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Abstract
We propose a learning problem, which we call reliable active apprenticeship learning, for which we
define a learning algorithm providing optimal performance guarantees, which we further show are
sharply characterized by the eluder dimension of a policy class. In this setting, a learning algorithm
is tasked with behaving optimally in an unknown environment given by a Markov decision process.
The correct actions are specified by an unknown optimal policy in a given policy class. The learner
initially does not know the optimal policy, but it has the ability to query an expert, which returns
the optimal action for the current state. A learner is said to be reliable if, whenever it takes an
action without querying the expert, its action is guaranteed to be optimal. We are then interested
in designing a reliable learner which does not query the expert too often. We propose a reliable
learning algorithm which provably makes the minimal possible number of queries, which we show
is precisely characterized by the eluder dimension of the policy class. We further extend this to
allow for imperfect experts, modeled as an oracle with noisy responses. We study two variants of
this, inspired by noise conditions from classification: namely, Massart noise and Tsybakov noise.
In both cases, we propose a reliable learning strategy which achieves a nearly-minimal number of
queries, and prove upper and lower bounds on the optimal number of queries in terms of the noise
conditions and the eluder dimension of the policy class.
Keywords: Statistical Learning Theory, Apprenticeship Learning, Markov Decision Processes,
Reliable Learning, Active Learning, Eluder Dimension

1. Introduction

Imagine we design a Mars rover, which drives around on Mars collecting samples and doing various
experiments. We want it to be able to drive from place to place autonomously. But we also want it to
be careful not to do some suboptimal actions, like driving off a cliff or getting stuck. To avoid this,
we will allow it to ask for help sometimes. As it is driving around, when it gets into a state where it
is unsure of the optimal action, it sends a request to Earth for a human to take control for a little bit.
The human then sends back an optimal action. The rover then follows the given instruction, but also
learns from it, so it will better identify the optimal actions in the future. This motivates a problem
we call reliable active apprenticeship learning.
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Formally, we consider a setting, which we call active apprenticeship learning. In this setting,
there is a state space S, and a set A of possible actions. There is also an unknown environment
P , defined by several components: (1) an initial state distribution P0, (2) a (time-invariant) state
transition distribution P (·|·), specifying the distribution over a next state s′ given that action a is
taken from current state s by P (·|s, a) (where s′ is conditionally independent of any prior history
given s, a: i.e., a Markov process), and (3) an oracle which can (optionally) be queried by the learner
from its current state s (before the learner chooses its action); when queried, the oracle returns an
action a for the learner to take in state s. In our most-general results, we allow the oracle to be
stochastic, so that its action is sampled from a conditional distribution P (·|s) (and conditionally
independent of any prior history given s). Thus, an environment P is essentially a Markov decision
process (MDP), except that we do not include the traditional notion of rewards (as in reinforcement
learning) and instead have an oracle which the learner can query from a current state to receive a
suggested action.

The learning protocol is defined as follows. The learner first observes a state s1 sampled from
the initial state distribution P0. It takes an action a1 from state s1, and then observes a next state
s2 sampled from the state transition distribution P (·|s1, a1). It then takes an action a2 from s2, and
observes a state s3 sampled from P (·|s2, a2), and so on, for a number of rounds T (called the time
horizon). At any time t, the learner also has the ability to query the oracle from its current state st,
in which case the learner’s action at follows the oracle’s suggested action: i.e., at ∼ P (·|st). So
as the learner goes from state to state, sometimes it chooses an action on its own, and sometimes it
queries the oracle and follows the oracle’s suggested action.

As our objective in the present work, we are interested in learners which have a reliability
guarantee for their actions. To formalize this, following the traditional abstraction from much of
statistical learning theory (Vapnik and Chervonenkis, 1974; Valiant, 1984; Littlestone, 1988), we
imagine there is an unknown optimal policy π∗ : S → A which is included in a known (but
arbitrary) policy class Π ⊆ AS . An active apprenticeship learner is said to be reliable if, whenever
it does not query the oracle, the action it takes is guaranteed to agree with the optimal policy: that
is, at = π∗(st).

Of course, it is easy to define a reliable active apprenticeship learner which simply queries the
oracle in every state it encounters. Hence our main question in this work concerns how to make
fewer queries while still being reliable. In particular, we aim to identify the minimum possible
number of queries for reliable active apprenticeship learning: called the optimal query complexity.

In this work, we study this problem under increasingly-weaker assumptions on the oracle. Our
strongest setting, the realizable case, supposes the oracle always returns the optimal action π∗(st)
when queried. We sharply characterize the optimal query complexity, which is precisely expressed
in terms of the eluder dimension of the policy class. We then relax this to merely suppose its
distribution P (·|st) favors the optimal action over other actions, by some margin, analogous to the
Massart noise assumption in classification or the gap assumption in reinforcement learning and
contextual bandits. Finally, we further relax this to allow for small margins to occur, though with an
assumption that smaller gap sizes occur less frequently, analogous to the Tsybakov noise assumption
in classification (suitably extended to these MDP-type environments). In both cases, we give general
upper and lower bounds on the optimal query complexity, valid for any policy class Π, expressed
in terms of the eluder dimension, along with a learning algorithm which achieves the upper bound
without any prior knowledge of the noise conditions.
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1.1. Related Work

The closely-related subjects of apprenticeship learning, imitation learning, and inverse reinforce-
ment learning, have received much interest in the machine learning literature (e.g., Ross, Gordon,
and Bagnell, 2011; Abbeel and Ng, 2004; Ng and Russell, 2000). These settings are based on a sim-
ilar setup to ours, in that the learner observes an oracle’s behavior in the Markov decision process.
However, they differ in that they are episodic, with the oracle demonstrating the ideal behavior for
several entire episodes, and the interest is in learning how to mimic the oracle’s behavior in future
episodes. In contrast, our setting consists of a single episode, and we are tasked with learning how
to mimic the ideal behavior on-the-fly. Unlike those settings, we also require a reliability guarantee
for the learner, rather than considering quantitative notions of performance, such as by cumulative
rewards.

A recent work of Sekhari, Sridharan, Sun, and Wu (2023) considers an active imitation learning
setting, which closely matches our setting, in that the goal is to compete with an optimal policy π∗,
and the learner may query an oracle to receive (noisy) samples of the π∗ actions. However, their
setting differs from ours in several important respects. For one, they study an episodic learning
problem, where their learner is aided by the independence across episodes. Additionally, rather
than a policy class Π, they directly model the oracle’s action distribution P (·|s) as a composition
of an unknown function f∗ from a known online-learnable class F of regression functions, with a
strongly-convex link function. In contrast, we allow oracles P (·|s) merely satisfying general noise
conditions (analogous to Massart or Tsybakov noise conditions from classification); in particular,
in our setting, the set of admitted oracle response distributions P (·|s) is not estimable from sam-
ples. Finally, our additional requirement that the learner be reliable makes the learning problem we
consider significantly more challenging for the learner. Nonetheless, it is interesting that their guar-
antees are also expressed in terms of the eluder dimension (in their case, it is the eluder dimension
of the function class).

The general subject of reliable learning was first studied in the classification setting with i.i.d.
samples by Rivest and Sloan (1988). In that literature, the learners predictions are required to
match an unknown target concept, and for examples where this cannot be guaranteed, the learner is
permitted to abstain from predicting. The interest is then in understanding the number of samples
sufficient to guarantee that the frequency of abstention is small. This idea was further studied
in an i.i.d. sequential prediction setting by El-Yaniv and Wiener (2010) (termed perfect selective
classification), and extended to allow for non-realizable queries by El-Yaniv and Wiener (2011);
Gelbhart and El-Yaniv (2019).

The theory we develop, on reliable active apprenticeship learning, is aided by an important
and well-known connection between reliable learning and active learning. Specifically, the core
technique underlying our algorithms and analysis below, and common to both the reliable classi-
fication literature and the active learning literature for classification, is based on the principle of
disagreement-based learning. This approach maintains a set of surviving policies V ⊆ Π up to
each round t, and only declares the optimal action from st as certain if all policies in V agree
on what action to take from st. As long as our updates to V in each round retain π∗ ∈ V , this
clearly specifies a reliable learner, so that the main interest in this approach is in defining updates
to V which most-rapidly reduce the region of disagreement {s ∈ S : ∃π, π′ ∈ V, π(s) ̸= π′(s)}
while retaining π∗ ∈ V . Disagreement-based learning was introduced by Cohn, Atlas, and Ladner
(1994) in the context of realizable-case active learning, and has been extended to allow for various
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non-realizable settings in a rich and well-developed literature on the theory of active learning (see
e.g. Balcan, Beygelzimer, and Langford, 2009; Hanneke, 2007, 2014; Dasgupta, Hsu, and Mon-
teleoni, 2007). It has also been used to understand reliable prediction in i.i.d. classification settings
(Rivest and Sloan, 1988; El-Yaniv and Wiener, 2010, 2011; Balcan, Blum, Hanneke, and Sharma,
2022; Balcan, Hanneke, Pukdee, and Sharma, 2023), and to study the optimal regret achievable
in stochastic contextual bandits and reinforcement learning (Foster, Rakhlin, Simchi-Levi, and Xu,
2021). Since our setting lies at the intersection of reliable learning and active learning, both of which
have disagreement-based learning as a core principle, disagreement-based learning is a particularly
natural principle on which to base our theory, and moreover, as we argue below, leads to optimal
query complexities. To our knowledge, our work is the first to study reliable learning in MDP-type
environments, and to formulate the general problem of reliable active apprenticeship learning.

