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A DERIVATION OF THE NORM MINIMIZATION BIAS OF PT+FT FOR
DIAGONAL LINEAR NETWORKS

We provide a derivation of the norm minimization biases of diagonal linear networks; note that the
same result is proved in Azulay et al. (2021).

Recall the parameterization of single-output diagonal linear networks f : Rd
! R:

fw(~x) = ~�(~w) · ~x, ~�(~w) 2 RD
, (6)
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where � indicates elementwise multiplication.

We proceed by calculating the gradient flow dynamics of the task loss L with respect to the
weights ~w. We adopt the notation and strategy of Woodworth et al. (2020). Using the notation
X̃ = [X �X], we have:
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we have:
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The solutions to these equations are
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We are interested in the form of the solution ~�:
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We now make the assumption that the weights are initialized with ~w+(0) = ~w�(0) = ~w0 and define

~s0 = 1
2

✓
~

w
(1)
0 +

~
w

(2)
0

◆
and ~d0 = 1

2

✓
~

w
(1)
0 �

~
w

(2)
0

◆
. Then,

~�~w(t) = 2~s0
2
�

✓
exp

✓
�4X>

Z t

0
r(s)ds

◆
� exp

✓
4X>

Z t

0
r(s)ds

◆◆
(18)

�2 ~d0
2
�

✓
exp

✓
4X>

Z t

0
r(s)ds

◆
� exp

✓
�4X>

Z t

0
r(s)ds

◆◆
(19)

= 2(~s0
2 + ~d0

2
) · sinh

✓
�4X>

Z t

0
r(s)ds

◆
(20)

=

✓
(

~
(w(1)

0 )2 + (
~

(w(2)
0 )2

◆
· sinh

✓
�4X>

Z t

0
r(s)ds

◆
(21)

Now the solution is in the same form equation (17) of in Appendix D of Woodworth et al. (2020),

but with the coefficient in front of the sinh term replaced by
✓
(

~
(w(1)

0 )2 + (
~

(w(2)
0 )2

◆
. Following the

14



Under review as a conference paper at ICLR 2024

rest of their argument, it follows that under the assumption that ~�(1) fits the training data with zero
error, among all such solutions, ~�(1) minimizes the penalty
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the result in Equation 3 follows.

B DERIVATION OF THE `1,2 PENALTY MINIMIZATION BIAS OF MTL

B.1 MULTI-TASK DIAGONAL LINEAR NETWORKS

Diagonal linear networks with O outputs are parameterized as:
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where � indicates elementwise product. We are interested in how minimizing the total parameter
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maps to minimizing a norm over the solution weights ~�. First we note that in the minimum parameter
norm solution, for a given input dimension d, either all its associated + weights or all its associated
� weights will be zero. Without loss of generality we may assume that all the � weights are zero.
So we are to minimize
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where the right-hand side of the equation is the `1,2 norm.

Note that this implies, as a special case, that the minimum parameter solution to a diagonal linear
network with one output minimizes the `1 norm.
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B.2 MULTI-TASK RELU NETWORKS

Multi-task ReLU networks with a shared feature layer and O outputs can be written as
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where the right-hand side of the equation is the `1,2 norm.

C COMMENTS ON CROSS-ENTROPY VS. MEAN SQUARED ERROR LOSS

Cross-entropy and mean squared error are among the most common loss functions in machine learn-
ing. An important difference between them is that while mean squared error can be minimized to
zero exactly by interpolating the data, cross-entropy achieves its minimum asymptotically as the
model predictions become inifinitely large (Gunasekar et al., 2018). Consequently, while mean
squared error is more amenable to an analysis of the full learning trajectory (Braun et al., 2022),
cross-entropy is often more easily understood in the asymptotic limit of infinite training. For homo-
geneous networks, it has been shown that crossentropy induces an implicit regularization towards
the minimal parameter `2-norm (Lyu & Li, 2020; Nacson et al., 2019). Because all the networks we
consider are homogeneous, by the results of Appendix B, diagonal neural networks trained on mul-
tiple tasks with crossentropy loss for infinite time would indeed minimize the `1,2-norm, and ReLU
networks would minimize the F1,2-norm. However, PT+FT networks would minimize the `1 and
F1 norms, respectively, behaving identically to single-task learning. This is because given infinite
training time, the behavior of networks trained with cross-entropy loss is in theory independent of
initialization. This behavior is quite different from that of networks trained with mean squared error
loss at convergence, which is heavily dependent on initialization (indeed, this is the basis of our
investigation in this work). However, prior work has shown that given finite training time, networks
trained on cross-entropy loss learn solutions that are sensitive to initialization, and indeed there is
a correspondence between increasing training time and decreasing initialization scale (incentivizing
rich / feature-learning behavior). Thus, we expect our qualitative findings are applicable to the case
of networks trained with cross-entropy loss for finite time. Moreover, our results on the effects of
rescaling network parameters (e.g. to uncover the nested feature-selection regime) may be able to
be replicated in the cross-entropy setting by scaling training time.

