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TextGaze: Gaze-Controllable Face Generation with Natural
Language

Anonymous Authors

The person's 

gaze is turned to 

the left and 

downward.

Target Text DALL-EStable Diffusion Ours

Target 

Gaze Zone

Generated 

Gaze

Input:

Text Description
Output: 

Face Image

TextGaze
But the face direction is not my desired.

I want to generate a human face who is 

looking at the sky.  

Certainly! Here’s <Image>

Could you provide gaze and head pose, like 

gaze [-40o, 20o], head [-73o, 17o] ?

I don’t know the accurate number.

Of course! Here’s new <Image>

I hope that “the person is looking right and 

slightly upwards with tilted head”. 

Could you generate a new image using this 

description?

Figure 1: Left: Overview of our method. Generating gaze images with natural language. Our method significantly outperforms
Stable Diffusion and DALL-E. Right: Our motivation. People tend to describe head pose and gaze direction using direction and
extent words instead of labels.

ABSTRACT
Generating face image with specific gaze information has attracted
considerable attention. Existing approaches typically input gaze
values directly for face generation, which is unnatural and requires
annotated gaze datasets for training, thereby limiting its application.
In this paper, we present a novel gaze-controllable face generation
task. Our approach inputs textual descriptions that describe human
gaze and head behavior and generates corresponding face images.
Our work first introduces a text-of-gaze dataset containing over 90k
text descriptions spanning a dense distribution of gaze and head
poses. We further propose a gaze-controllable text-to-face method.
Our method contains a sketch-conditioned face diffusion module
and a model-based sketch diffusion module. We define a face sketch
based on facial landmarks and eye segmentation map. The face
diffusion module generates face images from the face sketch, and
the sketch diffusion module employs a 3D face model to generate
face sketch from text description. Experiments on the FFHQ dataset
show the effectiveness of our method. We will release our dataset
and code for future research.
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CCS CONCEPTS
• Computing methodologies→ Computer vision tasks.

KEYWORDS
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1 INTRODUCTION
Face image generation has made significant progress in recent years,
owing to the remarkable capabilities of adversarial networks [7]
and diffusion models [25, 27]. It has various applications including
virtual reality [42, 43], digital human [13, 35] and CGfilm-making [1,
37]. The text-to-face task, which aims to control the face generation
using natural language descriptions, has also gained considerable
attention [12, 33]. This task generates face images corresponding
to input text, attracting interest due to its natural interaction and
vast practical potential.

Recent text-to-face methods typically utilize natural language to
manipulate semantic feature generation, such as “black hair” and
“young boy”. These semantic features are manually annotated for
each images and provides paired data for the generation model
training. In addition to these semantic features, human behaviors
are also crucial components evident in human faces. Human gaze
reflects human intention and is highly demanded in numerous
applications. However, to the best of our knowledge, there is no
work for the text-driven gaze-controllable face generation.

Gaze-controllable face generation methods aim to produce face
images that correspond to a specified gaze input. Recent approaches
typically involve inputting a specific numerical gaze value to gener-
ate the corresponding face images [10, 29]. However, we argue that

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Table 1: We list some text-image datasets in various tasks.
Our work provides the first text-gaze dataset ToG, containing
large and diverse text descriptions.

Datasets Task #Texts
BABEL [22] Text-Body 63,000
HumanML3D [8] Text-Body 44,970
PoseScipt [4] Text-Body 300,000
Text2FaceGAN [20] Text-Face 60,000
CelebAText-HQ [34] Text-Face 150,100
ToG (Ours) Text-Gaze 95,548

using gaze values as input may not be user-friendly, particularly
for non-expert users as shown in Fig. 1. Representing gaze through
numerical values could pose challenges for individuals unfamiliar
with the technical aspects of gaze estimation. This raises the need
for a more user-friendly and intuitive approach to specifying gaze
in the generation process.

In this work, we propose a novel gaze-controllable text-to-face
generation task, where the input is the text descriptions of human
gaze behavior, such as “the person looks forward”. Unlike using gaze
values, employing natural language is more aligned with common
expressive habits, making it more accessible and acceptable to a
broader range of users. However, a key challenge arises due to the
scarcity of text descriptions of gaze behavior. The development of
an accurate and diverse text description dataset is highly demanded.

