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Supplementary Material

Abstract

This supplementary material accompanies the main paper by providing more details
for reproducibility as well as additional evaluations and qualitative results to to
verify the effectiveness and robustness of LiveScene:

> Section.[7} Configurations of OmniSim and InterReal dataset, including scene
assets, interaction variables generation, mask and prompts annotation, and dataset
visualization.

> Section. Video demonstration and anonymous link: https:/livescenes|
github.iol

> Section. |9} Additional implementation details.

> Section. Additional experimental results, including more ablation studies, de-
tailed view synthesis quality comparison, interactive scenes geometry comparison
and language grounding comparison.

7 Configurations of OmniSim and InterReal datasets

_— $ OmniSim Behavior Synthetic and InterReal Dataset

camera trajectory

complex rotation and
M translation Yariable: 0.7
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Figure 11: Illustration of the proposed Omniverse behavior synthetic (OminiSim) and Real captured
interactive (InterReal) dataset. These datasets are captured in an OmniGibson simulator or real scene
and carefully annotated, providing #28 interactive subsets with 2 Million samples, including RGB,
depth, segmentation, camera trajectory, interaction variables, and object captions modalities.

Scene Assets and Generation Pipeline for OmniSim. We generate the synthetic dataset using
the OmniGibson simulator. The dataset consists of 20 interactive scenes from 7 scene models:
#rs, #ihlen, #beechwood, #merom, #pomaria, #wainscott, and #benevolence. The
scenes feature various interactive objects, including cabinets, refrigerators, doors, drawers, and more,
each with different hinge joints.

We configure the simulator camera with an intrinsic parameter set of focal length 8, aperture 20,
and a resolution of 1024 x 1024. By varying the rotation vectors for each joint of the articulated
objects, we can observe different motion states of various objects. We generated 20 high-definition
subsets, each consisting of RGB images, depth, camera trajectory, interactive object masks, and
corresponding object state quantities relative to their "closed" state at each time step, from multiple
camera trajectories and viewpoints.
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The data is obtained through the following steps: 1) The scene model is loaded, and the respective
objects are selected, with motion trajectories set for each joint. 2) Keyframes are set for camera
movement in the scene, and smooth trajectories are obtained through interpolation. 3) The simulator
is then initiated, and the information captured by the camera at each moment is recorded.

Scene Assets and Generation Pipeline for InterReal. InterReal is primarily captured using
the Polycam app on an Apple iPhone 15 Pro. We selected 8 everyday scenes and placed various
interactive objects within each scene, including transformers, laptops, microwaves, and more. We
recorded 8 videos, each at a frame rate of SFPS, capturing 700 to 1000 frames per video.

The dataset was processed via the following steps: 1) manual object movement and keyframe capture,
2) OBJ file export and pose optimization using Polycam, 3) conversion to a dataset containing RGB
images and transformation matrices using Nerfstudio [51]], and 4) mask generation for each object
in each scene using SAM [25]] and corresponding prompts and state quantity labeling for certain
keyframes.

Statistic of OmniSim and InterReal Datasets. The detailed statistics of the OmniSim and InterReal
datasets are shown in Table.[5] The OmniSim dataset consists of 20 interactive scenes, each with 2
to 6 objects, and the InterReal dataset contains 8 real-world scenes, each with 1 to 3 objects. The
datasets include RGB, depth, pose, mask, and text prompts modalities, providing a total of 2 million
samples for training and evaluation. The objects in the datasets include cabinets, refrigerators, doors,
drawers, transformers, laptops, microwaves, and more, with various interactive states and captions.

