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Supplementary Material

In the supplementary file, we first present more details about
our scene code diffusion model in Sec. 1, then we elabo-
rate the layout-guided PeRF module and mask-guided edit-
ing method in Sec. 2 and Sec. 3, respectively. Next, we
provide our dataset pre-processing, text prompt generation,
and implementation details in Sec. 4 and Sec. 5 respectively.
Additional experiment results are also illustrated, including
panorama generation comparisons in Sec. 6, room layout
generations and room mesh comparisons in Sec. 7 and user
studies in Sec. 8. Furthermore, we demonstrate that our
scene code diffusion model can be trained with free-style
text prompts in Sec. 9.

1. Scene Code Denoising Network
In the Layout Generation Stage, we use a holistic scene
code to parameterize the indoor scene and design a diffu-
sion model to learn its distribution. Specifically, given a
3D scene S with N objects, we represent the scene layout
as a holistic scene code x0 = {oi}Ni=1. We encode each
object oi as a node with various attributes, i.e., center lo-
cation li ∈ R3, size si ∈ R3, orientation ri ∈ R, class
label ci ∈ RC . Each node is characterized by the concate-
nation of these attributes as oi = [ci, li, si, ri]. As shown
in Fig. 1, our scene code denoising network of the layout
diffusion model is built upon IDDPM [4]. The whole archi-
tecture of the layout diffusion model is similar to IDDPM,
while we replace the upsample and downsample blocks with
1D-convolution network in the U-Net, and insert attention
blocks after each residual block to capture both the global
context among objects and the semantic context from the in-
put text prompt. The input encoding head processes differ-
ent encoding of the node attributes, e.g., semantic class la-
bels, box centroid, and box orientation. After adding noise,
the input encoding is fed into the U-Net to obtain a denoised
scene code. The training objectives includes the denoising
objective Ldenoise and a regularization term Lphysical to pe-
nalize the penetration among objects and walls as follows,

L = Ldenoise + Lphysical, (1)

Ldenoise = Ex0,t,y,ϵ∥ϵ− ϵθ(xt, t, y)∥2, (2)

Lphysical =

T∑
t=1

wt ∗ (Lw−o + Lo−o). (3)

where ϵθ is the noise estimator which aims to find the noise
ϵ added into the input x0. Here, y is the text embedding
of the input text prompts. The hyperparamter wt is set to
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Figure 1. The detailed structure of the scene code denoising net-
work. We here take the bedroom for example to demonstrate
the dataflow of the scene code denoiser. The scene code tensor
x0 ∈ RN×D , where N = 23, D = 32.

ᾱt ∗ 0.1. Lw−o is the physical violation loss between walls
and objects. It is defined as follows,

Lw−o =

Kwall∑
i=1

Kobject∑
j=1

8∑
p=1

Relu[−(aixjp + biyjp + cizjp + di)]

∗ 1(
∏
wi

(xjp, yjp, zjp) inwi).

(4)

Here, (ai, bi, ci) is the normal vector of wall wi that points
towards the room center.

∏
wi

is the operator project-
ing a point onto the plane defined by wi. The plane
equation of i-th wall is aix + biy + ciz + d = 0 and
1(

∏
wi

(xjp, yjp, zjp) inwi) indicates whether the projec-
tion of bounding box vertices (xjp, yjp, zjp) of j-th object
is inside wi. We skip some objects such as windows and
doors since they can intersect with walls. We adopt the 3D
IoU loss Lo−o in DiffuScene [8] as follows,

Lo−o =

Kobject∑
oi,oj

IoU(oi,oj). (5)

During the forward phase, as in IDDPM, we iteratively per-
form the denoising process and generate a scene code from
a partial scene textual description.
We further investigate how the physical regularization term
impacts the final 3D scene layout. In Fig. 2, we use two text
prompts for layout generation our layout diffusion model
trained with and without our physical regularization term,
respectively. As can be seen, the diffusion model trained
with the physical violation loss can effectively reduce the
occurrence of furniture penetrating walls, and also help to



The study has four walls.The room has a desk , a window and a picture .The study has four walls.The room has a desk , a cabinet and a window .