Our approach decomposes human gaze into eye and head rota-
tions, employing uniform sampling to obtain a dense gaze distribu-
tion. Annotating text descriptions for each gaze sample manually
is time-intensive, and the expertise of annotators greatly influences
the annotation outcomes. Inspired by the success of Large Language
Models (LLMs) in natural language expression, we utilize LLMs
to annotate gaze behaviors. Prompt construction based on gaze
samples and LLM utilization enable the generation of diverse text
descriptions.

We first introduce a text of gaze (ToG) dataset containing over
90𝑘 gaze descriptions. Our approach decomposes human gaze into
eye and head rotations, employing uniform sampling to obtain a
dense gaze distribution. Annotating text descriptions for each gaze
samplemanually is time-consuming, and the expertise of annotators
greatly influences the annotation outcomes. Inspired by the success
of Large Language Models (LLMs) in natural language, we utilize
LLMs to annotate gaze behaviors. We construct prompts based on
gaze samples and employ LLM to generate diverse text descriptions.

We further introduce a gaze-controllable text-to-face generation
method, consisting of a sketch-conditioned face diffusion module
and a model-based sketch diffusion model. Our approach utilizes
CLIP to obtain feature embeddings from text and introduces a text
attention module to extract gaze-related and head-related features
from these embeddings. By learning gaze patterns from the ex-
tracted features, we convert gaze patterns into face sketches based
on a 3D face model. The face diffusion model then generates face
images from these sketches. Unlike conventional methods that rely
on annotated gaze datasets for training, our method generates di-
verse face images without the need for such datasets, using face
sketches instead.

Overall, our contributions are three-fold.

• We introduce a novel gaze controllable face generation task
where the input is a text description of human gaze behavior.
We provide the first text-to-gaze dataset containing more
than 90k descriptions. LLMs are used to produce accurate
and diverse annotations. To the best of our knowledge, our
work is the first to leverage LLMs for gaze image generation.

• We propose a two-stage text-to-face method. Our method
leverages the prior information from 3D face models, elim-
inating the need for gaze dataset. We also propose a text
attention module. The module aggregates gaze and head
information from text feature embedding, and improve the
performance of gaze generation.

• We conduct experiments on FFHQ datasets. The experiment
demonstrates our method achieves better gaze-controllable
face generation performance than compared methods.

2 RELATEDWORK
2.1 Eye-Control Face Generation
Face generation methods often prioritize controlling semantic infor-
mation [18, 33], such as appearance and hair color, but frequently
overlook gaze control. One closely related task is gaze redirection,
where the goal is to generate face images aligned with a specified
gaze direction. Deepwarp [15] employs a deep network to learn
warping maps between pairs of eye images with different gaze
directions. Yu [38] utilizes a pretrained gaze estimator and trains
a network to generate eye images. He [10] utilize GAN for gaze
redirection and synthesize large-scale gaze data by performing gaze
redirection tasks on one eye image. Ruzzi [29] train a NeRF model
based on given gaze directions. They generate 3D face models but
produce low-quality rendered images. However, these methods
share a common limitation in that they all require images with gaze
annotations for training, significantly restricting their applicability.
This requirement poses challenges for most image datasets where
obtaining an annotated gaze may be impractical.

2.2 Text-to-Image Generation
Text-to-image generation shows significant achievement within the
context of generative adversarial[7]. They leverage text description
as a condition and train a conditional GAN[19] based on a pair
of image-text samples[26]. Later, stacked structure[39] and atten-
tion mechanism[36] are proposed to improve the quality of image
generation. Crowson et al. [3] leverage CLIP [24] embeddings to
guide image editing use VQ-GAN [6]. They train the model over
large-scale data for diverse generations. Recently, there are many
large text-to-image models such as Imagen[30], DALL-E2 [25], and
Stable Diffusion[27]. These models leverage the diffusion model
and produce unprecedented generation.

3 TOG: TEXT OF GAZE DATASET
We utilize large language models (LLMs) to generate text-of-gaze
(ToG) dataset. Our dataset contains over 90k text descriptions.
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Table 2: We present text descriptions from the ToG dataset. We define two levels of precision and leverage LLMs to generate
different descriptions for each precision level. The last two columns present the corresponding gaze and head labels.