Table 5: Statistic of OmniSim and InterReal Datasets.

datasets #objects  #frame  #key frame value rgb  depth  pose  mask text prompts

#seq001_Rs_int 4 770 770 v v v v fridge, microwave, oven, top cabinet
#seq002_Rs_int 4 2190 2190 v v v v fridge, microwave, oven, top cabinet
#seq003_Thlen_1_int 3 1610 1610 v v v v bottom cabinet, dishwasher, top cabinet
#seq004_Thlen_1_int 2 1630 1630 v v v v bottom cabinet, cedar chest
#seq005_Beechwood_0_int 2 1370 1370 v v v v bottom cabinet, door
#seq006_Beechwood_0_int 2 1610 1610 ' v v v dishwasher, microwave
#seq007_Beechwood_0_int 3 1450 1450 v v v v bottom cabinet, door, top cabinet
#seq008_Benevolence_1_int 4 1830 1830 v v v v door, fridge, microwave, top cabinet

£ #seq009_Benevolence_I_int 2 1690 1690 v v v v cedar chest, door

2 #seq010_Merom_1_int 3 1930 1930 v v v v dishwasher, fridge, microwave, top cabinet

E #seq011_Merom_1_int 3 1690 1690 v v v v bottom cabinet, top cabinet, door

o #seq012_Pomaria_1_int 2 970 970 v v v v bottom cabinet, fridge
#seq013_Pomaria_1_int 3 770 770 v v v v bottom cabinet, fridge
#seq014_Wainscott_0_int 2 1850 1850 v v v v bottom cabinet, cedar chest
#seq015_Wainscott_0_int 2 1350 1350 v v v v bottom cabinet, door
#seq016_Wainscott_0_int 2 1170 1170 v v v v fridge, stove
#seq017_Benevolence_1_int 6 4590 4590 v v v v cedar chest, door, door, fridge, microwave, top cabinet
#seq018_Benevolence_1_int 2 2050 2050 v v v v door, top cabinet
#seq019_Rs_int 2 1130 1130 ' v v v fridge, top cabinet
#seq020_Merom_1_int 2 1990 1990 v v v v bottom cabinet, door
#demo 5 6267 6267 v v v v cedar chest, door, fridge, oven, top cabinet
#demo001 4 2040 2040 v v v v fridge, microwave, oven, top cabinet
#demo002 3 2395 2395 v v v v dishwasher, microwave, top cabinet
#demo003 3 2480 2480 v v v v dishwasher, oven, top cabinet
#demo004 3 2280 2280 v v v v dishwasher, fridge, stove
#demo005 3 1670 1670 v v v v bottom cabinet, cedar chest, door
#seq001_transformer 1 329 38 ' X v v yellow toy car
#seq002_transformer 1 329 43 ' X v v blue toy car

E #seq003_door 1 355 31 v X v v door

&  #seq004_dog 1 213 41 v X v v black mechanical dog

g #seq005_sit 1 913 25 v X v v small white humanoid

= #seq006_stand 1 899 33 v X v v small white humanoid
#seq007_flower 3 620 153 ' X v v blue toy car, yellow toy car, black laptop
#seq008_office 4 1087 658 v X v v blue toy car, yellow toy car, black laptop, microwave

8 YVideos Demonstration and Anonymous Link

We provide a video of our proposed method LiveScene along with this document to demonstrate the
interactive scene reconstruction and multimodal control capabilities. Please refer to the anonymous
link: |https://livescenes.github.10 for more information.

9 Additional implementation details

Loss Functions. In this section, we provide detailed descriptions of the loss functions used in
LiveScene:

Etotal = »CMSE + Al»cfucus + >\2»Crepuls + )\3£var + >\4»Clang + )\5£smoothv (6)
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Rendering Loss. We use the standard NeRF rendering loss, which is the sum of the mean squared
error (MSE) between the rendered color and the ground truth color, and the MSE between the
rendered depth and the ground truth depth. The loss is computed for each pixel in the image and
averaged over the entire image:

2
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where C; and C; are the rendered and ground truth RGB values, respectively, and N is the number
of pixels in the image.

Focal Loss. Due to the predominance of background regions in the images, we employ focal loss to
enhance the model’s focus on the relatively smaller interactive mask regions:

Efocus = ﬁ : <1 - 62?:1 M log(f’i)>’y ' <_ Za: M; IOg(PZ)> s (®)
=1

where M is the ground truth mask label, P is the probability map rendering from the interactive
probability field, /3 is the balancing factor, and + is the focusing parameter. In our experiments, we
seta = 0.5and vy = 1.5.

