss of generality.

Lemma D.7 (Control of υj,λ). We have

υj,λ ≲



[
1−

(
λ
j+λ

)2]j/2
if j = Ω(1) ,

λ
(α−1)λα

2 if j = Θ(λα), with 0 < α < 1 ,

e−
1
2λ

2−α

if j = Θ(λα) with 1 ≤ α < 3/2 ,

e−λ if j = Ω(λ3/2) .

(65)

Lemma D.8 (Decomposition of derivative). If ϕ ∈ L2(R, µ) is such that ϕ′ ∈ L4(R, η) and
Eρ[r4] < ∞, then βj = ⟨ϕ,Kjϕ⟩ satisfies∑

j

j2βj,d ≤
Ωd−2

Ωd−1
Eρ[r4]1/2∥ϕ′∥2L4(η) = O(1/d) . (66)

Let s = inf{j;βj,d ̸= 0}. We need to verify that there exists a constant K > 0 such that∑
j>s

βj,dj(j + d− 2)υj−1,d+2 ≤ Kd(3−s)/2 . (67)

We will control the LHS by splitting it into appropriate regions, determined by Ji, i ∈ {1, 2, 3}. Let

α = 4
1+s and J1 = λα

2 . From Lemma D.7, part (i) we have that υj,λ ≤ C
(
j(j+2λ)
(j+λ)2

)j/2
, and in

particular υj,λ ≤ Cλ(α−1)j/2 for j ≤ J1. As a result, using Lemma D.8,

J1∑
j=s+1

βjj(j + λ)υj−1,λ+1 ≤ λ(α−1)(s+1)/2
J1∑

j=s+1

βjj(j + λ)

≤ λ(α−1)(s+1)/2(C1λ
−1 + λ

J1∑
j=s+1

βjj)

≤ λ(α−1)(s+1)/2(C1λ
−1 + λ

J1∑
j=s+1

βjj
2)

≤ λ(α−1)(s+1)/2C2

≤ C2λ
(3−s)/2 . (68)

Let J2 = λ. We have
J2∑

j=J1+1

βjj(j + λ)υj−1,λ+1 ≤ λ
(α−1)λα

2 C3

≤ C3λ
(3−s)/2 . (69)

Let J3 = λ3/2. We have
J3∑

j=J2+1

βjj(j + λ)υj−1,λ+1 ≤ e−
1
2

√
λC4

≤ C4λ
(3−s)/2 . (70)
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Finally, the remainder satisfies∑
j>J3

βjj(j + λ)υj−1,λ+1 ≤ C5(e/2)
−λ

≤ C5λ
(3−s)/2 , (71)

which proves (67).
■

Proof of Lemma D.7. We prove this result by analysing different regimes for j and λ. Concretely,
we claim the following:

Claim D.9. We have the following regimes:

1. For j = Ω(1), we have

υj,λ ≲

[
1−

(
λ

j + λ

)2
]j/2

. (72)

2. For j = Θ(λα), with 0 < α < 1, we have

υj,λ ≲ λ
(α−1)λα

2 . (73)

3. For j = Θ(λα), with 1 ≤ α < 2, we have

υj,λ ≲ e−
1
2λ

2−α

. (74)

4. For j = Ω(λα), with α > 3/2, we have

υj,λ ≲ e−λ . (75)

To prove the first three regimes of Claim D.9, we control υj,λ based on the distribution of the roots of
Pj,λ. We recall that (zk,j,λ)k≤j denotes the roots of Pj,λ in increasing order, and zj,λ = zj,j,λ its
largest root.

Lemma D.10 (Representation of Pj,λ in terms of its roots, [De Carli, 2008, Lemma 2.1]). We have

Pj,λ(t) =


∏j
k=j/2

t2−z2k,j,λ

1−z2k,j,λ
if j even,

t
∏j
k=(j+1)/2

t2−z2k,j,λ

1−z2k,j,λ
if j odd .

(76)

From this representation, we deduce that υj,λ can be calculated explicitly. Indeed, as the local maxima
of |Pj,λ(t)| are increasing Szego [1939], [DLMF, Eq (18.14.15)], we have the following equation:

υj,λ = −Pj,λ(zj−1,λ+1) = −


∏j
k=j/2

z2j−1,λ+1−z
2
k,j,λ

1−z2k,j,λ
if j even,

zj−1,λ+1

∏j
k=(j+1)/2

z2j−1,λ+1−z
2
k,j,λ

1−z2k,j,λ
if j odd .