D ROBUSTNESS OF MAIN RESULTS TO CHOICE OF NUMBER OF AUXILIARY
TASK SAMPLES AND INPUT DIMENSION

To increase confidence that our main results are robust to the number of data samples used (1024
auxiliary task samples and up to 1024 main task samples in most of our experiments), and the
number of ground-truth units in the teacher network (6), we repeated the experiments of Fig. 2a
with 8192 auxiliary task samples and 40 ground-truth features. Indeed, in this setting the rich regime
also helps with generalization if and only if the teacher units are sparse (Fig. 4a). Further, MTL and
PT+FT tend to outperform STL if the features are overlapping and MTL tends to outperform PT+FT
(Fig. 4b). In particular, the finetuned networks still benefit from feature learning, especially if some
features are novel.
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Figure 4: Larger-scale teacher-student experiments. a, Generalization loss of shallow ReLU net-
works trained on data from a ReLU teacher network (as in Fig. ??, except with more teacher units
and more data). b, Generalization loss for different numbers of overlapping features (out of 40 total)
between main and auxiliary tasks. NTK indicates the (lazy) tangent kernel solution. This is compa-
rable to Fig. 2a, except with more teacher units and more data.

E ANALYSIS OF LEARNED SOLUTIONS IN LINEAR AND NONLINEAR
NETWORKS

Our linear theory predicts inductive biases towards solutions that minimize norms, often either `1-
like (incentivizing sparsity) or `2-like. Our experiments in Fig. 2 corroborate these description by
analyzing how sample complexity depends on the feature sparsity of the ground-truth task solution,
and how the sparse feature structures of the main and auxliary tasks relate. However, this evidence
for sparsity biases (or lack thereof) is indirect; here we present more direct analyses of the learned
solutions in linear and nonlinear networks that support the account we provide in the main text.

E.1 DIAGONAL LINEAR NETWORKS

To check whether the implicit regularization theory is a good explanation for these performance
results, we directly measured the `1,2 and Q norms of the solutions learned by networks, compared
to the corresponding penalties of the ground truth weights. In Fig. 5a we see that as the amount of
training data increases, the norms all converge to that of the ground truth solution, but in the low-
sample regime, MTL and PT+FT find solutions with lower values of their corresponding norm than
the ground-truth function, consistent with the implicit regularization picture (by contrast, STL does
not consistently find solutions with lower values of these norms than the ground truth).

Our theory predicts that weight rescaling by a factor less than 1.0 following pretraining reduces the
propensity of the network to share features between auxiliary and main tasks during finetuning. We
confirm that this is the case in Fig. 5b by analyzing the overlap between the auxiliary task features
and the learned linear predictor for the main task.

In Fig. 5c we show that our measure of effective sparsity of learned solutions in diagonal linear
networks effectively distinguishes between networks trained in the feature selection regime and
networks trained with linear probing (only training second-layer weights). Moreover, in Fig. ?? we
show that the L1 norm of the solution incraeses with the training sample size, consistent with a bias
towards L1 minimization. There is an interesting discrepancy between the behavior of the sparsity
of the solutions (nonmonotonic, see Fig. 5c) and the L1 norm (largely monotonic, see Fig. 5d). This
is attributable to the discrepancy between the L1 norm (which diagonal linear networks in the rich
regime are biased to minimize) and sparsity (for which L1 norm is only a proxy).

In Fig. 5e we show the same information as Fig. 1c but for different values of the number of over-
lapping features between main and auxiliary tasks (each of which uses 40 features). We find that, as
in the example shown in the main text, learned solutions across a range of overlaps are as sparse as
using single-task learning (see ig. 5c) when task features do not overlap (0/40 case) and more sparse
otherwise (on account of the bias toward reuse of the sparse features learned during the auxiliary
task, see next paragraph)..