Figure 2. Ablation study of the physical violation loss. Two text prompts of study are used for layout generation using our diffusion model
trained without Lphysical (left) and with Lphysical (right), respectively. As a result, in the left sample, diffusion model without Lphysical

generates a green desk that penetrates the wall. In the right sample, this phenomenon is alleviated and regulated after using the physical
violation loss. Note that the sampling results of these two versions of diffusion models are slightly different since the denoise distribution
is different even given the same text prompt.

Normal
Calculate

Normal
Calculate

𝑁!"

3D Scene layout

Pretrained-
MDE

❄

🔥Input

ℒ!

ℒ"

𝐷" 𝑁"

𝐷!"

Depth map Instance map 𝑀"

⨂

⨂

renderings

Background depth map 𝐷#" 

~

Figure 3. Our Layout-guided depth estimation. To align the esti-
mated depth map with the 3D scene layout, we render depth map
and instance map from the 3D scene layout at current view. Then
we take the background depth (wall, ceiling, floor) as reference
to align the depth prediction by optimizing the pretrained MDE.
Avoiding degrade the MDE’s performance at object surface, we
ensure the normal consistency of each object during the optimiza-
tion process.

regulate the orientation of the sampled furniture, resulting in
more reasonable layouts than the model without the physi-
cal regularization term.

2. Layout-Guided Panoramic NeRF

Since the generated panorama is a partial observation of
the room subject to occlusions, lifting the single view into
a 3D room becomes a complex problem. Here we adopt
the Warp and Inpainting scheme to complete the 3D room
progressively. After generating the panorama I0, we re-
cover its depth map D0 using the state-of-the-art monocu-
lar depth estimator (MDE) [14]. However, problems such
as scale ambiguity and large occlusions may lead to incom-
plete 3D room reconstruction. Additionally, ensuring con-
sistency in inpainted panoramas at new viewpoints poses

another challenge. Fortunately, the scene layout generated
in the first stage offers crucial geometric and semantic guid-
ance, which can help correct biased depth predictions and
guide the inpainting process to generate novel view panora-
mas. In this paper, we employ PeRF [11] as the 3D room
model and progressively generate novel viewpoint panora-
mas with layout guidance to reconstruct the PeRF model.
Layout-Guided Depth Estimation.

To align the estimated panoramic depth map with the
scene layout, a naive approach would be to directly com-
pute scale and bias coefficients for the initial depth map D0.
However, as the scene layout consists of object bounding
boxes and can not provide pixel-level perfect depth super-
vision, this method may lead to degraded depth predictions.
To address this problem, we propose the panoramic geom-
etry alignment module as depicted in Fig. 3. We use the
instance labels of furniture items to exclude the rendered
depths within the furniture areas, retaining only the back-
ground depth map (e.g., wall, ceiling, floor) denoted as D0

l .
We incorporate a consistency loss Lalign to optimize the
pre-trained monocular depth estimator (MDE). This consis-
tency loss is formulated as follows,

Lalign = Ld ∗ wd + Ln ∗ wn, (6)
Ld = L1(D

0
i , D

0
l ) ∗ (∼ M0), (7)

Ln =
∣∣N0 −N0

i

∣∣ ∗M0. (8)

where Ld represents the smooth L1 loss of depth, Ln de-
notes the absolute loss of normal, and wd, wn are weighting
coefficients. D0