Repulsion Loss. To avoid sampling conflicts and feature oscillations at the boundaries, we introduce
a repulsion loss to amplify the feature differences between distinct deformable scenes, thereby
promoting the separation of deformable field:

Lrepus = ELU(K — ||[(M; © M) (F; — F)|), ©)

where M; and M are the ground truth mask of rays, and F; and F; are the last-layer features of
interaction probability decoder in Figure.[2| K is the constant hyperparameters. In training iteration,
we randomly select ray pairs and apply Lrepus to enforce the separation of interactive probability
features across local deformable spaces. Our approach draws inspiration from [24], which has shown
the effectiveness of repulsive forces in resolving ambiguities in 3D segmentation.

Interaction Variable MSE. We follow the value MSE in [20] and use the standard MSE loss to
supervise the interaction values training:

1 N
Lvar - N Zl ||K4 - ’?"/1”2 ) (10)

where k; and K are the predicted and ground truth interaction variables, respectively, and N is the
number of ray samples of a batch. Note that we only apply Ly, to the InterReal dataset and use
learnable variables as inputs to the model due to the lack of dense ground truth interaction variables.
In OmniSim, we directly use the ground truth interaction variables as inputs provided by the simulator
to achieve precise control.

Language Embedding L2 Loss. In LiveScene implementation, we use the huber loss to supervise
the language embedding training. But we do not distill the language embedding in the 3D language
field but we store the language embedding in the proposed interaction-aware language feature plane.
The loss is defined as:

1(¢(p) — ¢(p))? if |p(p) — p(p)| < &

1 <|¢(P) - ég(p)\ — %5) otherwise ’ (11)

Liang(8(p), 9(p)) = {

where ¢(p) and gzNS(p) are the predicted and ground truth language embeddings, respectively, and ¢ is
the threshold. In our experiments, we set 6 = 1.0.

Smoothness Loss. Inspired by K-Planes [[10], we use 1D Laplacian (second derivative) filter to
smooth the local deformable field feature plane, which helps to reduce the noise in the deformable
field and alleviate feature oscillations and sampling conflicts at the sampling boundary:

1 n
Lsmooth(P) = L2 Z ‘ p; —2p;" +p
Lik

ik—1 i k1|2
H : (12)
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where ¢ and k are indices on the plane resolution n, and [ is the feature planes index.

Probability Rejection Operation. Additionally, a probability rejection operation is proposed to
truncate the low-probability samples if the deformable probability at p is smaller than threshold
s. The probability rejection is proposed to truncate the low-probability samples if the maximum
deformable probability P at p is smaller than threshold s and selects the background feature directly.
The operation is defined as:

(13)

argmax,;{P;}, if P;>s
u = :
-1 otherwise

Implementation Details. LiveScene is implemented in Nerfstudio [51] from scratch. We represent
the field as a multi-scale feature plane with resolutions of 512 x 256 x 128, and feature dimension
of 32. The proposal network adopts a coarse-to-fine sampling process, where each sampling step
concatenates the position feature and the state quantity as the query for the 4D deformation mask
field, which is a 1-layer MLP with 64 neurons and ReLU activation. For InterReal, we introduce
additional learnable variables bound to each frame to capture changes in object states within the
scene. These variables are represented by a plane with a resolution typically half the frame number,
with a feature dimension of 4 for most scenes. For all experiments, we use the Adam optimizer with
initial learning rates of 0.01 and a cosine decay scheduler with 512 warmup steps for all networks.
We set loss weights as follows: A\ = le — 3, s = le — 2, 3 = le — 3,y = 1.0, A5 = le — 3.
The model is trained for 80k steps on the OmniSim dataset and 100k steps on the InterReal dataset,
using a batch size of 4096 rays with 64 samples each. We run the model on an NVIDIA A100 GPU,
requiring approximately 4 hours and 40GB of memory.