(77)

Let us focus first on the case j even, for simplicity. We can rewrite (77) more conveniently as

υj,λ =
z2j,λ − z2j−1,λ+1

1− z2j,λ

j−1∏
k=j/2

z2j−1,λ+1 − z2k,j,λ
1− z2k,j,λ

.

For δ ∈ (0, zj−1,λ+1) let

m(δ, j, λ) := |{k ∈ {j/2, j}; zk,j,λ ≥ δ}|

denote the number of zeros of Pj,λ in the interval (δ, 1). Since the function t 7→ a2−t2
1−t2 is decreasing

in t ∈ (0, a), we have
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Fact D.11. We have the upper bound:

υj,λ ≤
z2j,λ − z2j−1,λ+1

1− z2j,λ
inf
δ

(
z2j−1,λ+1 − δ2

1− δ2

)m(δ,j,λ)

. (78)

Letting δ = zj/2,j,λ the smallest positive root of Pj,λ we have

υj,λ ≤
z2j,λ − z2j−1,λ+1

1− z2j,λ

(
z2j−1,λ+1 − z2j/2,j,λ

1− z2j/2,j,λ

)j/2
. (79)

We can thus obtain an explicit control on υj,λ from bounds on the zeros of the Gegenbauer polynomi-
als. We complement the upper bound on the largest root (Fact D.4) with lower bounds for all positive
roots, as well as a sharp lower bound for its largest root Dimitrov and Nikolov [2010]:

Theorem D.12 (Upper and Lower bounds for Gegenbauer roots, [Dimitrov and Nikolov, 2010,
Theorem 2]). Let

bj,λ = j3 + 2(λ− 1)j2 − (3λ− 5)j + 4(λ− 1) ,

aj,λ = 2(j + λ− 1)(j2 + j(λ− 1) + 4(λ+ 1)) and
cj,λ = j2(j + 2λ)2 + (2λ+ 1)(j2 + 2(λ+ 3)j + 8(λ− 1)) .

Then for every k, j, λ we have
bj,λ − (j − 2)

√
cj,λ

aj,λ
≤ z2k,j,λ ≤

bj,λ + (j − 2)
√
cj,λ

aj,λ
. (80)

Theorem D.13 (Lower bound for largest root, [Driver and Jordaan, 2012, Section 2.3]).

z2j,λ > 1− (2λ+ 1)(2λ+ 3)

(j − 1)(j + 2λ+ 1) + (2λ+ 1)(2λ+ 3)
:= 1− gj,λ

hj,λ
. (81)

Rewriting Fact D.4 as z2j,λ ≤ ej,λ
fj,λ

, with

ej,λ = (j − 1)(j + 2λ− 2) , fj,λ = (j + λ− 2)(j + λ− 1) ,

and using again the monotonocity of t 7→ t−p
1−t we can bound the first term in the RHS of (79) as

z2j,λ − z2j−1,λ+1

1− z2j,λ
≤ ej,λ/fj,λ + gj−1,λ+1/hj−1,λ+1 − 1

1− ej,λ/fj,λ
. (82)

For j, λ = ω(1), we have
aj,λ ≃ 2j(j + λ)2, bj,λ ≃ j2(j + 2λ) ,

√
cj,λ ≃ j(j + 2λ) ,

ej,λ ≃ j(j + 2λ), fj,λ ≃ (j + λ)2 ,

gj,λ ≃ 4λ2, hj,λ ≃ j(j + 2λ) + 4λ2 ,

and thus
z2j,λ − z2j−1,λ+1

1− z2j,λ
≲

3j(j + 2λ)

j(j + 2λ) + 4λ2
≤ 3 . (83)

Therefore,

υj,λ ≤ 3

 ej−1,λ+1

fj−1,λ+1
− bj,λ−(j−2)

√
cj,λ

aj,λ

1− bj,λ−(j−2)
√
cj,λ

aj,λ

j/2

≤ 3

(
aj,λej−1,λ+1 − fj−1,λ+1(bj,λ − (j − 2)

√
cj,λ)

fj−1,λ+1(aj,λ − bj,λ + (j − 2)
√
cj,λ)

)j/2
= 3

(
2j(j + λ)2j(j + 2λ)− (j + λ)2(j2(j + 2λ)− j2(j + 2λ))

(j + λ)2(2j(j + λ)2 − j2(j + 2λ) + j2(j + 2λ))
· (1 + oj,λ(1))

)j/2
≲

(
j(j + 2λ)

(j + λ)2

)j/2
=

[
1−

(
λ

j + λ

)2
]j/2

. (84)
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As a direct consequence of (84), we immediately obtain Eqs (72), (73) and (74). The case where j is
odd is treated analogously.