2. Summary of Main Results

In this section, we introduce key definitions and summarize the main results of this work.

Notation: Let us first introduce a bit of useful terminology and notation (used in the algorithms
and proofs below). For any V ⊆ Π, define the region of disagreement:

DIS(V ) = {s ∈ S : ∃π, π′ ∈ V, π(s) ̸= π′(s)}.

Additionally, we refer to any sequence (s1, a1), . . . , (sT , aT ) in S × A as a trajectory. In partic-
ular, for any environment P and any active apprenticeship learner A, we will refer to the (possi-
bly stochastic) sequence of states and actions (s1, a1), . . . , (sT , aT ) followed by the learner as the
learner’s trajectory.

The Eluder Dimension: The results in this work will hold for any state space S, action set A,
time horizon T , and policy class Π. As such, naturally, the value of the optimal query complexity
will be informed by the specific policy class Π. We will argue that, under several different noise
models for the oracle, the dependence on Π in the optimal query complexity is precisely captured by
the eluder dimension of the policy class Π. Formally, the eluder dimension, as originally introduced
by Russo and Van Roy (2013); Osband and Van Roy (2014); Foster, Rakhlin, Simchi-Levi, and Xu
(2021) (more specifically termed the policy eluder dimension in those works), is defined as follows.

Definition 1 For a given policy π0, the eluder dimension eπ0 := eπ0(Π) is defined as the largest
n ∈ N such that ∃s1, . . . , sn ∈ S such that

∀i ≤ n, si ∈ DIS({π ∈ Π : ∀j < i, π(sj) = π0(sj)}).

Any such sequence is called an eluder sequence centered at π0. If no such largest n exists, define
eπ0 =∞. Also define e(Π) := supπ0∈Π eπ0 .

The eluder dimension (and its variants for R-valued functions) has been a useful quantity in the
literature on reinforcement learning and contextual bandits (Russo and Van Roy, 2013; Osband and
Van Roy, 2014; Foster, Rakhlin, Simchi-Levi, and Xu, 2021) and has interesting relations to other
important quantities in learning theory (Li, Kamath, Foster, and Srebro, 2022; Hanneke, 2024).
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The Realizable Case: We begin with the simplest variant of our setting, corresponding to the
strongest assumption on the oracle considered in this work. Later results below will considerably
relax this assumption. Formally, we say the environment P has a realizable oracle1 with optimal
policy π∗ if, for any state s, querying the oracle from state s always returns π∗(s).

Definition 2 An active apprenticeship learner A is said to be reliable for the realizable case if,
for every choice of π∗ ∈ Π, for every environment P with a realizable oracle with optimal policy
π∗, the learner’s trajectory (s1, a1), . . . , (sT , aT ) always satisfies that every state st in which the
learner does not query the oracle has at = π∗(st).

By definition of the protocol, every state st in which the learner does query the oracle neces-
sarily satisfies at = π∗(st) as well. Thus, a reliable active apprenticeship learner for the realizable
case always has a trajectory (s1, a1), . . . , (sT , aT ) equal (s1, π∗(s1)), . . . , (sT , π

∗(sT )) under a re-
alizable oracle: that is, it exactly mimics the optimal policy. Our first result sharply characterizes
the optimal query complexity of reliable active apprenticeship learning in the realizable case.

Theorem 3 (Realizable-case Optimal Query Complexity) There is a reliable active apprentice-
ship learner ACAL for the realizable case which, for every π∗ ∈ Π, for every environment P with a
realizable oracle with optimal policy π∗, the number of queries by ACAL is at most min{eπ∗ , T}.
Moreover, for any reliable active apprenticeship learner A for the realizable case, for every π∗ ∈ Π,
there exists a (deterministic) environment P with a realizable oracle with optimal policy π∗ such
that the number of queries by A is at least min{eπ∗ , T}.
Thus, for every π∗ ∈ Π, the (minimax) optimal query complexity of reliable active apprenticeship
learning in the realizable case with optimal policy π∗ is precisely min{eπ∗ , T}.

The algorithm ACAL is specifically based on a well-known strategy from the active learning
literature, known as disagreement-based learning, introduced by Cohn, Atlas, and Ladner (1994).
Specifically, it is defined as follows.

Algorithm ACAL:
Initialize V = Π
For each time t = 1, 2, . . . , T ,

If st ∈ DIS(V )
Query the oracle to receive action at = π∗(st) and take action ât = at
Update V ← {π ∈ V : π(st) = π∗(st)}

Else take the unique action ât in {π(st) : π ∈ V }

We present the proof of Theorem 3, establishing an upper bound for ACAL and a matching
minimax lower bound, in Section 3 below.

1. The term “realizable” has been overloaded in the literature. Here we adopt the usage from the classification literature.
In the literature on contextual bandits and reinforcement learning, the term is sometimes used instead for what is
historically known as a well-specified model assumption: that is, that an optimal function is contained in a given
function class, even if there is also some noise.
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Preferential Noisy Oracles: In realistic scenarios, the realizability assumption is quite strong.
For instance, it does not allow for somewhat ambiguous scenarios, where the action a human expert
would recommend may vary from the π∗ action.2 To allow for such possibilities, it makes sense
to relax the realizability assumption. In this work, we model this aspect by considering oracles
with stochastic responses. However, to retain a well-defined notion of reliability, we continue to
suppose there is a fixed optimal policy π∗ ∈ Π, which the adversary tends to prefer. Specifically,
we consider the following definition.

Definition 4 We say the environment P has a preferential noisy oracle with optimal policy π∗

if, for any state s, querying the oracle from state s returns a sample a ∼ P (·|s) (condition-
ally independent of the history given s), where the conditional distribution P (·|s) satisfies that
P (π∗(s)|s) > maxa̸=π∗(s) P (a|s).

Since oracles of this type have stochastic responses, in order to achieve non-trivial query com-
plexity, we will need to mildly relax the reliability requirement to allow for a small failure prob-
ability. For this purpose, let us fix some δ ∈ (0, 1), and we will require the learner to satisfy the
reliability guarantee with probability at least 1− δ.3 Formally, we adopt the following definition.

Definition 5 An active apprenticeship learner A is said to be reliable for the preferential case if,
for every π∗ ∈ Π, for every environment P with a preferential noisy oracle with optimal policy π∗,
with probability at least 1 − δ, the learner’s trajectory (s1, a1), . . . , (sT , aT ) satisfies that every
state st in which the learner does not query the oracle has at = π∗(st).

Following a common pattern from the active learning literature (Balcan, Beygelzimer, and Lang-
ford, 2006; Dasgupta, Hsu, and Monteleoni, 2007; Hanneke, 2007, 2014), we generalize the ACAL

algorithm to remain reliable under preferential noisy oracles. Throughout the remainder of the
paper, for simplicity we denote by log(x) = log2(max{x, 2}). Fix a sufficiently large universal
constant c > 0 (informed by the proofs below). Also, for any t ∈ N, define δt =

δ
2(t+1)2|Π|2 .4

2. For instance, in our Mars rover example from Section 1, when navigating to avoid a rock, it may be reasonable to
drive around either to the left or right of it; while one option may be slightly better than the other, a human expert
might make such suggestions quickly, and hence have some probability of suggesting the slightly-less-optimal action.

3. The necessity of allowing this δ failure probability follows from our lower bound in Theorem 9.
4. For simplicity, we have stated the algorithm and theorems expressed in terms of |Π|, the size of the policy class. While

it is straightforward, using standard techniques, to replace this with instead a dependence on the sequential graph
dimension of the policy class (Hanneke, Moran, Raman, Subedi, and Tewari, 2023), we remark that a recent work of
Hanneke (2024) shows that we always have e(Π) = Ω(log|A|(|Π|)), and thus a dependence on |Π| is unavoidable
in the results (for finite A), so that the log(|Π|) appearing in our bounds may be considered an inherent dependence
anyway.
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Algorithm: ReliableApprentice
0. Initialize V = Π, Q = {}; let s1 be the initial state sampled from P0

1. For t = 1, 2, . . . , T
2. If st ∈ DIS(V )
3. Query for at ∼ P (·|st) and take action ât = at
4. Update Q← Q ∪ {(st, at)}
5. Let π̂t = argmaxπ∈V

∑
(s,a)∈Q 1[π(s) = a]

6. Update

V ←

{
π ∈ V :

∑
(s,a)∈Q

(1[π̂t(s) = a]− 1[π(s) = a]) ≤

c

√√√√√
 ∑

(s,a)∈Q

1[{a} ⊊ {π(s), π̂t(s)}]

 log

(
1

δt

)
+ c log

(
1

δt

)}

7. Else take the unique action ât in {π(st) : π ∈ V }

As the following theorem establishes that this algorithm is indeed reliable in the preferential
case. Its proof is included in Section 4 below.