Precesion Descriptions Head label Gaze label

Low
The person’s head turns left, gaze shifts left and slightly up (60◦, 0◦) (109◦, 10◦)
The person kept the head and the gaze straight ahead (0◦, 0◦) (0◦, 0◦)
The person tilted the head right, directing the gaze sharply downwards (−70◦, −70◦) (−115◦, −20◦)

High

The person’s head turns significantly left, remaining level, while the gaze shifts sharply
left and slightly upwards, indicating keen interest or examination.

(60◦, 0◦) (109◦, 10◦)

The person maintained a direct, steady posture, with the head and the gaze fixed
straightforward, indicating intense focus.

(0◦, 0◦) (0◦, 0◦)

The person directed the head significantly to the right and downward, while the gaze
extended far right, with a minimal decline.

(−70◦, −70◦) (−115◦, −20◦)

3.1 Overview
Text-to-image tasks typically rely on paired text-image data {I𝑖 ,T𝑖 }
for training, where I𝑖 denotes images and T𝑖 represents the cor-
responding text description. However, the collection of such data
is both time-consuming and costly, as annotators are required to
manually generate text descriptions for each image.

Recently, LLMs attract significant attention and demonstrate
remarkable capabilities in natural language. This inspires us to
explore the potential of leveraging LLMs for data generation. In
this section, we propose a cost-effective method for generating text
data using LLMs. We consider following two questions:

1) How can LLMs be utilized for the data generation? While recent
LLM models exhibit proficiency in understanding images, their
functionality may not be entirely convincing. In our approach, we
disentangle gaze information from images. Rather than generating
paired data {I𝑖 ,T𝑖 }, we generate paired data {g𝑖 ,T𝑖 }, where g𝑖 ∈ R2
represents the gaze in the form of (Yaw, Pitch). Compared to high-
dimensional image data, gaze directions offer greater accuracy and
ease of interpretation. Additionally, we can further estimate gaze
from images to establish the connection between text and images.

2) How can the validity of the generated data be confirmed? To
assess the quality of the generated data, we sample text descriptions
from our dataset and conduct a user study for evaluation.

Next, we introduce the LLM-based data generation method in
the section 3.2. We present an overview of the ToG dataset statistics
and discuss the user study evaluating our dataset in the section 3.3.

3.2 Text Generation using LLMs
We aim to utilize LLMs to generate text descriptions from gaze.
However, relying solely on gaze values may not accurately capture
human facial features. Human gaze is influenced by both head pose
and eye rotation, introducing ambiguity that can result in unclear
text descriptions. Therefore, we further decompose the gaze into
head pose and eye pose to address this challenge.

Dense Gaze Sample Generation:We respectively define the
ranges for head pose and eye pose, and calculate gaze based on
these values [5]. Specifically, we define head pose in both the yaw
and pitch axes, sampling from the range of −70◦ to 70◦ at intervals
of 10◦. This results in 15×15 head rotation samples. We also sample
eyeball rotation from the range of −50◦ to 50◦ at intervals of 10◦,

generating 11×11 eye rotation samples. By combining these values,
we generate a total of 27, 225 gaze samples. To ensure visibility of
the eyes, we exclude gaze samples that fall outside the range of
−70◦ to 70◦ in the pitch axis and −120◦ to 120◦ in the yaw axis [41].
Consequently, we obtain a total of 23,887 samples.

Prompt Design:We further employ LLMs to generate text de-
scription from gaze. We design the following prompt:
“Imagine describing someone’s head and gaze movement. Given four
numbers representing yaw and pitch for both head and gaze (positive
for left/up, negative for right/down), craft a detailed description. Your
narrative should:
1. Avoid numerical values for angles;
2. Offer rough direction descriptions regardless of extent;
3. Be one sentence and within 10 words;
4. Begin with ‘The person’ and describe ‘the head’ and ‘the gaze’
impersonally.”

The first requirement ensures that the LLM does not produce
annotations based on simple templates such as “The person’s gaze
is 60 degrees upward”. The second and the third requirements set
limitations to the precision and the length of the annotations. We
usually describe gaze behavior roughly or accurately in different
scenarios. The two requirements make LLM to generate only low-
precision descriptions, such as “The person tilts the head right, gazing
up and left”. Besides, we design another two requirements which
require LLM to generate high-precision annotations:
“2. Offer precise direction descriptions with a clear extent;
3. Be concise, between 20 and 30 words;”
It allows LLM to generate detailed pose annotation like “The person
gently rotated the head to the right and deeply dipped it, whereas
the gaze darted left before sharply descending, aligning slightly off-
center”. In addition, human faces have many attributes such as
gender and age. To make the descriptions focused on describing
pose, we set limitations to the narrative format with the fourth
requirement. Another advantage is that we can easily replace the
pronouns in sentences like replacing "The person" with "The boy",
"The girl", or "The farmer". It expands the capability of our method
for diversification.