Let us now study the regime j = ω(λ3/2). Given z ∈ C with |z| < 1, Gegenbauer polynomials admit
the following generating function [Watson, 1922, Section 3.32]:

1

(1− 2z cos θ + z2)λ
=
∑
j≥0

P̄j,λ(cos θ)z
j . (85)

From this generating function, the Cauchy integral formula leads to the following integral representa-
tion:

Fact D.14 ([Ursell, 2007, Eq (1.2)]). For any 0 < ρ < 1, we have

P̄j,λ(cos θ) =
1

2πi

∮
|z|=ρ

dz

(1− 2z cos θ + z2)λzj+1
. (86)

Assume j = Θ(λα), with α > 3/2. We are interested in the above representation for θ̄ =
arccos(zj−1,λ+1). From Theorem D.13, we have z2j−1,λ+1 ≥ 1− dj,λ/(2cj,λ), and thus

θ̄2 ≲
dj,λ
2cj,λ

≃ 32λ2j4

16j6
=

2λ2

j2
,

so θ̄ = O(λ/j). Combining this upper bound with the lower bound obtained from Fact D.4 we have
θ̄ = Θ(λ/j).
Using 1− cos θ ≃ θ2/2 ≃ λ2/j2 and

|1− 2z cos θ + z2| =
∣∣(1− z)2 + 2z(1− cos θ)

∣∣
≥ |1− z|2 − 2|z|(1− cos θ)

≥ 1− ρ

(
2 + Θ

(
λ2

j2

))
+ ρ2 , (87)

we have

|P̄j,λ(cos θ)| ≤ inf
0<ρ<1

|ρ|−(j+1)
(
1− ρ(2 + cλ2/j2) + ρ2

)−λ
:= g(ρ) . (88)

Optimizing the RHS over ρ we obtain ρ∗ = j−(
√
2−1)λ

j+2λ ; substituting, we obtain

g(ρ∗) ≃ e−(1+
√
2)λ

(
j + 2λ

λ(1 +
√
2)

)2λ

. (89)

As a result, it follows that

Pj,λ(cos θ) = P̄j,λ(cos θ)
j!(2λ− 1)!

(2λ+ j − 1)!
(90)

satisfies, for θ = Θ(λ/j) and j = ω(λ3/2),

log |Pj,λ(cos θ)| ≃j log j − j + 2λ log(2λ)− 2λ− (j + 2λ) log(2λ+ j) + 2λ+ j

− (1 +
√
2)λ+ 2λ log(j + 2λ)− 2λ log(λ(1 +

√
2))

≃− (1 +
√
2)λ , (91)

where we have used Stirling’s approximation. This proves Eq (75) and completes the proof of Lemma
D.7. ■

Proof of Lemma D.8. We have, using Fact D.3, that

Eρ[Eud
(ϕ(r)′)2] =

Ωd−1

(d− 1)2Ωd−2

∑
j

Eρ
[
ᾱ2
j,d,r (j(j + d− 2))

2
]

≥ Ωd−1

Ωd−2

∑
j

j2Eρ
[
ᾱ2
j,d,r

]
. (92)
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And we can upper bound via

Eρ[Eud
(ϕ(r)′)2] = Eρ[r2Eud

((ϕ′)(r))2]

= EρEx1|∥x∥=r[r
2(ϕ(x1)

′)2]

≤
√

Eρ[r4]Eη(ϕ′)4 , (93)

where this last line is finite by our assumptions on ϕ and ρ,
so from (92) we conclude that∑

j

j2βj,d ≤
Ωd−2

Ωd−1

√
Eρ[r4]Eη(ϕ′)4 . (94)