Theorem 6 The algorithm ReliableApprentice is reliable for the preferential case.

To state quantitative query complexity bounds under preferential noisy oracles, we introduce
special cases of preferential noisy oracles, inspired by commonly-studied noise models from the
classification literature.

Massart Noise: As a first generalization beyond the realizable case, we follow a common idea
from the literature on classification (Massart and Nédélec, 2006) (similar ideas have arisen in the
literature on contextual bandits and reinforcement learning Foster, Rakhlin, Simchi-Levi, and Xu,
2021). Specifically, we suppose that in each state s, the oracle’s response distribution P (·|s) prefers
the optimal π∗(s) action with a probability bounded away from the probabilities of the other actions.
This is often referred to as a gap assumption or bounded noise assumption in the statistical learning
theory literature, and is also often referred to as Massart noise in honor of the seminal analysis
of Massart (2007); Massart and Nédélec (2006) under this assumption. Formally, we have the
following definition.

Definition 7 For any ∆ ∈ (0, 1], we say an environment P satisfies the Massart noise condition
with optimal policy π∗ ∈ Π and gap ∆ if, for any state s, the oracle’s response distribution to
queries from state s satisfies

P (π∗(s)|s) ≥ max
a̸=π∗(s)

P (a|s) + ∆.

We will establish upper and lower bounds for reliable active apprenticeship learning with Mas-
sart noise. Formally, we prove the following results. Their proofs are presented in Section 5 below.
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Theorem 8 For any ∆ ∈ (0, 1], for any π∗ ∈ Π, and any environment P satisfying the Massart
noise condition (Definition 7) with optimal policy π∗ and gap ∆, with probability at least 1 − δ,
the algorithm ReliableApprentice (already shown to be reliable in Theorem 6) makes a number of
queries at most

O

(
eπ∗

1

∆2
log

(
|Π|T
δ

))
.

We complement this with the following lower bound, revealing that, again, the optimal query
complexity is captured by the eluder dimension (even when allowing for a δ failure probability).

Theorem 9 Suppose |Π| ≥ 2. For any ∆ ∈ (0, 1/8), if δ ∈ (0, 1/16e), for any π∗ ∈ Π, there is
an environment P satisfying the Massart noise condition with optimal policy π∗ and gap ∆ such
that, for any active apprenticeship learning algorithm A which is reliable under Massart noise, with
probability greater than δ the algorithm makes a number of queries at least

Ω

((
eπ∗ +

1

∆2
log

(
1

δ

))
∧ T

)
.

The Mixed-Margin Condition, a Generalization of Tsybakov Noise for MDP Environments:
In considering extensions beyond the Massart noise assumption, we may again take inspiration from
the classification literature. In the context of learning a classifier from i.i.d. samples, a condition
known as the margin condition (and often referred to as Tsybakov noise, in honor of the seminal
analysis of Mammen and Tsybakov, 1999; Tsybakov, 2004 under this condition) extends the Mas-
sart noise assumption by allowing for some states to have smaller gaps ∆ than others, as long as
such small-gap states do not occur too frequently: the smaller the gap, the less frequently they occur,
and the noise model expresses this relation as being related polynomially with parameters (C,α)
expressing this relation. However, we face a considerable challenge in appropriately formulating
such a condition in our setting, since (unlike classification under i.i.d. samples) it is less clear what
choice of measure is appropriate for defining what we mean by “less frequently”. One of the contri-
butions of the present work is formulating an appropriate definition of the margin condition, in the
context of reliable apprenticeship learning in MDP-type environments. The key insight is that the
condition need only control the frequency of small-gap states among trajectories which a reliable
active apprenticeship learner may potentially follow: namely, mixed optimal trajectories.

Formally, for any environment P with a preferential noisy oracle with optimal policy π∗, we
say an (S × A)T -valued random sequence (s1,a1, . . . , sT ,aT ) is a mixed optimal trajectory if (1)
it is a trajectory in the environment P (i.e., s1 has the initial state distribution, and each st+1 has
conditional distribution P (·|st,at) for each t < T , and is conditionally independent of {si,ai}i<t

given st,at), and (2) for each t ≤ T , either at = π∗(st) or at has conditional distribution P (·|st)
given st (and is conditionally independent of {si,ai}i<t given st): i.e., the distribution of an oracle
query. In particular, by definition, any reliable learner follows a mixed optimal trajectory with
probability at least 1− δ.

Since mixed optimal trajectories are themselves stochastic (since even the oracle’s responses
may be stochastic), we will need to express the condition on the frequency of small-gap states as
a probabilistic inequality. Specifically, we propose the following extension of the classic Tsybakov
noise condition (Mammen and Tsybakov, 1999; Tsybakov, 2004) to MDP-type environments under
mixed optimal trajectories.
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Definition 10 We say an environment P with preferential noisy oracle with optimal policy π∗ ∈ Π
satisfies the mixed margin condition with parameters (C,α) ∈ [1,∞)×[0, 1) if for every δ′ ∈ (0, 1),
for every t ≤ T , for every mixed optimal trajectory (s1,a1, . . . , sT ,aT ), with probability at least
1− δ′, every τ ∈ (0, 1) satisfies

1

t

t∑
t′=1

1

[
P (π∗(st′)|st′)− max

a̸=π∗(st′ )
P (a|st′) ≤ τ

]
≤ Cτ

α
1−α +

1

t
log

(
1

δ′

)
.

We establish upper and lower bounds on the optimal query complexty of reliable active appren-
ticeship learning under the mixed margin condition, stated in the following theorems. Their proofs
are presented in Section 6 below.

Theorem 11 For any P satisfying the mixed margin condition (Definition 10) with parameters
(C,α) and optimal policy π∗ ∈ Π, with probability at least 1−2δ, the algorithm ReliableApprentice
(already shown to be reliable in Theorem 6) makes a number of queries at most

O

(
eπ∗T

2−2α
2−α

(
log

(
|Π|T
δ

)) α
2−α

)
.

This upper bound is complemented by the following lower bound.

Theorem 12 Fix any π∗ ∈ Π and (C,α) ∈ [64,∞)×(0, 1) s.t. T ≥ 64 ·max
{
(5/2)

2−α
1−α , 16

2−α
α

}
.

Suppose δ is upper bounded by a sufficiently small universal constant (discussed in the proof).
Suppose Π satisfies a non-triviality condition: ∃s0, s1 such that ∃π1 ∈ Π with π1(s0) = π∗(s0)
and π1(s1) ̸= π∗(s1). There exists an environment P satisfying the mixed margin condition with
parameters (C,α) and optimal policy π∗ such that, for any active apprenticeship learner reliable
under the mixed margin condition (with parameters (C,α)), with probability at least (1−2e−1) 1

16e ,
its number of queries is at least

Ω
((

eπ∗ + T
2−2α
2−α

)
∧ T

)
.

Outline of the paper: The rest of the paper provides detailed proofs of these results. The results
on the realizable case are presented in Section 3, followed by the Massart noise case in Section 5,
and the results for Tsybakov noise in Section 6. We conclude with future directions and open
questions (e.g., extension to the agnostic case) in Section 7.

3. Realizable Case

This section presents the proof of Theorem 3, establishing the optimal query complexity of reliable
active apprenticeship learning in the realizable case.
Proof of Theorem 3 We begin with the positive results for ACAL. First note that, since the al-
gorithm only updates V by constraining to agree with π∗ on a state st it has queried, it trivially
satisfies that π∗ ∈ V is maintained as an invariant. In particular, since any state st it does not query
satisfies st /∈ DIS(V ), it follows that the unique action ât agreed upon by all policies in V must
be the action π∗(st). Hence ACAL is indeed reliable in the realizable case. Moreover, note that the

9



HANNEKE YANG WANG SONG

update to V ensures that all policies retained in V after a query agree with π∗(st) on the state st.
Since all policies in V trivially agree with π∗(st) on rounds where it does not query, together we
have that all policies in V agree on all past states, queried or unqueried: that is, after each round t,
we have that V = {π ∈ Π : ∀t′ ≤ t, π(st′) = π∗(st′)}.

Next we upper bound the number of queries. Let (s1, â1), . . . , (sT , âT ) be the trajectory fol-
lowed by ACAL, and let t1, . . . , tn be the subsequence of all t ∈ {1, . . . , T} for which

st ∈ DIS({π ∈ Π : ∀t′ < t, π(st′) = π∗(st′)}).