In Fig. 5f we show the same information as Fig. 1d but for different values of the number of over-
lapping features between main and auxiliary tasks (each of which uses 40 features). We find that, as
in the example shown in the main text, learned main task solutions are biased to share auxiliary task
features when few samples are available.
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Figure 5: a, `1,2 norm and Q penalty for MTL, STL, and PT+FT networks from Fig. 1a (40/40
overlapping features case). b, Proportion of the weight norm in the 40 dimensions relevant for the
auxiliary task, for the networks in Fig. 1i. Weight rescaling decreases this overlap. c, Proportion of
variance concentrated in the top k weights, as a function of k, for training on a single-task. When
both layers are trained from small initialization (STL), this variance decreases much more rapidly
than for pure linear readout training (STL (LP)), demonstrating the sparsity of the learned solution.
d, L1 norm for STL as a function of the number of samples. e, Proportion of variance across
different overlaps and for different learning setups (see also Fig. 1c). The rapid decrease in variance
demonstrates the sparsity of the learned solutions both for PT+FT and MTL. f, Proportion of weight
norm in the 40 dimensions relevant for the auxiliary task (see also Fig. 1d).
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E.2 RELU NETWORKS

We adopt a clustering-based approach to analyzing the effective sparse structure of learned task solu-
tions. Specifically, for a given trained network, we perform k-means clustering with a predetermined
value of K clusters on the normalized input weights to each hidden-layer neuron in the network3.
We measure the extent to which K cluster centers are able to explain the variance in input weights
across hidden units; the fraction of variance left unexplained is commonly referred to as the “iner-
tia.” For values of K at which the inertia is close to zero, we can say that (to a good approximation)
the network effectively makes use of at most K nonlinear features.

E.2.1 SINGLE-TASK LEARNING: RICH INDUCTIVE BIAS YIELDS CLUSTERS OF SIMILARLY
TUNED NEURONS THAT APPROXIMATE SPARSE GROUND-TRUTH FEATURES

In the single-task learning case, we measure the inertia of trained networks in Fig. ??d as a function
of K. We find that for networks in the rich regime (small initialization scale), for tasks with sparse
ground-truth (six units in the ReLU teacher network), the networks do indeed learn solutions that
make use of approximately six nonlinear features (Fig. 6a). For tasks with many (1000) units in the
teacher network, the network finds solutions that use a small number of feature clusters when main
task samples are limited, but gradually uses more clusters as the number of samples is increased
(Fig. 6a), at which point the network matches the teacher function very well, see Fig. ??d). This
bias towards sparser-than-ground-truth solutions given insufficient data corroborates our claim of
an inductive bias towards sparse solutions. By contrast, networks in the lazy learning regime (large
initialization scale) display no such bias, corroborating our claim that the sparse `1-like inductive
bias is a property of the rich regime but not the lazy regime. Interestingly, in the sparse ground-truth
case learned solutions are relatively less sparse for an intermediate number of training examples.
This may arise because an `1-like inductive bias is not exactly the same as a bias toward sparse
solutions over nonlinear features, particularly when training data is limited. We leave an in-depth
investigation of this phenomenon to future work.

Our clustering analysis allows us to measure the extent to which the effective features employed by
the network (cluster centers) are aligned with the ground-truth task features. Specifically, for each
teacher unit, we compute an “alignment score” between teacher and student networks by taking
each teacher unit, measuring its cosine similarity with all the cluster centers, choosing the maximum
value, and averaging this quantity across all teacher units. We find that the learned feature clusters
are indeed highly aligned with the ground-truth teacher features in the sparse ground-truth case, and
moreso as the number of main task samples (and consequently task performance) increases (Fig. 6b).

E.2.2 PRETRAINING+FINETUNING FINDS SPARSE SOLUTIONS AND IMPROVES ALIGNMENT
OF FEATURE CLUSTERS LEARNED DURING PRETRAINING

We find that pretraining+finetuning improves performance over single-task learning when main and
auxiliary task features are shared (or correlated), and maintains an apparent bias toward sparsity
in new task-specific features. To corroborate these claims, we performed our clustering analysis
on the solutions learned through PT+FT. We find that the solutions learned are indeed quite sparse
(comparable to the sparsity of solutions learned by single-task learning), even when the auxiliary
task and main task features are disjoint (Fig. 6c). Moreover, we find that MTL also learns sparse
solutions (Fig. 6d). In particular, as expected, the effective features on tasks with overlapping fea-
tures is equal to the number of total unique features. Moreover, we observe that when main task
and auxiliary task features are shared, PT+FT and MTL networks exhibit higher alignment between
learned features and ground-truth features than single-task-trained networks, especially when main
task samples are limited (Fig. 6e). This provides a mechanistic underpinning for the relationship
between the inductive bias of PT+FT that we describe in the main text and its performance benefits.