10 Additional Experimental Results

Model Parameter Efficiency Comparison. We compare the number of parameters of LiveScene
with other methods in Table. [6] varying the number of interactive objects in the scene. The results
show that LiveScene has a constant number of parameters, regardless of the number of interactive
objects, making it more efficient than other methods. In contrast, CoGS [63]] has a higher base number
of parameters and a linear increase with the number of interactive objects. MK-Planes [[10] exhibits
a quadratic increase in parameters with the number of interactive objects. Although NeRF[38] and
InstantNGP [39] have a low number of parameters, they are limited to 3D static scene reconstruction.

Table 6: Model Parameters vs Object Quantity.

# interactive objects

Method 1 5 3 4 5 6 Trend
NeRF [38] 13.23 13.23  13.23 13.23 13.23 13.23 Constant
InstantNGP [39] 11.68 11.68 11.68 11.68 11.68 11.68 Constant
K-Planes [10] 35.66 35.66 3566 35.66 3566 35.66 Constant
MK-Planes 3566 3596 3632 3676 37.27 37.86  Quadratic
MK-Planes* 35.66 3588 36.10 36.32 36.54 36.76 Linear
CoGS [63] 4224 4323 4423 4523 4623 4722 Linear

LiveScene (Ours)  34.52 3452 3452 3452 3452 3452 Constant

View Synthesis Quality Comparison on OmniSim and InterReal dataset We provide detailed
quantitative results on the OmniSim and InterReal datasets in Table.[7]and Table. [§| provide detailed
quantitative results on the OmniSim and InterReal datasets, respectively. LiveScene outperforms
prior works on most metrics and achieves the best PSNR on the #challenging and #office subsets
with a significant margin. Note that the #challenging and #office subsets contain scenes with multiple
interactive objects and large deformable fields, which are challenging for existing methods. We report
the score as NaN if the model fails to converge or is out of memory during training multiple times.

Interactive Scenes Geometry Comparison . To evaluate the completeness of the topological
structure of interactive objects, we employ the depth L1 error metric. As shown in Figure. our
method outperforms SOTA methods on scenes from OmniSim. While existing methods excel in
RGB image rendering, they struggle with depth structure representation. Specifically, CoNeRF [20]]
performs relatively well in #seq08 and #seq15 but fails in large-scale scenes (#seql7 and #seq19).
CoGS [63]] exhibit notable artifacts in the depth map. Moreover, MK-Planes* also fails to recover
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Table 7: Detailed Quantitative results on OmniSim Dataset. LiveScene outperforms prior works
on most metrics and achieves the best PSNR on the #challenging subset with a significant margin.