Note that this is precisely the subsequence of times where the algorithm queries the oracle. Since
the region of disagreement is non-decreasing in its argument set, this also implies

∀i ≤ n, sti ∈ DIS({π ∈ Π : ∀j < i, π(stj ) = π∗(stj )}).

Note that this precisely matches the definition of an eluder sequence centered at π∗, and thus
st1 , . . . , stn witness the fact that eπ∗ ≥ n in Definition 1. Therefore, the total number n of queries
satisfies n ≤ eπ∗ , which completes the proof of the upper bound on the number of queries (noting
that T is always trivially an upper bound).

Next we prove this is also a lower bound (following an argument similar in spirit to one from per-
fect selective classification, El-Yaniv and Wiener, 2010, modified to fit our setting). Let s1, . . . , sn
be an eluder sequence centered at π∗ (as defined in Definition 1), for finite n ≤ min{eπ∗ , T}, for
a given π∗ ∈ Π. If n < T , also extend the sequence to any sn+1, . . . , sT all equal sn, to de-
fine a complete state sequence. Note that, from its definition, it must be that the s1, . . . , sn states
are all distinct. Define an environment P with deterministic state sequence si, i = 1, . . . , T (i.e.,
P0(s1) = 1, and for 1 ≤ i < n, for any a ∈ A the transition probabilities satisfy P (si+1|si, a) = 1,
and P (sn|sn, a) = 1). Also define an oracle which deterministically returns π∗(s) from any state
s, so that the environment P indeed satisfies the realizable case with optimal policy π∗.

By definition, each i ≤ n has

si ∈ DIS({π ∈ Π : ∀j < i, π(sj) = π∗(sj)}). (1)

Consider any active apprenticeship learner A for which, in the above environment P , the algo-
rithm has a non-zero probability (allowing it possibly to be randomized) of not querying in some
state st in the sequence, t ≤ n, and suppose t is the smallest such index for which it has a non-zero
probability. There are now two cases to consider. First, suppose the algorithm has a non-zero prob-
ability of taking an action a ̸= π∗(st) in state st. In this case, by definition, the algorithm cannot
be reliable, as witnessed by having this non-zero probability of taking an action other than π∗(st)
in state st. On the other hand, consider the case that the algorithm still has a non-zero probability
of not querying in state st (where t is smallest with this property), and yet it has probability one of
taking action at = π∗(st) under P . Consider an alternative realizable-case environment Pt, which
has identical initial state distribution and state transitions to P , but has optimal policy πt ∈ Π such
that πt(si) = π∗(si) for all i < t, and πt(st) ̸= π∗(st). Such a policy πt must exist, by the defining
property (1) of the si sequence. Note that the distribution of actions, states, and query responses up
until arriving in state st at time t are identical under P and Pt, so under Pt the algorithm still has
a non-zero probability of not querying in state st and still has conditional probability one of taking
action π∗(st) given that it does not query in state st. Thus, since πt(st) ̸= π∗(st), we have that
under Pt there is a non-zero probability that the algorithm does not query st and yet takes action

10
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π∗(st), which is not the optimal action in state st under environment Pt. Thus, such an algorithm
cannot be reliable in the realizable case. Altogether, we conclude that any reliable algorithm must
have probability one of querying all of s1, . . . , sn when run under environment P . This completes
the proof.

4. Reliable Learning Under Preferential Noisy Oracles

We now present the proof of Theorem 6, establishing that ReliableApprentice is reliable in the
preferential case.
Proof of Theorem 6 The theorem will follow from the following claim: on an event E1 of prob-
ability at least 1 − δ, π∗ ∈ V is maintained as an invariant on all rounds of ReliableApprentice.
This will follow from a martingale uniform concentration inequality. Let It ∈ {0, 1} be 1 iff
st ∈ DIS(V ) on round t. For any π, π′ ∈ Π, the sequence

t∑
t′=1

(
1[π(st′) = ât′ ]− 1[π′(st′) = ât′ ]

)
It′

− E

[
t∑

t′=1

(
1[π(st′) = ât′ ]− 1[π′(st′) = ât′ ]

)
It′

∣∣∣∣∣s1, . . . , st, â1, . . . , ât−1

]

is a martingale difference sequence with respect to (s1, . . . , st, â1, . . . , ât−1). Noting that((
1[π(st′) = ât′ ]− 1[π′(st′) = ât′ ]

)
It′
)2

= 1
[
{ât′} ⊊ {π(st′), π′(st′)}

]
It′ ,

the empirical Bernstein inequality for martingale differences (Bernstein, 1927) implies that, with
probability at least 1− δt,∣∣∣∣∣

t∑
t′=1

(
1[π(st′) = ât′ ]− 1[π′(st′) = ât′ ]

)
It′

−
t∑

t′=1

E
[(

1[π(st′) = ât′ ]− 1[π′(st′) = ât′ ]
)
It′
∣∣s1, . . . , st′ , â1, . . . , ât′−1

] ∣∣∣∣∣
≤ c0

√√√√( t∑
t′=1

1[{ât′} ⊊ {π(st′), π′(st′)}] It′
)
log

(
1

δt

)
+ c0 log

(
1

δt

)
(2)

for an appropriate universal constant c0. Recalling that δt ≤ δ
(t+1)2|Π|2 , by the union bound we have

that the inequality above holds simultaneously for all t ≤ T and π, π′ ∈ Π with probability at least
1− δ. Denote this event as E1.

We are now ready to establish the claim that π∗ ∈ V is maintained as an invariant. Since this
is satisfied at the start of round 1, we may take this as a base case in an inductive argument. For
the purpose of induction, suppose π∗ ∈ V at the start of round t. If st /∈ DIS(V ) on round t, then
V is not changed on round t and the invariant π∗ ∈ V is maintained trivially. Otherwise, suppose

11
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st ∈ DIS(V ), and that the event E1 holds. Since π̂t ∈ V as well, applying the above inequality (2)
with π = π̂t and π′ = π∗, we have that

t∑
t′=1

(1[π̂t(st′) = ât′ ]− 1[π∗(st′) = ât′ ]) It′

≤
t∑

t′=1

E[(1[π̂t(st′) = ât′ ]− 1[π∗(st′) = ât′ ]) It′ |s1, . . . , st′ , â1, . . . , ât′−1]

+ c0

√√√√( t∑
t′=1

1[{ât′} ⊊ {π̂t(st′), π∗(st′)}] It′
)
log

(
1

δt

)
+ c0 log

(
1

δt

)
.

Since we generally have

E[(1[π̂t(st′) = ât′ ]− 1[π∗(st′) = ât′ ]) It′ |s1, . . . , st′ , â1, . . . , ât′−1]

= (P (π̂t(st′)|st′)− P (π∗(st′)|st′)) It′ ≤ 0

by the preferential noise assumption (recall Definition 4), we conclude that
t∑

t′=1

(1[π̂t(st′) = ât′ ]− 1[π∗(st′) = ât′ ]) It′

≤ c0

√√√√( t∑
t′=1

1[{ât′} ⊊ {π̂t(st′), π∗(st′)}] It′
)
log

(
1

δt

)
+ c0 log

(
1

δt

)
.

Thus, π∗ will be preserved in V at the end of round t, for an appropriate choice c = c0 of the
universal constant c. This establishes the invariant that π∗ ∈ V on all rounds, on the event E1, by
the principle of induction. In particular, since the algorithm queries every st ∈ DIS(V ), we may
conclude that on every round the algorithm does not query st, the action ât is agreed upon by all
π ∈ V at that time, and since π∗ ∈ V , this implies this action satisfies ât = π∗(st). Thus, on the
event E1, the algorithm’s actions are reliable, in the sense required by Definition 5.

5. Massart Noise

This section presents the proofs of Theorems 8 and 9, establishing query complexity upper and
lower bounds under Massart noise. One key fact we will need for establishing Theorem 8 is the
following combinatorial lemma.

Lemma 13 Fix any n ∈ N, k ∈ N ∪ {0}, and any π0 ∈ Π, and let s1, . . . , sn ∈ S satisfy that,
∀i ∈ {1, . . . , n},

si ∈ DIS

({
π ∈ Π :

∑
t<i

1[π(st) ̸= π0(st)] ≤ k

})
. (3)

Then there exists m ∈ N with m ≥ n
k+1 , and i1 < · · · < im in {1, . . . , n}, s.t. ∀j ∈ {1, . . . ,m},

sij ∈ DIS({π ∈ Π : ∀t < j, π(sit) = π0(sit)}) . (4)

In particular, this implies n ≤ (k + 1)eπ0 .
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Proof We proceed by induction on n, for any fixed value k ∈ N ∪ {0}. If n ≤ k + 1, the property
(3) for i = 1 already implies (4) holds for the subsequence s1 of length 1 ≥ n

k+1 , so this may serve
as a base case. Now, for the inductive step, consider any n′ > k + 1 such that the claim in the
lemma holds for all n < n′. Fix any s1, . . . , sn′ satisfying (3) for all i ≤ n′. By (3) for i = n′, there
exists πn′ ∈ Π with πn′(sn′) ̸= π0(sn′), and for which the set Sdiff := {t < n′ : πn′(st) ̸= π0(st)}
satisfies |Sdiff | ≤ k. Let n = n′−1−|Sdiff | and let t1, . . . , tn denote the subsequence comprised of
all t /∈ Sdiff ∪ {n′}. Note that since DIS() is monotone in its argument, (3) remains satisfied when
restricted to this subsequence: that is,

∀i ≤ n, sti ∈ DIS

π ∈ Π :
∑
j<i

1[π(stj ) ̸= π0(stj )] ≤ k


 .