i stands for the predicted depth of the MDE
at i-th iteration. M0 is the instance map denoting the fore-
ground, such that we only correct the predicted depth in the
background region while preserving normals in the furni-
ture regions. After alignment, we obtain the optimal depth
map D∗ and normal map N∗.
Layout-Guided Novel View Generation. PeRF [11] trains
a panoramic neural radiance field using a single panorama.
To render novel view panoramas, it employs the Stable Dif-
fusion model [5] to inpaint 60 perspective images and stitch
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Figure 4. The Layout-guided PeRF takes the input panorama, aligned depth map and normal map as initialization. Then a progressive
inpainting module is introduced to generate consistent panoramic images at the sampled novel views. The progressive inpainting module
consists of the layout-guided panorama inpainting and the layout-guided depth estimation module. The final RGB-D panoramic pairs are
included as training views to finetune PeRF [11].
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Figure 5. After the layout-guided panorama inpainting, Our gener-
ated panoramas at novel viewpoints adhere to the semantic layout
and seamlessly integrate with the visible regions, while PeRF [11]
fails to synthesize plausible content at those large-size occlusion
areas.

them into a panorama. Although it produces consistent
renderings at nearby viewpoints, it struggles to synthesize
viewpoints that are far apart and involve large unoccluded
regions. To address this limitation, we rely on the scene lay-
out to guide the panorama inpainting to maintain cross-view
consistency.
As illustrated in Fig. 4, we initialize the scene NeRF with
the panorama I0, the aligned depth map D∗ and normal
map N∗. We sample new viewpoints in the green area of

the occupancy grid that do not conflict with the initial furni-
ture arrangement. At the i-th novel view, we render seman-
tic map Si

l , depth map Di
l and instance map M i

l from the
scene layout, these are then combined with the panoramic
rendering Iir and inpainting mask minpaint obtained from
the NeRF and fed to the layout-guided panorama inpainting
module to generate the novel view panorama. Using our
fine-tuned ControlNet, it achieves training-free panoramic
inpainting, which replaces pixels outside the inpainting
mask minpaint with Iir and fill minpaint based on the se-
mantic map Si

l . As demonstrated in Fig. 5, our result-
ing RGB panorama adheres to the semantic layout and
seamlessly integrates with the visible regions, while that of
PeRF [11] fails to generate reasonable content in the large
occlusion areas. Subsequently, after generating the novel
view panorama, we apply the layout-guided depth estima-
tion and include it as training views for PeRF following
their framework [11].

3. Mask-Guided Editing
To achieve consistent and seamless 3D scene editing, it
should achieve two goals, i.e. altering the content accord-
ing to the user’s input, and maintaining appearance consis-
tency for scene objects. We propose a mask-guided im-
age editing as illustrated in Fig. 6, where a chair’s position
is moved. In the following, we will explain our method
with this example. We denote the semantic panorama from
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Figure 6. Mask-guided Editing. After editing the scene bounding box, we derive guidance masks from the changes in the semantic layout
panoramas. We fill in unoccluded regions and optimize the DIFT [9] features to keep the identity of moved objects unchanged.

the edited scene as Sedited, then we derive the guidance
masks based on its difference from the original one Sori.
The source mask msrc shows the position of the original
chair, and the target mask mtar indicates the location of the
moved chair, and the inpainting mask minpaint = {m|m ∈
msrc and m /∈ mtar} is the unoccluded region. Given
these guidance masks, our method includes two steps: the
inpainting step and the optimization step. We first fill in the
inpaint area by feeding the inpaint mask minpaint and edited
semantic panorama Sedited to the inpainting step. Then, in
our optimization step, we optimize the DIFT [9] feature to
maintain the visual consistency of relocated objects.
Inpainting Step. Denoting the original image as xori