3weighting the importance of each unit to the k-means objective by the weight of its contribution to the
network’s input-output function, specifically the magnitude of the product of its associated input and output
weights
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Figure 6: Analysis of effective sparsity of learned ReLU network solutions. a Inertia (k-means
reconstruction error for clustering of hidden-unit input weights) as a function of the number of
clusters used for k-means, for different numbers of main task samples and ground-truth teacher
network units, in single-task learning. b Alignment score – average alignment (across teacher units)
of the best-aligned student network cluster uncovered via k-means. c, Inertia for networks trained
using PT+FT for the tasks of Fig. 2a and Fig. 2c. d, Same as panel c but for networks trained with
MTL. e, Alignment score for networks trained with MTL, PT+FT, and STL on the same tasks as in
panels c and d. f Inertia (using k = 1 clusters) for networks trained on an auxiliary task that relies
on only one ground-truth feature, which is one of the six ground-truth features used in the auxiliary
task (as in Fig. 2e,f), using MTL or PT+FT with various rescaling factors applied to the weights
prior to finetuning. g Alignment score for the networks and task in panel f.
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Figure 7: Results for finetuning deep convolutional networks trained on ImageNet, with/without
weight rescaling (factor of 0.5) prior to finetuning.

E.2.3 NESTED FEATURE SELECTION REGIME ALLOWS NETWORK TO PRIORITIZE A SPARSE
SUBSET OF FEATURE CLUSTERS LEARNED DURING PRETRAINING

In the main text we describe the “nested feature selection” regime, which occurs at intermediate
values of the ratio between ground-truth main task feature coefficients and pretrained network weight
scale. In this regime, networks can more efficiently learn main tasks that make use of a subset of the
features used in the auxiliary task (Fig. 1f, Fig. 2e) while still maintaining a bias towards reusing
features from the auxiliary task (Fig. 1g, Fig. 2f). Here we show that networks in this regime
(obtained most clearly in the shallow ReLU network case when networks are rescaled by a value of
1.0 after pretraining, see Fig. 2e,f) indeed learn very sparse (effectively 1-feature) solutions when
the ground-truth main task consists of a single auxiliary task features (Fig. 6e, right). By contrast,
networks with weights rescaled by a factor of 10.0 following pretraining exhibit no such nested
sparsity bias (consistent with lazy-regime behavior). Similarly, multi-task networks cannot exhibit
such a bias in their internal representation as they still need to maintain the features needed for the
main task (Fig. 6e, left). Additionally, supporting the idea that the nested feature selection regime
allows networks to benefit from feature reuse (Fig. 1i, Fig. 2i), we find that networks in this regime
exhibit a higher alignment score with the ground-truth teacher network when the main task features
are a subset of the auxiliary task features compared to when they are disjoint from the auxiliary task
features (Fig. 6g). This alignment benefit is mostly lost when networks are rescaled by a factor of
0.1 following pretrainning (a signature of rich-regime-like behavior).

F FURTHER EVALUATIONS OF THE RESCALING METHOD FOR FINETUNING

To evaluate the robustness / general-purpose utility of our suggested approach of rescaling network
weights following pretraining, we experimented with finetuning convolutional networks pretrained
on ImageNet on downstream classification tasks: pretrained ResNet-18 finetuned on CIFAR100,
pretrained VGG11 finetuned on CIFAR100, and pretrained ResNet-18 finetuned on STL-10. We
experimented both with finetuning on the full multi-way classification task, and also on binary clas-
sification tasks obtained by subsampling pairs of classes from the main task dataset (which we
found exposes performance differences more strongly). Due to computational constraints, we did
not sweep over the choice of the rescaling factor, but simply used a factor of 0.5 in all cases. We
find that rescaling improves finetuning performance, to varying degrees, in all of our experiments
(Fig. 7).
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Figure 8: Dimensionality of the network representations before and after finetuning. a, Participation
ratio of the ReLU networks’ internal representation after training on a task with six teacher units.
b, Participation ratio of the network representation after finetuning on the nested sparsity task with
different weight rescalings. c, Participation ratio before (left panel) and after finetuning (middle
panel) and the effective number of shared features between the two representations. Small weight
scaling decreases the participation ratio after training. d, The same quantities for ResNet18 before
and after finetuning (see also Fig. 2h).