Therefore, the inductive hypothesis implies that there exists m ∈ N with m ≥ n
k+1 and a sequence

i1 < · · · < im in {t1, . . . , tn} such that ∀j ∈ {1, . . . ,m}, (4) holds. Moreover, since none of these
ij are in Sdiff ∪{n′}, we have that ∀j ∈ {1, . . . ,m}, πn′(sij ) = π0(sij ). Since πn′(sn′) ̸= π0(sn′),
we conclude that sn′ ∈ DIS({π ∈ Π : ∀t < m + 1, π(sit) = π0(sit)}). Thus, we may extend the
above sequence by defining im+1 = n′ while satisfying (4) for all j ∈ {1, . . . ,m+1}. Noting that,
since |Sdiff | ≤ k, we have

m+ 1 ≥ n

k + 1
+ 1 =

n′ − 1− |Sdiff |
k + 1

+ 1 ≥ n′

k + 1
,

we have thus extended the inductive hypothesis to sequences of length n′, and the result follows by
the principle of induction.

We are now ready for the proof of Theorem 8.
Proof of Theorem 8 We continue the notation from the proof of Theorem 6: namely, It and E1.
The proof consists of three parts. The first part is to simply recall, from the proof of Theorem 6,
that on the event E1 of probability at least 1 − δ, π∗ ∈ V is maintained on all rounds. Second,
we will argue that the sequence of queried states Q satisfies the property (3) from Lemma 13 for
k = O

(
1
∆2 log

(
|Π|T
δ

))
and π0 = π∗. In other words, roughly speaking, we will show the set V

of surviving policies at any time t ≤ T is contained in a Hamming ball of radius k centered at π∗.
Finally, we will apply Lemma 13 to establish the claimed upper bound on |Q|.

As discussed, our second claim is effectively that the set V of surviving policies at the end of
each round t satisfies that every π ∈ V has

∑
t′≤t

1[π(st′) ̸= π∗(st′)]It′ ≤ k (5)

where

k =
c1
∆2

log

(
|Π|T
δ

)
, (6)

13
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for an appropriate universal constant c1. Suppose the event E1 holds. In particular, this means that
at the conclusion of round t, every π ∈ V satisfies

t∑
t′=1

E[(1[π∗(st′) = ât′ ]− 1[π(st′) = ât′ ]) It′ |s1, . . . , st′ , â1, . . . , ât′−1]

≤
t∑

t′=1

(1[π∗(st′) = ât′ ]− 1[π(st′) = ât′ ]) It′

+ c0

√√√√( t∑
t′=1

1[{ât′} ⊊ {π∗(st′), π(st′)}] It′
)
log

(
1

δt

)
+ c0 log

(
1

δt

)

≤
t∑

t′=1

(1[π̂t(st′) = ât′ ]− 1[π(st′) = ât′ ]) It′

+ c0

√√√√( t∑
t′=1

1[{ât′} ⊊ {π∗(st′), π(st′)}] It′
)
log

(
1

δt

)
+ c0 log

(
1

δt

)
.

Since π ∈ V , we further have (recalling that c = c0)

t∑
t′=1

(1[π̂t(st′) = ât′ ]− 1[π(st′) = ât′ ]) It′

≤ c0

√√√√( t∑
t′=1

1[{ât′} ⊊ {π(st′), π̂t(st′)}] It′
)
log

(
1

δt

)
+ c0 log

(
1

δt

)
.

Letting c2 = 2c0, together we have that

t∑
t′=1

E[(1[π∗(st′) = ât′ ]− 1[π(st′) = ât′ ]) It′ |s1, . . . , st′ , â1, . . . , ât′−1]

≤ c2

√√√√( t∑
t′=1

1[{ât′} ⊊ {π̂t(st′), π∗(st′), π(st′)}] It′
)
log

(
1

δt

)
+ c2 log

(
1

δt

)
. (7)

Noting that

1[{ât′} ⊊ {π̂t(st′), π∗(st′), π(st′)}]
≤ 1[{ât′} ⊊ {π̂t(st′), π∗(st′)}] + 1[{ât′} ⊊ {π∗(st′), π(st′)}] ,

since both π̂t and π are in V , we have that the last expression in (7) is at most

c2

√√√√(2max
π′∈V

t∑
t′=1

1[{ât′} ⊊ {π′(st′), π∗(st′)}] It′
)
log

(
1

δt

)
+ c2 log

(
1

δt

)

≤ c2

√√√√(2max
π′∈V

t∑
t′=1

1[π′(st′) ̸= π∗(st′)] It′

)
log

(
1

δt

)
+ c2 log

(
1

δt

)
.
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Additionally, due to the Massart noise condition (Definition 7), every π ∈ V satisfies

E[(1[π∗(st′) = ât′ ]− 1[π(st′) = ât′ ]) It′ |s1, . . . , st′ , â1, . . . , ât′−1] ≥ ∆1[π(st′) ̸= π∗(st′)]It′ .

Together, we have that on E1,

max
π∈V

t∑
t′=1

1[π(st′) ̸= π∗(st′)]It′

≤ 1

∆

c2

√√√√(2max
π∈V

t∑
t′=1

1[π(st′) ̸= π∗(st′)] It′

)
log

(
1

δt

)
+ c2 log

(
1

δt

) .

Solving this quadratic inequality yields

max
π∈V

t∑
t′=1

1[π(st′) ̸= π∗(st′)]It′ ≤
c3
∆2

log

(
1

δt

)
for an appropriate universal constant c3. Thus, we have verified that (5) holds with k as in (6) (for
c1 = c3).

Consider the subsequence stj of states queried by the algorithm: i.e., the states in Q after all T
rounds. On the event E1, we have established that each at the start of each round t = tj , we have

V ⊆

π ∈ Π :
∑
j′<j

1
[
π(stj′ ) ̸= π∗(stj′ )

]
≤ k

 ,

for k as in (6). Therefore, by definition of Q, we have that every (stj , atj ) ∈ Q satisfies

stj ∈ DIS(V ) ⊆

π ∈ Π :
∑
j′<j

1
[
π(stj′ ) ̸= π∗(stj′ )

]
≤ k

 .

Therefore, by Lemma 13, we conclude that on the event E1,

|Q| ≤ (k + 1)eπ∗ = O

(
eπ∗

1

∆2
log

(
|Π|T
δ

))
.

This completes the proof.

We complement the upper bound from Theorem 8 with a lower bound in Theorem 9.
The proof of Theorem 9 will be based on the following well-known lower bound for testing the

bias of a Bernoulli random variable based on samples.
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Lemma 14 (Lemma 5.1 of Anthony and Bartlett, 1999) Let ∆ ∈ (0, 2/5), δ ∈ (0, 1/8e], and

n ≤ 1

2∆2
ln

(
1

8δ

)
.

For any function t̂ : {0, 1}n → {0, 1}, for b ∼ Uniform({−1, 1}), for B1, . . . , Bn conditionally
i.i.d. Bernoulli

(
1+b∆

2

)
given b,

P
(
t̂(B1, . . . , Bn) ̸= b

)
> δ.

This further implies that, for any given t̂ function, there exists a deterministic choice of b for which
P
(
t̂(B1, . . . , Bn) ̸= b

)
> δ.

We now present the proof of Theorem 9.
Proof of Theorem 9 Fix any π∗ ∈ Π. We begin by showing a lower bound Ω(min{eπ∗ , T}). While
such a lower bound was already established for realizable-case reliable learning (Theorem 3), we
here confirm that this lower bound remains valid even when we allow for the δ failure probability
afforded to reliable learners under Massart noise. Fix any finite value e ≤ eπ∗ ∧T , and let s1, . . . , se
be an eluder sequence centered at π∗: namely, let π1, . . . , πe ∈ Π be such that ∀i ≤ e, πi(si) ̸=
π∗(si) and ∀j < i, πi(sj) = π∗(sj). Such sequences si and πi are guaranteed to exist by the
definition of eπ∗ . Define an initial state distribution P0 which produces s1 with probability one.
Define state transition distribution which, for any i ∈ {1, . . . , e−1}, satisfies that P (si+1|si, a) = 1
for every action a ∈ A, and P (se|se, a) = 1 as well. Define query responses P (π∗(s)|s) = 1 for
every s. This environment deterministically follows the sequence s1, s2, . . . , se, and answers every
query with the π∗ action. It therefore trivially satisfies the Massart noise condition.