To further expand the diversity of the dataset, we ask LLM to
generate three different descriptions in high precision for each
sample simply by adding "Please give me three different descriptions."
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Figure 2: Visualization of head and gaze scores of different
subjects.

to the prompt. We show some examples of different precisions in
Table. 2. The prompt encourages LLM to replace words, especially
the ones describing the extent. Please refer to the supplementary
material for more examples.

3.3 ToG Dataset
We utilize ChatGPT-4 Turbo for data generation. In total, we sample
23, 887 gaze values, considering variations in both eye rotation and
head rotation. For each gaze value, we generated four descriptions,
one with low precision and the other three with high precision
given that low-precision descriptions exhibit limited variability.
Consequently, we obtained four descriptions for each sample, re-
sulting in a total of 95,548 annotations. Each sample in our ToG
dataset is denoted as {g𝑖 , h𝑖 ,T𝑖 }, where g𝑖 represents the gaze value,
h𝑖 denotes the head pose, and T𝑖 is the text description.

We compare our ToG dataset with existing human-centered text-
to-video/image datasets in Table. 1. BABEL [22], HumanML3D [8],
PoseScipt [4] focus on text pose generation. Text2FaceGAN [20]
and CelebAText-HQ [34] are for text face generation. Our ToG
dataset has over 90k text descriptions which are comparable with
existing datasets. Besides, our ToG dataset mainly focuses on text
gaze generation which the existing datasets can not be used for.

To evaluate the generated dataset, we randomly select 20 samples
from our ToG dataset. We get the famous gaze dataset ETH-XGaze
dataset [41], which provides corresponding gaze values and image
pairs. We match each description with an image in ETH-XGaze
dataset by finding the closet pose labels, i.e., gaze value and head
pose. As the result, we acquire image-text pairs.

We invited six users to rate the correspondence between text de-
scriptions and images on a hundred-point scale, with lower scores
indicating poorer correspondence. Specifically, we asked them to
score the correspondence between the image and the text descrip-
tion of the head, as well as between the image and the text descrip-
tion of the gaze. We show the head and gaze scores from different
users in Fig. 2. The results show that both scores for head and
gaze are around 90 with small variances, which indicates that our
text descriptions match both head and gaze values well. The good
results validate the quality and accuracy of the generated data.

4 METHOD
4.1 Overview
Given a text description T describing human gaze behavior, our
objective is to generate face images I that align with the description.
In the previous section, we present the ToG dataset, which provides
paired data {g𝑖 , h𝑖 ,T𝑖 }. Additionally, we have an image dataset {I𝑖 }
containing diverse face images. Matching face images with text
descriptions is a challenge in this task. While some gaze estima-
tion datasets offer paired data {g𝑖 , h𝑖 , I𝑖 }, where the gaze labels are
obtained through calibration, these datasets typically lack diverse
face appearances.

To tackle this challenge, we propose a two-stage text-to-face im-
age generation method. Our method contains a sketch-conditioned
face diffusion module and a model-based sketch diffusion model.
We define a face sketch based on facial landmarks and eye segmen-
tation, and the face diffusion model generates face images from
face sketch. Importantly, the model is trained without gaze anno-
tation. The sketch diffusion model, on the other hand, learns gaze
patterns from text descriptions. To convert the gaze pattern into a
face sketch, we utilize a 3D face model and compute the face region
information based on eye and head rotation.

4.2 Text-to-Gaze Generation
We first build a diffusion model to learn gaze pattern from text
discription. In general, we learn a diffusion model G, where {g, h} =
G(T). We obtain feature embeddings from the text description and
propose a text attention module (TAM) to capture head and gaze
information in this section.