■

E The LPG property in the non-symmetric case: proofs of Section 4.2

E.1 Proof of Proposition 4.11

Assumption 4.9 (Regularity of link function). We assume that ϕ, ϕ′ are both B-Lipschitz, and that
ϕ′′(t) = O(1/t).
Assumption 4.10 (Subgaussianity). The data distribution ν is M -subgaussian: for any v ∈ Sd−1,
we have ∥x · v∥ψ2 ≤ M , where ∥z∥ψ2 := inf{t > 0; E[exp(z2/t2) ≤ 2} is the Orlitz-2 norm.
Proposition 4.11 (Uniform gradient approximation). Under Assumptions 4.9 and 4.10, for all θ ∈
Sd−1,

∆∇L(θ) = (1−m2)O
(
W̃1,2(ν, γ) log(W̃1,2(ν, γ)

−1)
)

(22)

where the O(·) notation only hides constants appearing in Assumptions 4.9 and 4.10.

Proof. Recall the notation ϕθ(x) = ϕ(⟨x, θ⟩). Let v = θ∗ −mθ. From the definition, we have that

⟨∇S
θL(θ), θ

∗⟩ = 2Eν [ϕ′
θ(ϕθ − ϕθ∗) (x · v)]

:= Eν [gθ,θ∗ ] . (95)

Since Eγ [gθ,θ∗ ] is precisely ℓ̄′(m)(1−m2), we need to establish that

sup
θ

|Eνgθ,θ∗ − Eγgθ,θ∗| ≤ C
√

1−m2W̃1,2(ν, γ)
(
log W̃1,2(ν, γ)

)2
. (96)

Fix θ and let Pθ,θ∗ be the orthogonal projection onto the subspace spanned by θ, θ∗. For R > 0 we
consider AR = {x ∈ Rd; ∥Pθ,θ∗x∥ ≤ R}.

|Eνgθ,θ∗ − Eγgθ,θ∗| =
∣∣∣∣∫ gθ,θ∗(x)(ν(dx)− γ(dx))

∣∣∣∣
≤
∣∣∣∣∫
x∈AR

gθ,θ∗(x)(ν(dx)− γ(dx))

∣∣∣∣︸ ︷︷ ︸
Ta

+

∣∣∣∣∫
x/∈AR

gθ,θ∗(x)(ν(dx)− γ(dx))

∣∣∣∣︸ ︷︷ ︸
Tb

.

(97)

Let us first bound Ta. Denote by v = θ∗ −mθ, with ∥v∥2 = 1−m2 Since ϕ and ϕ′ are Lipschitz
and |ϕ′′| ≤ O((1 + t)−1) by Assumption 4.9, we have that

∇xgθ,θ∗(x) = ϕ′′
θ (ϕθ − ϕθ∗)x

⊤vθ + ϕ′
θ(ϕ

′
θθ − ϕ′

θ∗θ
∗)x⊤v + ϕ′

θ(ϕθ − ϕθ∗)v (98)

satisfies

∥∇xgθ,θ∗(x)∥ ≤ 2∥v∥CLip(ϕ)R+ 4∥v∥Lip(ϕ)2R
≤ C∥v∥R , (99)
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and as a result we have that gθ,θ∗ is C∥v∥R-Lipschitz when restricted to AR, and thus

Ta ≤ CR∥v∥W̃1,2(ν, µ) . (100)

Let us now control the tail Tb. Since x⊤v is
√
2M∥v∥-subgaussian and ϕ is Lipschitz, we have that

z = |gθ,θ∗(x)| is M̃∥v∥-subexponential where M̃ only depends on M and L. It follows that

Tb ≤ R(Pν(z ≥ R) + Pγ(z ≥ R))

≤ R exp

(
− β

∥v∥
R

)
, (101)

where β is a constant that depends only on M̃ . As a result, we have

|Eνgθ,θ∗ − Eγgθ,θ∗| ≤ inf
R>0

(
CR∥v∥W̃1,2(ν, µ) +R exp

(
− β

∥v∥
R

))
. (102)

Setting
R = −∥v∥β−1 log((C∥v∥W̃1,2(ν, γ)))

we obtain

|Eνgθ,θ∗ − Eγgθ,θ∗| ≤ 2C(1−m2)β−1
∣∣∣log(C∥v∥W̃1,2(ν, γ))

∣∣∣ W̃1,2(ν, γ)

≤ (1−m2)O
(
W̃1,2(ν, γ) log(W̃1,2(ν, γ)

−1)
)

, (103)

as claimed.
■

E.2 Proof of Proposition 4.14

We leverage Proposition 4.11 and the fact that if ϕ has information exponent s = 2, then ℓ̄′(m) ≃ m
for small m.
We need to show that for b = Θ(log d) we have

⟨∇θL(θ), θ
∗⟩ ≥ C

(
m− b√

d

)
, for

b√
d
≤ m ≤ 1

2
, (104)

as well as
⟨∇θL(θ), θ

∗⟩ ≥ C ′(1−m2) (105)
for m ≥ 1

2 .