Fix any learning algorithm A. We consider two cases. First, suppose there is some i ≤ e such
that, when A is run under the above environment P , with probability greater than 2δ, upon reaching
state si (for the first time, in the case of i = e), it does not query the oracle. Given the event that it
does not query the oracle, if the learner has conditional probability at least 1/2 of not taking action
π∗(si), then altogether it has probability greater than δ of not querying and yet not taking action
pi∗(si), and hence is not reliable under Massart noise. Otherwise, suppose that, given the event that
the learner does not query the oracle upon reaching state si, it has conditional probability greater
than 1/2 of taking action π∗(si). Consider an alternative environment P ′, which is identical to P
except that query responses satisfy P ′(πi(s)|s) = 1 for every state s (P ′ clearly also satisfies the
Massart noise condition). In particular, note that any queries among the states s1, . . . , si−1 will
return identical actions under P and P ′, so that the distribution of the algorithm’s behaviors upon
reaching state si will be identical under these two environments. Thus, overall, when running A
under environment P ′, the algorithm has probability greater than δ of not querying upon reaching
si and yet taking action π∗(si), not the optimal action πi(si) (recalling that πi(si) ̸= π∗(si)), and
hence is not reliable under Massart noise.

Next consider a second case: namely, suppose that, for every i ≤ e, when A is run under the
environment P , it has probability at most 2δ of not querying the oracle upon reaching state si. Let
Q denote the total number of queries by the learner in the first e rounds. We have E[Q] ≥ (1−2δ)e.
Since Q ≤ e, we have eP(Q > (1/2)(1 − 2δ)e) + (1/2)(1 − 2δ)e ≥ E[Q] ≥ (1 − 2δ)e, so that
P(Q > (1/2)(1 − 2δ)e) ≥ (1/2)(1 − 2δ), which is greater than δ if δ ∈ (0, 1/4). Thus, with
probability greater than δ, the algorithm makes at least (1/2)(1 − 2δ)e queries. Since the above
analysis is valid for any e ≤ eπ∗ ∧ T , the lower bound Ω(eπ∗ ∧ T ) follows.
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For the remaining term, if it is larger than the first term, we will witness the lower bound by
constructing a P as follows. Let π′ ∈ Π and s0 ∈ S satisfy that π′(s0) ̸= π∗(s0). Such a π′ and
s0 must exist, since |Π| ≥ 2. Define the initial state distribution of P to have probability one of s0,
and the state transition distribution satisfies P (s0|s0, a) = 1 for every action a. In other words, the
state sequence deterministically repeats state s0. The oracle’s response distribution for any state s
is defined as P (π∗(s)|s) = 1+∆

2 and P (π′(s)|s) = 1−∆
2 . Note that this indeed satisfies the Massart

noise condition.
Consider an alternative environment P ′, which is identical to P except that a query in any state

s has P ′(π∗(s)|s) = 1−∆
2 and P ′(π′(s)|s) = 1+∆

2 . Again, this clearly satisfies the Massart noise
condition (now with optimal policy π′). Note that π∗ is not an optimal policy for this environment
P ′, and rather, π′ is optimal. Any reliable learner must satisfy the reliability guarantee regardless
of whether run under P or P ′, and must therefore be able to distinguish which of these cases it is in
before it can reliably choose an action in state s0 rather than querying.

We will establish the lower bound via a standard reduction from hypothesis testing (Lemma 14).
We now set up the reduction from hypothesis testing. Consider running a learner A under an envi-
ronment P̃ sampled uniformly at random from {P, P ′}. Let n =

⌊
1

2∆2 ln
(

1
16δ

)⌋
∧T . For each time

t ≤ n, define a value Bt which is 0 if the oracle’s (hypothetical) response at that time is π∗(s0) and
1 if it is π′(s0); note that under P̃ , these are the only possibilities. When executing the learner under
environment P̃ , if there exists some time t ≤ n for which it does not query the oracle, let t be the
earliest such time, and if its action at this time t is among π∗(s0) or π′(s0), define t̂(B1, . . . , Bn)
as −1 if its action is π∗(s0) and as 1 if it is π′(s0). If its action is not one of these, or if the learner
queries at every time t ≤ n, let t̂(B1, . . . , Bn) = 1. Note that, since the learner’s action is based
on the oracle responses, then its behavior is indeed a (possibly randomized) function of the Bi vari-
ables, so that this is a valid definition of t̂(B1, . . . , Bn). Note that if the oracle is responding with
P then a value t̂(B1, . . . , Bk̂) = 1 represents either an unreliable action (action different from the
optimal action) or the event that it queries every time t ≤ n when responses are from P , whereas if
the oracle is responding with P ′ then a value t̂(B1, . . . , Bn) = −1 implies an unreliable action.

Applying Lemma 14, with probability greater than 2δ we have either that t̂(B1, . . . , Bn) = 1
while the environment is P or that t̂(B1, . . . , Bn) = −1 while the environment is P ′. In particular,
by the law of total probability, this means either (1) the probability of an unreliable action under P ′

is greater than 2δ (so that the learner is not reliable under Massart noise), or (2) there is an event E
of probability greater than 2δ under P that the algorithm either makes an unreliable action (for P )
or queries in all of the first n rounds. In this second case, if we suppose the learner is reliable under
Massart noise, it has an event E′ of probability at least 1− δ on which it never makes an unreliable
action on a non-querying round. In particular, this implies E ∩ E′ has probability greater than δ,
and on the event E ∩ E′, it must be that the algorithm queries in all of the first n rounds: that is,
with probability greater than δ, it makes a number of queries at least n. This completes the proof of
the lower bound.

6. The Mixed Margin Condition

This section presents the proof of Theorems 11 and 12, establishing upper and lower bounds on
the optimal query complexity under the mixed-margin condition. A main ingredient in the proof of
Theorem 11 is an analogue of the Bernstein class condition (Tsybakov, 2004; Bousquet, Boucheron,
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and Lugosi, 2004; Bartlett, Jordan, and McAuliffe, 2006), appropriately formulated to relate to
Definition 10.

Definition 15 We say P satisfies the mixed Bernstein class condition with parameters (C ′, α) ∈
[1,∞) × [0, 1) if, for every mixed optimal trajectory (s1,a1, . . . , sT , sT ), for every t ≤ T and
δ′ ∈ (0, 1), with probability at least 1− δ′, every π ∈ Π satisfies

1

t

t∑
t′=1

1[π(st′) ̸= π∗(st′)] ≤ C ′

(
1

t

t∑
t′=1

(P (π∗(st′)|st′)− P (π(st′)|st′))

)α

+
1

t
log

(
1

δ′

)
.

Analogously to the Bernstein class condition in classification, the margin condition implies the
Bernstein class condition. Specifically, we have the following lemma.

Lemma 16 For any P satisfying the mixed margin condition (Definition 10) with parameters
(C,α) ∈ [1,∞) × (0, 1), for every mixed optimal trajectory (s1,a1, . . . , sT ,aT ), for every t ≤ T ,
δ′ ∈ (0, 1), and π ∈ Π, with probability at least 1− δ′,

1

t

t∑
t′=1

1[π(st′) ̸= π∗(st′)] ≤ C ′

(
1

t

t∑
t′=1

(P (π∗(st′)|st′)− P (π(st′)|st′))

)α

+
1

t
log

(
1

δ′

)
,

where C ′ = C1−α(1− α)α−1α−α.

Proof Suppose P satisfies Definition 10. Consider a mixed optimal trajectory (s1,a1, . . . , sT ,aT ).
Let t ≤ T , δ′ ∈ (0, 1), and π ∈ Π. By Definition 10, with probability at least 1 − δ′, for every
τ > 0,

1

t

t∑
t′=1

1

[
P (π∗(st′)|st′)− max

a̸=π∗(st′ )
P (a|st′) ≤ τ

]
≤ Cτ

α
1−α +

1

t
log

(
1

δ′

)
. (8)

Suppose this event holds.
Note that for any τ > 0,

1

t

t∑
t′=1

(P (π∗(st′)|st′)− P (π(st′)|st′))

≥ τ
1

t

t∑
t′=1

1[π(st′) ̸= π∗(st′)]1[P (π∗(st′)|st′)− P (π(st′)|st′) ≥ τ ]

≥ τ

(
1

t

t∑
t′=1

1

[
P (π∗(st′)|st′)− max

a̸=π∗(st′ )
P (a|st′) ≥ τ

])
− τ

(
1

t

t∑
t′=1

1[π(st′) = π∗(st′)]

)

≥ τ

(
1− Cτ

α
1−α − 1

t
log

(
1

δ′

))
− τ

(
1

t

t∑
t′=1

1[π(st′) = π∗(st′)]

)

= τ

(
1

t

t∑
t′=1

1[π(st′) ̸= π∗(st′)]

)
− Cτ1+

α
1−α − τ

t
log

(
1

δ′

)
.
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Denoting by

A =
1

t

t∑
t′=1

1[π(st′) ̸= π∗(st′)]

and setting

τ =

(
(1− α)

C

(
A− 1

t
log

(
1

δ′

))) 1−α
α

gives

1

t

t∑
t′=1

(P (π∗(st′)|st′)− P (π(st′)|st′))

≥
(
(1− α)

C

(
A− 1

t
log

(
1

δ′

))) 1−α
α

A− C

(
(1− α)

C

(
A− 1

t
log

(
1

δ′

))) 1
α

−
(
(1− α)

C

(
A− 1

t
log

(
1

δ′

))) 1−α
α 1

t
log

(
1

δ′

)
= C

α−1
α (1− α)

1
α

(
α

1− α

)(
A− 1

t
log

(
1

δ′

)) 1
α

.