0 , we
replace pixels outside the inpainting mask minpaint with
xori
t during the diffusion process. This simple strategy

keeps the outside region unchanged. At each reverse dif-
fusion step, we compute:

xori
t ∼ N (

√
ᾱtx

ori
0 (1− ᾱtI)), (9)

xnew
t ∼ N (µθ(xt, t, y, Sedited),Σθ(xt, t, y, Sedited))(10)

x̂new
t−1 = minpaint ⊙ xnew

t + (1−minpaint)⊙ xori
t (11)

where xori
t is obtained through propagating xori

0 in dif-
fusion process, and xnew

t is sampled from the fine-tuned
ControlNet model, which takes the edited semantic layout
panorama Sedited and text prompt y as input. As the prop-
agated xori

t is unaware of the new content xnew
t , this may

result in distracting boundaries of the inpainted area. To
better blend the new content xnew

t and its surrounding back-
ground xori

t in the inpainted area, we update the computa-
tion of x̂new

t−1 to,

x̂new
t−1 = minpaint ⊙ xnew

t

+ (1−minpaint)⊙ (xori
t · λori + xnew

t+1 · λnew)

(12)

where λori and λnew are hyper-parameters to adjust the
weight for fusing the inpainted area and unchanged area.
The final result of inpainting is x̂new

0 .

Optimization Step. When the user moves the position of
a furniture item, we need to keep its appearance unchanged
before and after the movement. The recent work, DIFT [9],
finds the learned features from the diffusion network allow
for strong semantic correspondence. Thus, we maintain the
consistency between the original and moved furniture by
requiring their latent features to be consistent. In particu-
lar, we extract latent features F l

t of the layer l in the de-
noising U-Net network, at timestep t. Then we construct a
loss function using the latent features from source area msrc

in source panorama xori
0 and target area mtar in inpainted

panorama x̂new
0 .

For conciseness, we denote the target image x̂edit
0 initial-

ized by x̂new
0 . We first propagate the original image xori

0 and
x̂edit
0 to get xori

t and x̂edit
t at timestep t by diffusion process,

respectively. At each iteration, we use the same ControlNet
model to denoise both xori

t and x̂edit
t and extract the latent

features of them, denoted as F ori
t and F edit

t , respectively.
Based on the strong correspondence between the features,
the source mask area msrc and the target area mtar in F ori

t

and F edit
t need to have high similarity. Here, we utilize the

cosine embedding loss to measure the similarity, and define
the optimization loss function as follows:

Lobj = −cos(sg(F ori
t ⊙msrc), F

edit
t ⊙mtar) (13)

Here, sg is the stop gradient operator, the gradient will not
be back-propagated for the term sg(F ori

t ⊙ msrc). Then
we minimize the loss iteratively. At each iteration, x̂edit

t is
updated by taking one gradient descent step with a learning
rate η to minimize the loss Lobj as,

x̂k+1
t = x̂k

t − η · ∂Lobj

∂x̂k
t

(14)

After M steps optimization, we apply the standard denois-
ing process to get the final result x̂edit

0 .



Figure 7. Example of object bounding box annotation.

4. Dataset

Structured3D dataset preprocessing Structured3D con-
sists of 3, 500 houses with 21, 773 rooms, where each room
is designed by professional designers with rich 3D struc-
ture annotations, including the room planes, lines, junc-
tions, and orientated bounding box of most furniture, and
photo-realistic 2D renderings of the room. In our work, we
use the 3D orientated bounding boxes of furniture, 2D RGB
panorama, and 3D lines and planes of each room. While the
original dataset lacks semantic class labels for each furni-
ture bounding box. The dataset preprocessing aims to pro-
duce clean ground truth data for our layout generation mod-
ule and appearance generation module.

• Orientated Object Bounding Box Annotation. As
the original dataset lacks semantic label for each orien-
tated object bounding box, we first unproject the RGB
panorama and depth map into a point cloud of the room,
then manually annotate the object semantic class and
add more accurate object bounding boxes based on the
noisy annotation of the original version. As shown
in Fig. 7, by using labelCloud [6], three data annota-
tors worked for 1200 hours to annotate 5,064 bedrooms,
3,064 livingrooms, 2,289 kitchens, 698 studies, and 1,500
bathrooms, getting nearly 150K accurate orientated 3D
bounding boxes across 25 object categories.