From (103) and W̃1,2(ν, γ) ≤ C/
√
d, we obtain

⟨∇θL(θ), θ
∗⟩ = ℓ̄′(m)(1−m2) + ⟨∇θL(θ), θ

∗⟩ − ℓ̄′(m)(1−m2)

≥ 2α2
2m(1−m2)− (1−m2)C̃W̃1,2(ν, γ) log(W̃1,2(ν, γ)

−1)

≥
(
α2
2m− C̃

C√
d
log(

√
d/C)

)
(1−m2)

≥ α2
2

(
m− C̃

C

α2
2

√
d
log(

√
d/C)

)
(1−m2)

≥ α2
2

(
m− log dC

′

√
d

)
(1−m2) , (106)

which proves (104) and (105).

E.3 Proof of Proposition 4.16

Assumption 4.15 (Additional Regularity in third derivatives). ϕ admits four derivatives bounded
by L, with |ϕ(3)(t)| = O(1/t) and |ϕ(4)(t)| = O(1/t2). Moreover, the third moment of the data
distribution is finite: τ3 = Et∼η[t3] < ∞.
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Proposition 4.16 (Stein’s method for product measure). Let χ(θ, θ∗) := ∥θ∥24 + ∥θ∗∥24. Under
Assumptions 4.9, 4.10 and 4.15, there exists a universal constant C = C(M,B, τ3) such that

∆L(θ) ≤ Cχ(θ, θ∗) , and ∆∇L(θ) ≤ C
√

1−m2χ(θ, θ∗) . (23)

Proof. Recall the notation ϕθ(x) = ϕ(⟨x, θ⟩), and, using v = θ∗ −mθ,

hθ,θ∗(x) := ϕ2
θ − 2ϕθϕθ∗ , (107)

gθ,θ∗(x) := 2ϕ′
θ(ϕθ − ϕθ∗)(x · v) , (108)

so that

∆L(θ) = Eν [hθ,θ∗(x)]− Eγ [hθ,θ∗(x)] , (109)
∆∇L(θ) = Eν [gθ,θ∗(x)]− Eγ [gθ,θ∗(x)] . (110)

The result is obtained via the following Stein coupling method for product measures:

Theorem E.1 (Stein Coupling, [Röllin, 2013, Theorem 3.1]). Let X be a d-dimensional random
vector of independent coordinates, such that EX = 0, E[XX⊤] = Id and E|Xi|3 = τ3i < ∞. If Z
is a standard Gaussian random vector, and h : Rd → R is three-times differentiable, then

|Eh(X)− Eh(Z)| ≤ 5

6

d∑
i=1

τ3i ∥∂3
xi
h∥∞ . (111)

We verify that, thanks to the decay assumptions in Assumption 4.15, we have

∂3
xi
gθ,θ∗(x) = λ1(x)θ

3
i + λ2(x)θ

2
i θ

∗
i + λ3(x)θi(θ

∗
i )

2 + λ4(x)(θ
∗
i )

3 , (112)

∂3
xi
hθ,θ∗(x) = λ5(x)θ

3
i + λ6(x)θ

2
i θ

∗
i + λ7(x)θi(θ

∗
i )

2 + λ8(x)(θ
∗
i )

3 , (113)

where
sup

k∈{1,2,3,4}
|λk(x)| ≤ C∥v∥ , sup

k∈{5,6,7,8}
|λk(x)| ≤ C̃ . (114)

Observing by Cauchy-Schwartz that

max

{∑
i

|θi|2|θ∗i |,
∑
i

|θi|3
}

≤ ∥θ∥24 ,

max

{∑
i

|θ∗i |2|θi|,
∑
i

|θ∗i |3
}

≤ ∥θ∗∥24 ,

we obtain from Theorem E.1 that

∆L(θ) ≤ Cχ(θ, θ∗) , ∆∇L(θ) ≤ C ′∥v∥χ(θ, θ∗) ,

as claimed. ■
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