Dataset Metric ~ NeRF [38]  Instant-NGP HyperNeRF [42]  K-Planes [I0] ~ CoNeRF MK-Planes [[0] ~ MK-Planes* {I0] ~ CoGS LiveScene
#3eq001_Rs PSNR 25.941 25.768 NaN 33.136 34.035 32.169 32.092 32211 34.784
#5eq001_Rs SSIM 0.931 0.933 NaN 0.953 0.957 0.946 0.946 0.968 0.974
#3eq001_Rs LPIPS 0.118 0.113 NaN 0.093 0.135 0.110 0.110 0.068 0.048
#35¢q002_Rs PSNR 28.616 28.660 NaN 34.765 34.286 36.532 34.580 34.497 35.190
#5eq002_Rs SSIM 0.950 0.946 NaN 0.967 0.951 0.976 0.968 0.979 0.969
#35eq002_Rs LPIPS 0.096 0.112 NaN 0.074 0.217 0.036 0.074 0.051 0.070
#5eq003_lhlen PSNR 26720 28.255 33.551 35217 34.700 34.758 34.753 36.816 35323
#5eq003_Thlen SSIM 0.940 0.944 0.946 0.964 0.953 0.966 0.966 0.980 0.966
#5eq003_lhlen LPIPS 0.120 0.121 0.268 0.097 0.244 0.087 0.090 0.077 0.094
#5eq004_lhlen PSNR 30.847 31.800 31115 36.157 32.684 34.863 35.000 31.055 36.712
#5eq004_lhlen SSIM 0.927 0.942 0.878 0.955 0.888 0.919 0.926 0915 0.962
#5eq004_lhlen LPIPS 0.104 0.102 0.389 0.085 0.366 0.145 0.135 0.209 0.072
#35eq005_Beechwood ~ PSNR 27.183 27.295 30.699 31.944 32549 33.195 33.008 33.664 33.623
#5eq005_Beechwood  SSIM 0.930 0.937 0.906 0.944 0.927 0.961 0.959 0.978 0.962
#35eq005_Beechwood ~ LPIPS 0.127 0.112 0.291 0.105 0.245 0.076 0.080 0.058 0.072
#5eq006_Beechwood ~ PSNR 27.988 28.150 29513 31.861 30.058 31.541 31.521 31.272 32.206
#5eq006_Beechwood ~ SSIM 0.938 0.938 0.907 0.951 0917 0.951 0.951 0.974 0.959
#5eq006_Beechwood ~ LPIPS 0.103 0.119 0314 0.097 0.283 0.095 0.096 0.059 0.077
#5eq007_Beechwood ~ PSNR 23.201 22.902 31.259 30.979 33.451 30.136 30.089 27.367 30.360
#35¢q007_Beechwood ~ SSIM 0.885 0.886 0913 0.938 0.935 0.942 0.942 0.893 0.946
#5eq007_Beechwood ~ LPIPS 0.220 0.219 0.289 0.140 0.229 0.120 0.121 0.219 0.107
#5eq008_Benevolence ~ PSNR 25750 25574 32.691 31.914 34319 30.926 30916 33.795 33.393
#5eq008_Benevolence  SSIM 0.943 0.940 0.945 0.948 0.960 0.941 0.941 0.980 0.970
#35eq008_Benevolence  LPIPS 0.113 0.123 0.229 0.107 0.185 0.118 0.116 0.072 0.067
#5¢q009_Benevolence  PSNR 24326 24.386 29.596 32.836 31.225 31.500 31471 33.205 32,030
#5eq009_Benevolence  SSIM 0.921 0.922 0.897 0.956 0.932 0.954 0.953 0.975 0.962
#5eq009_Benevolence  LPIPS 0.124 0.128 0.327 0.090 0.248 0.088 0.090 0.074 0.071
#5eq010_Merom PSNR 22.927 22765 28.985 30.120 31.092 29.461 29.396 30.254 30.029
#5eq010_Merom SSIM 0917 0.925 0.939 0.960 0.957 0.960 0.959 0.974 0.966
#5eq010_Merom LPIPS 0.173 0.158 0.275 0.093 0.233 0.087 0.088 0.065 0.074
#seq011_Merom PSNR 26.732 27.077 NaN 33394 30483 32,951 32910 31.767 33.426
#seq011_Merom SSIM 0.932 0.933 NaN 0.959 0.932 0.959 0.959 0.968 0.960
#seq011_Merom LPIPS 0.112 0.117 NaN 0.074 0.246 0.073 0.072 0.091 0.068
#3eq012_Pomaria PSNR 26.856 27.074 NaN 35.185 33.065 32.248 32.209 37.284 33.367
#seq012_Pomaria SSIM 0.936 0.943 NaN 0.972 0.954 0.966 0.966 0.985 0.969
#3eq012_Pomaria LPIPS 0.138 0.126 NaN 0.059 0.199 0.075 0.075 0.047 0.061
#5eq013_Pomaria PSNR 25277 24.018 NaN 30.860 33.682 30.390 30.299 32.868 33.592
#seq013_Pomaria SSIM 0.925 0.930 NaN 0.943 0.964 0.931 0.930 0.981 0.970
#seq013_Pomaria LPIPS 0.154 0.161 NaN 0.123 0.166 0.162 0.164 0.045 0.056
#seq014_Wainscott PSNR 26,011 25.966 NaN 32517 29.580 30.511 30.504 31.885 31.197
#3eq014_Wainscott SSIM 0.927 0.924 NaN 0.955 0.925 0.951 0.951 0.969 0.952
#seq014_Wainscott LPIPS 0.105 0.116 NaN 0.077 0.244 0.082 0.083 0.067 0.083
#3eq015_Wainscott PSNR 27257 27.191 NaN 30.721 32307 28.288 28.134 32.949 34.266
#seq015_Wainscott SSIM 0.953 0.951 NaN 0.955 0.962 0.942 0.942 0.975 0.976
#3eq015_Wainscott LPIPS 0.080 0.092 NaN 0.083 0.202 0.110 0.108 0.078 0.050
#5eq016_Wainscott PSNR 21.953 21.660 28364 30.414 30.205 28915 28.710 31.965 29.746
#5eq016_Wainscott SSIM 0.897 0.895 0.909 0.951 0.935 0,952 0.951 0.976 0.955
#3eq016_Wainscott LPIPS 0.175 0.194 0.327 0.089 0.260 0.086 0.087 0.066 0.083
#seq017_Benevolence  PSNR 26.364 26367 27533 29.833 30349 29.254 26.565 28.701 31.645
#3eq017_Benevolence  SSIM 0.927 0.920 0.897 0.937 0.923 0,933 0.887 0.970 0.948
#5eq017_Benevolence  LPIPS 0.128 0.143 0318 0.118 0.238 0.119 0.218 0.073 0.093
#3eq018_Benevolence  PSNR 28236 24.296 32551 34.690 34297 33.049 33.002 34.963 34.187
#5eq018_Benevolence  SSIM 0918 0.809 0.911 0.951 0.936 0.953 0.952 0.976 0.958
#5eq018_Benevolence  LPIPS 0.145 0.342 0.293 0.093 0.248 0.090 0.091 0.114 0.081
#3eq019_Rs PSNR 20.059 20.854 33.119 34.462 34.598 33.679 33.653 25.947 35223
#3eq019_Rs SSIM 0.794 0.808 0.950 0.956 0.963 0.963 0.962 0.879 0.969
#3eq019_Rs LPIPS 0.425 0.424 0.270 0.106 0.225 0.087 0.089 0.327 0.068
#5eq020_Merom PSNR 23273 24.074 31.280 30.462 32580 30.655 30.626 31.280 32.869
#5eq020_Merom SSIM 0.823 0.852 0.970 0.929 0914 0.919 0918 0.970 0.954
#5eq020_Merom LPIPS 0.306 0.259 0.086 0.140 0.276 0.139 0.142 0.086 0.078
Depth L1 Error | CoNeRF MK-Planes*