Specifically, given a text T, we first convert it into feature em-
bedding {𝑓 𝑖𝑡𝑒𝑥𝑡 , 𝑖 = 1...𝐿}, where 𝐿 is the length of T. We utilize
CLIP [24] to obtain the embedding feature for each word. To ef-
fectively extract pose information from the text, we propose the
TAM. Our main idea is to extract gaze-related and head-related
text information from {𝑓 𝑖𝑡𝑒𝑥𝑡 }. In particular, CLIP preserves feature
similarity for two similar words due to contrastive learning. We
acquire additional word embedding for the words ‘gaze’ and ‘head’
via CLIP, denoted as 𝑓gaze and 𝑓head respectively. These embeddings
are used to aggregate gaze-related and head-related information
from 𝑓 𝑖word. TAM is consisted of two cross-attention modules and
one self-attention module. The inputs of the two cross-attention
modules are {𝑓𝑔𝑎𝑧𝑒 , 𝑓 𝑖𝑡𝑒𝑥𝑡 } and {𝑓ℎ𝑒𝑎𝑑 , 𝑓 𝑖𝑡𝑒𝑥𝑡 } respectively, allowing
them to aggregate text features related to gaze and head. Addi-
tionally, we input {𝑓 𝑖𝑡𝑒𝑥𝑡 } into a self-attention module to extract
sentence feature. TAM combines the three extracted features as
the output, which are then used as conditions to generate gaze and
head via diffusion models.

The diffusion model G generates {g, h} from T. We then con-
vert the gaze information into an intermediate representation, face
sketch, for face image generation. In detail, we leverage the 3D face
model FLAME [17] in our work. We rotate the 3D face model based
on {g, h} and project it into 2D space. We acquire 2D landmarks
and connect these landmarks of different region to generate face
sketch. Considering the importance of eye region, we highlight the
eye region and pupil using different values. We will explain the
advantage of the face sketch in the next section.
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Figure 3: The model operates in two distinct stages: pose generation and face generation. During the first stage, the text
description is initially fed into the CLIP model to obtain word embeddings. These embeddings are then processed through our
TAM module as the condition to gaze diffusion module. The gaze diffusion module generates head pose and gaze direction
matched with input text. Subsequently, these poses are utilized to rotate a 3D face model into the predicted orientation. The
rotated model is then projected into a two-dimensional space, resulting in the creation of a sketch. In the second stage, the
face image is meticulously crafted using a diffusion model, which is specifically conditioned on the sketches generated in the
previous stage. This two-tiered approach ensures a coherent and detailed synthesis of facial images.

4.3 Gaze-Controllable Face Generation
We aim to generate face image using gaze information {g, h}. Recent
gaze redirection methods direct input gaze information as condition
and generate satisfied images. However, it means we need paired
data {g, h, I} for training. In this section, we first convert gaze
information into face sketch using 3D face model, and then perform
face-sketched condition face generation. This pipeline enables us
to perform gaze-controllable face generation without gaze label.

As shown in Fig. 3, the face sketch is made of facial layout land-
marks and iris segmentation, which give information on head pose
and gaze direction. We use the segmentation map to highlight eye
region since the eye region is important for the gaze-controllable
generation. More concretly, given an image I, we perform facial
landmark detection and eye segmentation on I [2, 21]. We connect
landmarks and conbine it with eye segmentation to produce face
sketch. As the result, we obtain the paired data {I, Is}, where Is
represents the face sketch. We use the data to train a conditional
diffusion model for the gaze-controllable face generation.

We use the ControlNet [40] to generate face images from fa-
cial sketches. We learn the marginal distribution of face image I
conditioned on the sketch I𝑠𝑘𝑒𝑡𝑐ℎ .

L = E𝒛0,𝒕,𝒄𝑡 ,𝒄 f ,𝜖∼N(0,1) [∥𝜖 − 𝜖𝜃 (𝒛𝑡 , 𝒕, 𝒄𝑡 , 𝒄f )) ∥22
]

(1)

We use Eq. (1) as the objective function while we learn added
noise 𝜖 rather than image x0. We also fix the Stable Diffusion as
the backbone and only train the control module in training [40].

In the inference stage, given gaze information {g, h}, we leverage
a 3D face model to generate the face sketch. We rotate the 3D face
model based on {g, h} and project it into 2D space. We acquire 2D
face and eye landmarks, then connect them for face sketech. We
also highlight the eye region as eye segmentation map based on
eye landmarks.