Solving for A yields

A ≤ C1−α(1− α)α−1α−α

(
1

t

t∑
t′=1

(P (π∗(st′)|st′)− P (π(st′)|st′))

)α

+
1

t
log

(
1

δ′

)
.

We are now ready for the proof of Theorem 11. In particular, Theorem 11 follows immediately
from a combination of Lemma 16 and the following result.

Lemma 17 For any P satisfying the mixed Bernstein class condition (Definition 15) with parame-
ters (C ′, α), on the event E1 (of probability at least 1−δ) from the proof of Theorem 6, the algorithm
ReliableApprentice is reliable, and on an additional event E2 of probability at least 1− δ, makes
a number of oracle queries at most

O

(
eπ∗ · (C ′)

2
2−αT

2−2α
2−α

(
log

(
|Π|T
δ

)) α
2−α

)
.

Proof of Lemma 17 The proof follows analogously to the proof of Theorem 8. We will again have
three main parts: (1) arguing that π∗ ∈ V is preserved as an invariant, (2) arguing that on round t,
V is contained in a Hamming ball of some radius kt, and (3) bounding the number of queries based
on this fact via Lemma 13.

As before, the first property will hold via martingale concentration inequalities. Let It ∈ {0, 1}
be 1 iff st ∈ DIS(V ) on round t. Let E1 be as in the proof of Theorem 8. Note that this portion of
the proof of Theorem 8, establishing that E1 holds with probability at least 1− δ

2 , and that π∗ ∈ V is
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maintained as an invariant on the event E1, remains valid under the mixed Bernstein class condition
as well. In particular, from the definition of the algorithm, it follows that ReliableApprentice is
reliable.

Next we establish the second claim, again via an argument similar to that in the proof of Theo-
rem 8, but in this case requiring some modifications. Let Vt denote the set V at the end of round t.
Suppose the event E1 holds. As argued above, this also implies π∗ ∈ Vt on every round. As in the
proof of Theorem 8, at the conclusion of round t, every π ∈ Vt satisfies

t∑
t′=1

E[(1[π∗(st′) = ât′ ]− 1[π(st′) = ât′ ]) It′ |s1, . . . , st′ , â1, . . . , ât′−1]

≤ c2

√√√√(max
π′∈Vt

t∑
t′=1

1[π′(st′) ̸= π∗(st′)]It′

)
log

(
1

δt

)
+ c2 log

(
1

δt

)

= c2

√√√√(max
π′∈Vt

t∑
t′=1

1[π′(st′) ̸= π∗(st′)]

)
log

(
1

δt

)
+ c2 log

(
1

δt

)
,

for a universal constant c2, where the final equality holds because π′ ∈ Vt implies that π′(st′) =
π∗(st′) for any t′ ≤ t with It′ = 0 (since Vt is non-increasing in the rounds t). Additionally, since
ât′ ∼ P (·|st′) whenever It′ = 1, we have

t∑
t′=1

E[(1[π∗(st′) = ât′ ]− 1[π(st′) = ât′ ]) It′ |s1, . . . , st′ , â1, . . . , ât′−1]

=

t∑
t′=1

(P (π∗(st′)|st′)− P (π(st′)|st′)) It′ =
t∑

t′=1

(P (π∗(st′)|st′)− P (π(st′)|st′)) ,

where the final equality is again due to the fact that π ∈ Vt, which implies It′ = 0 =⇒ π∗(st′) =
π(st′) =⇒ P (π∗(st′)|st′)− P (π(st′)|st′) = 0. Thus, on the event E1, we have

max
π∈Vt

t∑
t′=1

(P (π∗(st′)|st′)− P (π(st′)|st′))

≤ c2

√√√√(max
π∈Vt

t∑
t′=1

1[π(st′) ̸= π∗(st′)]

)
log

(
1

δt

)
+ c2 log

(
1

δt

)
. (9)

Additionally, note that since the algorithm is reliable, on the event E1, s1, . . . , sT follows a
mixed optimal trajectory. Therefore, Definition 15 and the union bound imply that on an event E2

of probability at least 1−
∑

t≤T δt ≥ 1− δ
2 , every t ≤ T and π ∈ Π satisfies

1

t

t∑
t′=1

1[π(st′) ̸= π∗(st′)] ≤ C ′

(
1

t

t∑
t′=1

(P (π∗(st′)|st′)− P (π(st′)|st′))

)α

+
1

t
log

(
1

δt

)
.
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Plugging this into (9) and simplifying gives that, on the event E1 ∩ E2,

max
π∈Vt

1

t

t∑
t′=1

(P (π∗(st′)|st′)− P (π(st′)|st′))

≤ 2c2

√√√√C ′

(
max
π∈Vt

1

t

t∑
t′=1

(P (π∗(st′)|st′)− P (π(st′)|st′))

)α
1

t
log

(
1

δt

)
+

3c2
t

log

(
1

δt

)

≤ max

4c2

√√√√C ′

(
max
π∈Vt

1

t

t∑
t′=1

(P (π∗(st′)|st′)− P (π(st′)|st′))

)α
1

t
log

(
1

δt

)
,
6c2
t

log

(
1

δt

) .

In the case the first term in the max is larger, we may simplify the inequality (i.e., x ≤ a
√
bxα =⇒

x ≤ (a2b)
1

2−α ), so that altogether we have

max
π∈Vt

1

t

t∑
t′=1

(P (π∗(st′)|st′)− P (π(st′)|st′))

≤ max

{(
16c22C

′ 1

t
log

(
1

δt

)) 1
2−α

,
6c2
t

log

(
1

δt

)}

≤
(
16c22C

′ 1

t
log

(
1

δt

)) 1
2−α

+
6c2
t

log

(
1

δt

)
.

In particular, on the event E2, this further implies

max
π∈Vt

1

t

t∑
t′=1

1[π(st′) ̸= π∗(st′)]

≤ C ′

((
16c22C

′ 1

t
log

(
1

δt

)) 1
2−α

+
6c2
t

log

(
1

δt

))α

+
1

t
log

(
1

δt

)

≤ c3(C
′)

2
2−α

(
c4
t
log

(
1

δt

)) α
2−α

(10)

for appropriate universal constants c3, c4.
The utility of (10) is that it enables us to bound the number of queries in terms of eπ∗(Π) via

Lemma 13, as follows. The sequence of query times t1 < t2 < · · · (i.e., those t with It = 1) satisfy
xti ∈ DIS(Vti−1). Moreover, by (10), every π ∈ Vti−1 satisfies

i−1∑
j=1

1
[
π(stj ) ̸= π∗(stj )

]
≤

ti−1∑
t′=1

1[π(st′) ̸= π∗(st′)]

≤ c3(C
′)

2
2−α (ti − 1)

2−2α
2−α

(
c4 log

(
1

δti−1

)) α
2−α

≤ c3(C
′)

2
2−αT

2−2α
2−α

(
c4 log

(
1

δT

)) α
2−α

=: k.
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Thus, by monotonicity of DIS(·), each ti satisfies

sti ∈ DIS

π ∈ Π :
∑
j<i

1
[
π(stj ) ̸= π∗(stj )

]
≤ k


 ,

and therefore Lemma 13 implies the total number n of query times ti is at most

(k + 1)eπ∗ = O

(
eπ∗ · (C ′)

2
2−αT

2−2α
2−α

(
log

(
1

δT

)) α
2−α

)
.

This completes the proof.

Next we turn to establishing the lower bound stated in Theorem 12 under the mixed margin
condition. The proof will again be based on the lower bound in Lemma 14 for hypothesis testing.
Proof of Theorem 12 A lower bound Ω(min{eπ∗ , T}) follows identically to the proof of The-
orem 9 (noting that the realizable case always satisfies the mixed margin condition). For the
remaining term, if it is larger than the first term, we will witness the lower bound by construct-
ing a P whose state transitions are supported on the two states s0, s1, as follows. Suppose T ≥
64 · max

{
(5/2)

2−α
1−α , 16

2−α
α

}
. For simplicity we will establish the result specifically for C = 64,

which immediately implies it also for any larger C (since P satisfying Definition 10 with C = 64
also satisfies it for any larger C). Let PS denote a fixed distribution on the state space S, supported
on {s0, s1}, with PS({s1}) = C

8 (C/T )
α

2−α and PS({s0}) = 1− PS({s1}). Define the initial state
distribution in P to be PS , and for any action a from any state s, the transition distribution is also
PS : that is, regardless of actions, the state sequence s1, s2, . . . , sT is i.i.d. PS .