scene  CoNeRF MK-Planes* CoGS LiveScene

#seq04 0.029 0.037 0.381 [ 0.018
#seq08 0.018 0.301 0.655  0.025
#seqld 0.042 0.103 0.810 = 0.039
#seql5 | 0.019 0.568 0.690  0.021
#seql’ X 0.282 0.706 - 0.019
#seql9 X 0.136 0.689  0.034
#avg 0.027 0.238 0.655  0.026

Figure 12: Structure Reconstruction Performance on OmniSim Dataset. Our method surpasses
most previous works on chosen subsets.

depth around interactive objects. In contrast, our method achieves the lowest depth error and renders
satisfying depth maps, demonstrating its accurate interactive scene modeling capabilities.

Language Grounding Comparison . We assess the language grounding performance on OmniSim
dataset using mIOU metric. Figure.[T3|suggests that our method obtains the highest mIOU score, with
an average of 86.86. In contrast, traditional methods like LERF [23] encounter difficulties in locating
objects precisely, with an average mIOU of 21.74. Meanwhile, 2D methods like SAM [23] fail to
accurately segment the whole target under specific viewing angles, as objects appear discontinuous in
the image. Conversely, our method perceives the completeness of the object and has clear knowledge
of its boundaries, demonstrating its advantage in language grounding tasks.