4.4 Implementation Details
Our proposed baseline is implemented by Pytorch. We generate
256 × 256 image from the text description. We use ControlNet [40]
as the diffusion model for face image generation. We use trans-
former with 6 layers 8 heads for all three branches in the condi-
tioning part of Text-to-Gaze diffusion model. The Text-to-Gaze
diffusion model is built based on Latent Diffusion Model [27]. We
adopt the Adam optimizer and the learning rate of 1.0e-06 for train-
ing the two models. We use batch size of 8 with 20 epochs for face
diffusion model and batch size of 16 with 10 epochs for text-to-gaze
diffusion model. We use Stable Diffusion v2.1 as the backbone in
the face diffusion model. We train the face diffusion model and the
text-to-gaze diffusion model for 24 hours and 7 hours separately
on one RTX 3090 GPU.
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“The person mildly rotates the 
head right and elevates it, while 
the gaze veers right markedly 

and descends gently.”

“The person's head and eyes part 
ways; the head leans modestly 
leftward and upward, whereas 
the gaze sweeps right, declining

almost imperceptibly.”

“The person tilts the head left, 
upward, while the gaze shifts 

right, slightly up.”

“The person gently angles the 
head left and elevates it, while 

the gaze sweeps more 
pronouncedly to the left, staying 

horizontally even.”

“The person tilts the head left, 
while the gaze drifts right-

upward.”

“The person slightly turns the 
head to the left while tilting it 

downward significantly, keeping 
the gaze straight ahead.”

“The person slightly turns the 
head to the right, then tilts it 

upwards, while the gaze shifts 
notably left, then modestly up.”

“The person tilted the head and 
gaze slightly rightward.”

“The person subtly shifts the 
head to the right, ensuring it 

remains even, directs the gaze
forward.”

“The person's head turns slightly 
right, the gaze angles up sharply.”

“The person's head subtly rotates 
leftward and dips slightly, while 
the gaze drifts left with a slight 

upward inclination.”

“The person's head and eyes 
drifted rightward, dipping

slightly together; however, the 
gaze straightened, focusing 

directly ahead without vertical 
movement.”

Figure 4: Visulization of generated images from our model and two baselines [6, 40]. We show 12 sets of comparisons in
three styles indicated by different colors. In each set, pose description is listed on the left and the images generated by our
model, ControlNet, and LDM are listed side by side on the right. "head", "gaze" and directional words are highlighted for better
visualization. While images from ControlNet and LDM are meaningful, they often fail to match the head pose, gaze direction, or
both specified in the text. Our approach effectively captures and aligns head pose and gaze details with the textual descriptions,
maintaining high image quality.

Table 3: Comparison to other SOTA methods on the FFHQ dataset in terms of image quality (IS, FID, KID), correspondence of
text and image (CLIP-score, User Preference for Head and Gaze). KID* stands for KIDx1000. Bold indicates the best number.

Method IS ↑ FID ↓ KID* ↓ CLIP-score ↑ User Preference (Head) ↑ User Preference (Gaze) ↑
LDM 3.89 55.45 45.34 27.36 0.07 ± 0.07 0.05 ± 0.05
ControlNet 7.11 61.67 35.94 30.84 0.11 ± 0.07 0.11 ± 0.10
Ours 7.22 59.91 35.73 30.63 0.76 ± 0.16 0.75 ± 0.20

5 EXPERIMENT
5.1 Datasets
ToG Dataset.We divide our ToG dataset into a training set and a
test set. The training set ratio is 0.9. We use the training set to train
the text-to-gaze generation model.

FFHQ Dataset. The face generation model undergoes training
utilizing the FFHQ dataset [14], a collection of 70,000 superior-
quality facial images sourced from the internet, frequently em-
ployed in generative model training [14, 28]. FFHQ’s native resolu-
tion stands at 1024 × 1024, while our experiments employ its images

resized to 256 × 256. We get the style prompts of FFHQ dataset with
BLIP [16]. To evaluate our model, we split the FFHQ dataset into a
training part and a test part. The training part ratio is 0.9.

Sketch Generation. The generated sketch includes face layout
landmarks and iris segmentation. We get face landmarks using
face-alignment [2]. We get iris landmarks and eyelid landmarks
with the eye landmark detector [21]. We connect the landmarks
of different parts and make it a sketch. We further mask out the
invisible iris region with eyelid landmarks to generate a realistic
sketch. We use the sketches generated from a 3D face model in
the reference stage. To mitigate the gap between the sketches in
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the training stage and the inference stage, we align the sketches
by setting the camera parameters in the 3D face model same as
FFHQ dataset. Specifically, we first get the camera parameters used
in FFHQ dataset by fitting the images to the face model and then
fix the parameters when generating new sketches.