Now for the oracle’s response distribution, a query in state s1 returns π∗(s1) with probability
1
2 + 1

2(C/T )
1−α
2−α , and otherwise returns π1(s1). A query from state s0 deterministically returns

π∗(s0). Since the state sequence is supported only on {s0, s1}, this completely specifies the transi-
tion distribution and query response distribution, and hence completely specifies P .

It remains to establish (1) that P satisfies the mixed margin condition, and (2) that the claimed
lower bound is satisfied by any reliable learner. For (1), note that every mixed-optimal trajec-
tory (s1,a1, . . . , sT ,aT ) has s1, . . . , sT i.i.d. PS . Additionally, note that we have P (π∗(s0)|s0) −
maxa̸=π∗(s0) P (a|s0) = 1, whereas

P (π∗(s1)|s1)− max
a̸=π∗(s1)

P (a|s1) = P (π∗(s1)|s1)− P (π1(s1)|s1) = (C/T )
1−α
2−α .

Moreover, for any t ≤ T and δ ∈ (0, 1), by a Chernoff bound, with probability at least 1− δ,

1

t

t∑
t′=1

1[st′ = s1] ≤ 2ePS({s1}) +
1

t
log2

(
1

δ

)
≤ C

(
C

T

) α
2−α

+
1

t
log2

(
1

δ

)
.

In particular, for any τ < (C/T )
1−α
2−α ,

1

t

t∑
t′=1

1

[
P (π∗(st′)|st′)− max

a̸=π∗(st′ )
P (a|st′) ≤ τ

]
= 0,
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whereas, on the above event of probability at least 1− δ, any 1 > τ ≥ (C/T )
1−α
2−α satisfies

1

t

t∑
t′=1

1

[
P (π∗(st′)|st′)− max

a̸=π∗(st′ )
P (a|st′) ≤ τ

]

=
1

t

t∑
t′=1

1[st′ = s1] ≤ C

(
C

T

) α
2−α

+
1

t
log2

(
1

δ

)
≤ Cτ

α
1−α +

1

t
log

(
1

δ

)
.

Thus, P indeed satisfies the mixed margin condition with parameters (C,α).
It remains only to establish (2): that the claimed lower bound is satisfied by any reliable learner,

under this P . Consider an alternative environment P1, which is identical to P except that a query in
state s1 returns π1(s1) with probability 1

2 + 1
2(C/T )

1−α
2−α , and otherwise returns π∗(s1). Note that

π∗ is not an optimal policy for this environment P1, and rather, π1 is optimal. Further note that,
by symmetry, P1 also satisfies the mixed margin condition with parameters (C,α). Any reliable
learner must satisfy the reliability guarantee regardless of whether run under P or P1, and must
therefore be able to distinguish which of these cases it is in before it can reliably choose an action
in state s1 rather than querying. Also note that the state trajectory s1, . . . , sT is independent of the
actions of the learner and the responses to queries. In particular, let k̂ denote the number of times t
with st = s1. By Chernoff bounds,

P
(
k̂ < (1/2)PS({s1})T

)
≤ exp{−PS({s1})T/8} ≤ e−1,

and
P
(
k̂ ≥ 2PS({s1})T

)
≤ exp{−PS({s1})T/3} ≤ e−1,

so that a union bound implies that, on an event E of probability at least 1− 2e−1 > 0,

1

16
C

2
2−αT

2−2α
2−α = (1/2)PS({s1})T ≤ k̂ ≤ 2PS({s1})T =

1

4
C

2
2−αT

2−2α
2−α .

Denote by t1 < · · · < tk̂ the sequence of times t with st = s1.
We will establish the lower bound via a standard reduction from hypothesis testing (following

closely to a standard line of reasoning from statistical learning under Tsybakov noise; see e.g., Mas-
sart and Nédélec (2006); Hanneke (2014)). Specifically, we apply Lemma 14 under the conditional
distribution given Σ := (k̂, t1, . . . , tk̂), on the event E. In particular, for

∆ = (C/T )
1−α
2−α ,

on the event E we have
k̂ ≤ 1

4
C

2
2−αT

2−2α
2−α = 214(T/C)

2−2α
2−α

where the last inequality comes from our choice of C = 64.
We now set up the reduction from hypothesis testing. For each time ti among t1, . . . , tk̂, define a

value Bi which is 0 if the oracle’s (hypothetical) response at that time is π∗(s1) and 1 if it is π1(s1);
note that under P and P1, these are the only possibilities. Consider choosing the environment P̃
to run the learner under uniformly at random from {P, P1}. Consider running any given learner
under this environment P̃ . If there exists some time among t1, . . . , tk̂ for which it does not query

23



HANNEKE YANG WANG SONG

the oracle, let t be the earliest such time, and if its action at this time t is among π∗(s1) or π1(s1),
define t̂(B1, . . . , Bk̂) as 0 if its action is π∗(s1) and as 1 if it is π1(s1). If its action is not one of
these, or if the learner queries every ti, let t̂(B1, . . . , Bk̂) = 1. Note that, since the learner’s action is
based on the state trajectory and oracle responses, then conditional on the state trajectory the action
is indeed a (possibly randomized) function of the Bi variables, so that this is a valid definition of
t̂(B1, . . . , Bk̂). Note that if the oracle is responding with P then a value t̂(B1, . . . , Bk̂) = 1 repre-
sents either an unreliable action (action different from the optimal action) or the event that it queries
every time ti when responses are from P , whereas if the oracle is responding with P1 then a value
t̂(B1, . . . , Bk̂) = 0 implies an unreliable action. Applying Lemma 14 under the conditional distri-
bution given the event E, it is the case that with probability greater than 1

8 exp{−2
15}we have either

t̂(B1, . . . , Bk̂) = 1 while the environment is P or that t̂(B1, . . . , Bk̂) = 0 while the environment is
P1. All of this occurs on the event E, so that overall the learner has conditional probability (given
E) at least (1 − 2e−1)18 exp{−2

15} of satisfying either (1) P̃ = P , and either the learner queries
at every time t1, . . . , tk̂ or makes an unreliable action (for P ) at its first time ti at which it does not
query, or (2) P̃ = P1, and it does not query every time ti and makes an unreliable (for P1) action at
the first time ti it does not query. In particular, by the law of total probability, this further implies
that for any such learner, either it has a conditional probability (given E) at least 1

8 exp{−2
15} of

being unreliable under P1, or it has conditional probability (given E) at least 1
8 exp{−2

15} of either
being unreliable or querying every time ti under P . Therefore, since E has probability at least
1− 2e−1, for δ < (1− 2e−1) 1

16 exp{−2
15}, any reliable learner must have conditional probability

(given E) at least 1
16 exp{−2

15} of querying every time ti under P . Since E has probability at least

1− 2e−1, and k̂ ≥ 1
16C

2
2−αT

2−2α
2−α on the event E, we conclude that any reliable learner must have

probability at least (1− 2e−1) 1
16 exp{−2

15} of querying at least 1
16C

2
2−αT

2−2α
2−α times under P .

We remark that there is a gap between the upper and lower bounds for the mixed margin condi-
tion. This situation is analogous to one that persisted in the active learning literature for a number
of years (Hanneke, 2014), and was resolved by the work of Hanneke and Yang (2015), establishing
that the lower bound is sharp. We conjecture that a similar resolution is possible for reliable ac-
tive apprenticeship learning under the mixed margin condition (though this may require a different
algorithm).

Conjecture 18 We conjecture the optimal query complexity of reliable active apprenticeship learn-
ing under the mixed margin condition always matches the lower bound in Theorem 12 up to log fac-
tors: that is, an upper bound holds, matching the lower bound up to a factor polylog(T, |Π|, 1/δ).

7. Conclusions and Future Directions

We have proposed a new learning setting, termed reliable active apprenticeship learning, and estab-
lished near-optimal query complexity guarantees, under increasingly-general noise models: realiz-
able, Massart, and mixed-margin. A number of important future directions remain open. Perhaps
the clearest question is the extension to the agnostic setting, where there are no assumptions on the
oracle. A primary challenge in such a setting is even to formulate what kind of reliability require-
ment is possible. The main difficulty in formulating this setting is that the notion of optimal policy
π∗ depends heavily on the specific trajectory followed by the learner (in contrast to preferential
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noisy oracles, where π∗ is defined to be optimal in a point-wise fashion). We leave as an impor-
tant future direction the formulation of such a definition of reliability applicable (and achievable)
without any assumptions on the environment P , including the oracle’s responses.
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