More Detailed Rendering Comparison We provide more detailed visual comparisons, including
RGB, depth, and language grounding on the OmniSim and InterReal datasets in Figure. [T4] Figure.[T3]
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Table 8: Detailed Quantitative results on InterReal Dataset. Our method outperforms others in
most settings, with a significant advantage of PSNR, SSIM, and LPIPS on the #challenging subset.

dataset Metric  NeRF [38] Instant-NGP [39 HyperNeR [42]F  K-Planes [10 CoNeRF [20] CoGS [20 LiveScene
#seq01_transformer ~ PSNR 20.094 20.619 24.651 26.881 27.260 31.067 30.396
#seq01_transformer ~ SSIM 0.725 0.805 0.638 0.791 0.739 0.943 0912
#seq01_transformer ~ LPIPS 0.182 0.167 0.495 0.185 0.355 0.060 0.060
#seq02_transformer ~ PSNR 20.093 20.028 24.433 26.232 26917 30.513 29.706
#seq02_transformer SSIM 0.736 0.778 0.635 0.763 0.732 0.938 0.899
#seq02_transformer ~ LPIPS 0.210 0.196 0.477 0.223 0.357 0.062 0.069
#seq03_door PSNR 20.001 20.652 27.144 29.278 29.850 31.998 32.709
#seq03_door SSIM 0.785 0.831 0.878 0.920 0.922 0.962 0.960
#seq03_door LPIPS 0.250 0.250 0.316 0.101 0.231 0.071 0.044
#seq04_dog PSNR 20.044 20.206 25.691 30.350 28.567 32.455 32,519
#seq04_dog SSIM 0.723 0.819 0.730 0.894 0.815 0.950 0.943
#seq04_dog LPIPS 0.196 0.178 0.435 0.107 0.324 0.074 0.049
#seq05_sit PSNR 21.558 24211 24.944 27.970 26.252 27.169 30.161
#seq05_sit SSIM 0.480 0.727 0.573 0.773 0.633 0.767 0.886
#seq05_sit LPIPS 0.178 0.236 0.543 0.207 0.463 0.232 0.084
#seq06_stand PSNR 23.109 24.483 24.833 27.285 26.159 31.442 29.400
#seq06_stand SSIM 0.643 0.699 0.574 0.736 0.627 0.919 0.868
#seq06_stand LPIPS 0.123 0.260 0.538 0.237 0.470 0.104 0.089
#seq07_flower PSNR 21.150 21.813 25.334 26.545 26.854 28.435 28.208
#seq07_flower SSIM 0.721 0.747 0.712 0.759 0.748 0.893 0.844
#seq07_flower LPIPS 0.302 0.319 0.489 0.321 0.425 0.165 0.188
#seq08_office PSNR 21.187 21.474 25.188 26.309 26.040 27.510 28.663
#seq08_office SSIM 0.735 0.743 0.714 0.754 0.720 0.897 0.848
#seq08_office LPIPS 0.371 0.358 0.545 0.341 0.520 0.138 0.181
mIOU T
setting SAM [25] LERF [23] Ours i

g #easy 61.58 23.60 86.94 E
2 #medium 55.13 19.40 86.32 -
g #challenging  63.86 19.87  90.41 Gr sam

#avg 59.11 21.74  86.86
3 #medium 93.27 27.63  84.37
% f#challenging 91.50 34.39  91.90
2 #avg 9282 2932 86.26

GT SAM

Figure 13: Language Grounding Performance on OmniSim Dataset. left): Our method gains the
highest mIOU score. right): LiveScene’s grounding exhibits clearer boundaries than other methods.

Figure.[T6] and Figure. [T7] respectively. Our method surpasses existing approaches by reconstructing
more detailed and accurate representations of the objects. In both datasets, LiveScene can generate
more accurate and detailed object shapes and textures, especially for scenes with multiple interactive
objects and large deformable fields. Compared with LERF [23]], our method can generate more
accurate language grounding results, which is crucial for interactive object manipulation tasks,
demonstrated in Figure. [T7}

10.1 More Ablation Studies

4D Deformable Feature Visualization. We provide additional interaction feature visualization
of x-z, y-z, and z-k in Figure. ﬂ;gka) to illustrate latent feature distribution. It can be seen that the
features are clustered around the spatial coordinates of interactive objects, corresponding to the local
deformable fields in Sec 3.2 of the manuscript. Figure.[T8|b) validates the performance of LiveScene
in scenarios with up to 10 complex interactive objects. Notably, our method demonstrates robustness
in rendering quality, which does not degrade significantly as the object number increases. The number
of objects is not a major limiting and our method is still feasible as long as the dataset provides mask
and control variable labels. In contrast, the occlusion and topological complexity between objects do
affect the reconstruction results, which will be discussed in the limitations section. In Figure. ﬂ;gkc),
we demonstrate the fine-grained control capability of LiveScene on a refrigerator and cabinet dataset
without part-based labels. Our method can control a part of the object even though there are no
individual part-based interaction variable labels. However, the effect is not entirely satisfactory, due
to the lack of labels and CLIP’s limited understanding of spatial relationships.