5.2 Comparison on Text-conditioned
Generation

Baselines. The existing text-to-image generation methods [6, 25]
are not optimized specifically for gaze image generation. As far as
we know, we are the first work to do gaze-controllable face gener-
ation with natural language. To make a fair comparison, we first
match the images in the FFHQ training set with the text descrip-
tions in our ToG dataset and then train a latent diffusion model
(LDM) [6] and a ControlNet model [40] using the matched data.
Specifically, we apply a pre-trained pose estimator to gauge head
poses and gaze directions on FFHQ’s training set [44]. Then we
find the closest pose labels and the corresponding descriptions to
the estimated ones. Finally, We match the selected descriptions
with the images to get the training data. For the LDM model, we
combine the pose descriptions with the style prompts as the input.
The LDM model is trained from scratch. For the ControlNet model,
we input the style prompt as [40] and adopt the control network to
accept the pose descriptions as the additional input condition. The
ControlNet model also uses Stable Diffusion v2.1 as the backbone.
Both models are trained with a batch size of 8 in an end-to-end way
for 30 epochs.

Metrics.We report the standard evaluation metrics Inception
Score (IS) [31], Fréchet Inception Distance (FID) and Kernel Incep-
tion Distance (KID) [11] on the FFHQ test set to evaluate the quality
of generated images. We report KID* which is 1000 x KID to make
a more precise comparison. We also report CLIP scores [23] on
the same data to evaluate the correlation between prompts and
generated images. We use DDIM as the sampler and use 50 steps
to sample each image. We calculate FID and KID metrics on FFHQ
test set. We combine style prompt and pose description as one
prompt when calculating CLIP scores. We further perform a user
study to evaluate our model’s effectiveness. We randomly chose
20 generated images with the same pose prompts for our model,
ControlNet, and LDM. We get 20 sets with a total of 60 images.
Twelve independent blinded users were invited to join the study
and they were shown 20 side-by-side images each generated by
our model, ControlNet, and LDM. The users were given the task
of selecting the image which matches the given descriptions best
in terms of gaze direction and head pose separately. If none of the
images matches the description, the user could select a “None” op-
tion. We report user preferences for head and gaze according to
the user study. Note that CLIP model is not optimized specifically
for precise pose descriptions. Therefore, CLIP score does not reveal
how well the generated images match the pose descriptions. We
deem that head fidelity and gaze fidelity from the user study are
more suitable metrics for our work.

Qualitative Results. The qualitative results are shown in Fig. 4.
We give 12 sets of images and their pose descriptions. Thanks to the
capability of ControlNet, our model can also control the style of the
generated images. We split the samples into three style collections

for better visualization. The pose descriptions and the images are
listed side by side. All three models can generate meaningful face
images. The images generated by our model and ControlNet are of
good quality while the results of LDM have some artifacts. It is be-
cause our model and ControlNet only trained an additional network
to add additional conditions leaving the Stable Diffusion backbone
unchanged. Therefore, they always generate images with a similar
quality to Stable Diffusion. However, the whole LDM model is opti-
mized in the training, which might make the model easily overfit
the training data and unstable. Even though the generated images
from ControlNet and LDM are meaningful, they do not follow the
head pose, gaze direction, or both depicted in the input text. Both
baseline models can generate various head poses and gaze while
the contents are not related to the text descriptions. Their disability
to render correct gaze images under text instructions shows that
capturing geometric information from text descriptions directly is
hard. To solve the problem, we design two stages including pose
generation and face generation. The pose generation model esti-
mates the head pose and gaze direction from text and transfers
the pose information to face sketches explicitly through a 3D face
model. The face generation model takes the face sketches as input
and renders face images. The two-stage design alleviates the diffi-
culty of direct matching between text and images. As shown in the
results, our generated images effectively capture the head and gaze
information and maintain good quality simultaneously.

Quantitative Results.We show the quantitative results in Ta-
ble 3. Our model achieves the best performance on Inception Score
and KID and comparable performance on FID compared with the
other two baselines. It indicates that our model can generate high-
quality face images with the additional eye-controllable function.
Our model achieves a comparable result on CLIP score with Con-
trolNet while outperforming LDM by a large margin. We show the
user preferences for head and gaze in the last two columns. The
results show that users prefer our generation most of the time and
our generated images match the pose descriptions well.