G ANALYSIS OF REPRESENTATIONS LEARNED IN THE NESTED FEATURE
SELECTION REGIME: BRIDGING THE GAP FROM SHALLOW TO DEEP
NETWORKS

We were interested in testing whether our theoretical understanding of shallow networks is truly re-
sponsible for the behavior of deeper networks (with more direct evidence than performance results /
sample complexity). Specifically, we sought to understand whether the observed benefit of rescaling
network weights following pretraining (Fig. 2h, Appendix. F) relates to the nested feature selection
regime we characterized in shallow networks. Doing so is challenging, as the space of “features”
learnable by a deep network is difficult to characterize explicitly (making the feature clustering anal-
ysis employed in Appendix. E inapplicable). To circumvent this issue, we propose a signature of
nested feature selection that can be characterized without knowledge of the underlying feature space.
Specifically, we propose to measure (1) the dimensionality of the network representation pre- and
post-finetuning, and (2) the extent to which the representational structure post-finetuning is shared
with / inherited from that of the network following pretraining prior to finetuning.

We employ the commonly used participation ratio (PR; Gao et al., 2017) as a measure of dimen-
sionality. For an n ⇥ p matrix X representing n mean-centered samples of p-dimensional network
responses, with a p⇥ p covariance matrix CX = 1

nX
>X, the participation ratio is defined as

PR(X) =
(
Pp

i=1 �i)
2

Pp
i=1 �

2
i

=
trace (CX)2

trace (C2
X)

=
trace

�
X>X

�2

trace (X>XX>X)

where �i are the eigenvalues of the covariance matrix CX . The PR scales from 1 to p and measures
the extent to which the covariance structure of responses X is dominated by a few principal com-
ponents or is spread across many. We argue that low-dimensional representations are a signature of
networks that use a sparse set of features. We confirm that this is the case in our teacher-student
setting: networks in the rich regime, which are biased towards sparse solutions, learn representa-
tions with lower PR than networks in the lazy regime, which are not biased toward sparse solutions
(Fig. 8a).
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Our measure of shared dimensionality between two representations is the effective number of shared
dimensions (ENSD) introduced by Giaffar et al. (2023). The ENSD for an n⇥p matrix of responses
X from one network and an n⇥ p matrix of responses Y from another network is given by

ENSD(X,Y ) =
trace

�
Y>XX>Y

�
· trace

�
X>X

�
· trace

�
Y>Y

�

trace (X>XX>X) · trace (Y>YY>Y)

This measure is equal to the centered kernel alignment (CKA), a measure of similarity of two net-
work representations (Kornblith et al., 2019a), multiplied by the geometric mean of the participation
ratios of the two representations. It measures an intuitive notion of “shared dimensions” — for ex-
ample, if X consists of 10 uncorrelated units, if Y is taken from a subset of five of those units, the
ENSD(X, Y) will be 5. If Y is taken to be five uncorrelated units that are themselves uncorrelated
with all those in X, the ENSD(X, Y) will be zero.

Intuitively, the PR and ENSD of network representations pre- and post-finetuning capture the
key phenomena of the nested feature selection regime. In a case in which the main task uses
a subset of the features of the auxiliary task, if the network truly extracts this sparse subset of
features, we expect the dimensionality of network after finetuning to be lower than after pre-
training (PR(XFT ) < PR(XPT )), and for nearly all of the representational dimensions ex-
pressed by the network post-finetuning to be inherited from the network state after pretraining
(ENSD(XPT ,XFT ) ⇡ PR(XFT )). By contrast, networks not in the nested feature selection
regime should exhibit an `2-like rather than `1-like bias with respect to features inherited from pre-
training and thus not exhibit a substantial decrease in dimensionality during finetuning.

We show that this description holds in our nonlinear teacher-student experiments. Networks that we
identified as being in the “nested feature selection” regime (weights rescaled by 1.0 following pre-
training), and also networks in the rich regime, exhibit decreased PR following finetuning (Fig. 8b).
By contrast, lazy networks (weights rescaled by 10.0 following pretraining) exhibit no dimension-
ality decrease during finetuning. Additionally (see Fig. 8c), the ENSD between pretrained (PT) and
finetuned (FT) networks is almost identical to the dimensionality of the finetuned representation (PR
FT).

Strikingly, we observe very similar behavior in our ResNet-18 model pretrained on 98 CIFAR-100
classes and finetuned on the 2 remaining classes (Fig. 8d), when we apply our method of rescaling
weights post-finetuning. Analyzing the PR and ENSD of the outputs of different stages of the
network following pretraining and following finetuning, we see that dimensionality decreases with
finetuning, and ENSD between the pretrained and finetuned networks is very close to the PR of
the finetuned network. Moreover, this phenomenology is only observed when we apply the weight
rescaling method; finetuning the raw pretrained network yields no dimensionality decrease. These
results suggest that the success of our rescaling method may indeed be attributable to pushing the
network into the nested feature selection regime.
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