Ablation Study on Multi-scale Factorization. We conduct more ablation studies on the OmniSim
dataset to evaluate the effectiveness of the multi-scale factorization. The results show that the multi-
scale factorization can improve the model’s performance by capturing the object’s detailed structure
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Figure 14: View Synthesis Visualization on InterReal Dataset. We compare our method with
SOTA methods on RGB rendering across real scenes. LiveScene obtained more detailed and accurate
representations of the objects. While other methods fail to capture the object’s shape and cause
significant artifacts.

and texture. However, the model without multi-scale factorization performs poorly in depth rendering,
illustrating the improvements of multi-scale factorization in scene geometric modeling. The results
are shown in Figure.[T9]

Ablation Study on Interaction-aware Language Embedding. We conduct more ablation studies
on the OmniSim dataset to evaluate the effectiveness of the interaction-aware language embedding.
The results show that the interaction-aware language embedding can effectively improve the model’s
performance when encouraging significant scene topological changes. While the model without
interaction-aware language embedding fails to ground the correct object because of the lack of
interaction-aware information. The results are shown in Figure.

Maximum Probability Embeds Retrieval. We conduct more ablation studies on the OmniSim
dataset to evaluate the effectiveness of the maximum probability embedding retrieval. The results
show that the maximum probability embedding retrieval can improve the model’s performance with
higher storage efficiency and training speed, and the grounding results will also be more concentrated
in the object region. The fundamental reason is that this method decouples language from the 3D
scene to the object level, rather than the entire 3D space. The results are shown in Figure. 21]
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Figure 15: View Synthesis Visualization on InterReal Dataset. compared with the other methods,
LiveScene reconstructs clear and accurate object shapes and textures.

18



GT CoNeRF MKPlanes* CoGS Ours

=]
2
=
=
<
=3
S

<3

Q
2}
s

#Seq004 Thlen

#seq014 Wainscott

#seq019 Rs

- ---

Figure 16: Illustration of the depth map comparison on the OmniSim datasets. Our method can
generate more accurate depth maps than other methods, demonstrating the effectiveness of interactive
scene reconstruction. In contrast, other methods either fail to capture the object’s shape or cause
significant artifacts.

19



GT SAM LERF Ours

Figure 17: Tllustration of the language grounding comparison on the OmniSim datasets. Compared to
LeRF, our method can locate more accurate interactive objects, overcoming the obvious inconsistency
problem in interactions, while maintaining accurate boundaries. In contrast, LeRF suffers from a
diffusion phenomenon in object localization due to changes in object topology structure.
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Figure 19: More ablation of multi-scale factorization on the OmniSim dataset. We compare the
performance of LiveScene with w/o multiscale factor. The results show that the multi-scale factoriza-
tion can improve the model’s performance by capturing the object’s detailed structure and texture.
However, the model without multi-scale factorization performs poorly in depth rendering, illustrating
the improvements of multi-scale factorization in scene geometric modeling.
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Figure 20: More ablation of interactive object modeling on the OmniSim dataset. We compare
the performance of LiveScene with w/o interaction-aware language embedding. The results show
that the interaction-aware language embedding can effectively improve the model’s performance
when encouraging significant scene topological changes. While the model without interaction-aware
language embedding fails to ground the correct object because of the lack of interaction-aware
information.
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Figure 21: By applying the proposed multiscale factor and maximum probability embedding retrieval,
the model achieves better performance with higher storage efficiency and training speed, and the
grounding results will also be more concentrated in the object region. The fundamental reason is that
this method decouples language from the 3D scene to the object level, rather than the entire 3D space.
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