The good performance is attributed to our newly designed two-
step image generation. Our high-performance two-step image gen-
eration process starts with obtaining predicted head pose and gaze
directions using our text-to-pose model, trained on the ToG dataset.
This model effectively extracts gaze and head pose information
from text, generating them within a reasonable range. We then use
the FLAME model to simulate head and eyeball rotations, produc-
ing a rotated 3D face model for sketch generation. In the second
stage, we use a diffusion model trained with ControlNet to generate
images that accurately incorporate the predicted head pose and
gaze data. This ensures that the head and gaze details are consis-
tently preserved from the initial text description through to the
final images.

5.3 Ablation Study
Can we replace sketch with pose labels?We advocate for the
use of face sketches in facial generation, owing to the scarcity
of gaze labels. Numerous studies have focused on head and gaze
pose estimation. This prompts the question: could these estimated
poses replace sketches? To explore this, we applied a pre-trained
VGG [32]-based gaze estimator [44] to gauge head poses and gaze
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Figure 5: Visualization of generated images from Label-Guided Model and Sketch-Guided Model. The Label-Guided Model
(LGM) falls short of accurately reconstructing true geometric information. On the other hand, the Sketch-Guided Model (SGM)
effectively maintains geometric integrity throughout the generation process.

Table 4: Comparison of LGM and SGM in terms of head error
and gaze error in degree on the test set of FFHQ dataset.

Method Head ↓ Gaze ↓
LGM 4.37 4.79
SGM (ours) 3.62 4.35

directions on FFHQ’s training subset. We adapted the condition
encoding segment of a ControlNet model to accept pose inputs,
keeping other components intact. Subsequently, we developed a
label-guided model. We refer the label-guided model and our sketch-
guided model to LGM and SGM separately. LGM is trained on
FFHQ training set with estimated pose labels. Similar to our face
generation model, it is trained with a batch size of 8 for 20 epochs.
We evaluate the models on the FFHQ test set.

We show the qualitative comparison with our sketch-guided
model in Fig. 5. The label-guided model shows limited control of
head pose and gaze direction in the generation. We estimate the
head poses and gaze directions of the generated images from the
two models using another pre-trained ResNet50 [9]-based gaze
estimator from [44]. We calculate the head error and gaze error
in degree and report them in Table. 4. The results show that our
sketch-guided model generates images with higher accuracy in
head pose and gaze direction. These results underscore the efficacy
of our approach, confirming the validity of our choice to rely on
sketch-guided modeling.
Effect of Text Attention Module. To show the effect of our de-
signed text attention module, we train a pose generation model
with only a self-attention module under the same training settings
for comparison. We further test two different ways (adding and
concatenation) to fuse the features from different branches. We
report the generated angle errors on the test set of our ToG dataset.

Table 5: Ablation on TAMmodule in terms of generated head
error and generated gaze error in degree on the test set of
ToG dataset.

Method Generated Head ↓ Generated Gaze ↓
w/o TAM 16.94 21.62
w/ TAM (concat) 15.45 20.28
w/ TAM (add) 15.23 20.00

The angle errors are calculated via cosine similarity between the es-
timated poses and ground truth poses. We show the results in Table.
5 The two models with TAM get comparable results and achieve
better performance compared with the pure self-attention model.
The results indicate that our TAM is more effective in capturing
pose information from text descriptions.

6 CONCLUSION
In our study, we introduce an innovative task of gaze-controllable
face generation, driven by textual descriptions of human gaze be-
haviors. We present the pioneering text-to-gaze dataset, featuring
over 90k descriptions that align with various gaze behaviors. This
dataset encompasses a wide range of gaze directions, enriched by
diverse natural language annotations derived from Large Language
Models (LLMs). Building upon this dataset, we develop a novel
two-stage face diffusion model. Initially, we create detailed face
sketches, which are then transformed into face images using con-
ditional diffusion models. Additionally, our approach infers face
sketches from text descriptions, incorporating a 3D face model prior.
Significantly, our method operates without the need for explicit
gaze annotations and can generate gaze-controllable face images
effectively. The efficacy of our approach is further demonstrated
through experiments conducted on the FFHQ dataset.
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