• Scene Node Encoding. We define our holistic scene code
based on a unified encoding of walls and object bounding
box. Each object oj is treated as a node with various at-
tributes, i.e., center location li ∈ R3, size si ∈ R3, orien-
tation ri ∈ R, class label ci ∈ RC . The orientated bound-
ing box is off-the-shelf, we extract the inner walls based

on the line junctions and corners of the 3D room. Then we
put the orientated object bounding boxes and walls into a
compact scene code. Concretely, we define an additional
’empty’ object and pad it into scenes to have a fixed num-
ber of object across scenes. Each object rotation angle is
parametrized by a 2-d vector of cosine and sine values.
Finally, each node is characterized by the concatenation
of these attributes as oi = [ci, li, si, cosri, sinri].

• data filtering. We start by filtering out those problem-
atic scenes such as rooms with wall number less than 4 or
larger than 20. We also remove those scenes with too few
or too many objects. The number of walls of valid bed-
rooms is between 4 and 10, and that of objects is between
3 and 13. As for living rooms, the minimum and maxi-
mum numbers of walls are set to 4 and 20, and that of ob-
jects are set to 3 and 24 respectively. The number of walls
for valid kitchens, studies, and bathrooms is the same as
for bedrooms, while the objects number is between 3 and
24. Thus, the number of scene nodes is N = 23 in bed-
rooms, N = 44 in living rooms, and N = 34 in kitchens,
studies, and bathrooms. After filtering, we get 4,961 bed-
rooms, 3,039 living rooms, 1,848 kitchens, 638 studies,
and 1,500 bathrooms.

Text Prompt Generation We follow the SceneFormer [12]
to generate text prompts describing partial scene configura-
tions. Each text prompt contains two to four sentences. The
first sentence describes how many walls are in the room,
then the second sentence describes two or three existing
furniture in the room. The following sentences mainly de-
scribe the spatial relations among the furniture, please refer
to SceneFormer [12] and DiffuScene [8] for more detailed
explanation of relation-describing sentences. In this way,



we can get some relation-describing sentences to depict the
partial scene. Finally, we randomly sampled zero to two
relation-describing sentences to form the text prompt for 3D
room generation.

5. Implementation details
Training and inference details.
• In the layout generation stage, We train the scene code

diffusion model on our processed typical indoor rooms
data of Structured3D [16] for 200, 000 steps. The frozen
text encoder we adopted is the same as Stable Diffu-
sion [5]. The training is performed using the AdamW
optimizer with a batch size of 128 and a learning rate of
1e − 4, utilizing 2 A6000 GPUs. During the inference
process, we utilize the DDIM [7] sampler with a step size
of 200 to perform scene code denoising.

• In the appearance generation stage, we fine-tune the
segmentation-conditional ControlNet model based on the
pairwise semantic and RGB panorama of Structured3D.
The fine-tuning process is implemented on two A6000
GPUs for 150 epochs(about 3 days). In the inference
phase, we generate high-fidelity and loop-consistent RGB
panorama through DDIM sampler with 100 steps, rotat-
ing both semantic layout panorama and the denoised im-
age for γ = 90◦ at each step.

• As for the layout-guided panoramic NeRF module, we
set wd = 0.6 and wn = 0.4 for depth alignment loss.
During the NeRF fitting process, we randomly select 8
viewpoints for living room scenarios and 4 viewpoints
for other room types. The NeRF training settings are the
same as PeRF [11].

• As for the mask-guided editing module, we utilize the
fine-tuned Control-Seg model to inpaint the background
content and optimize the latents of the edited panorama.
In inpainting step, the weights used too fuse the unpainted
area and unchanged area are set λori = 0.8, λnew = 0.2
. In the optimization step, the maximum iteration is
M = 50, the learning rate η for optimization is initial-
ized to 0.1 and then gradually decreases to 0.01.

5.1. Baseline Implementations

We provide implementation details for baseline methods in
the following:
• MVDiffusion [10]: To get a high-resolution photo realis-

tic panorama, MVDiffusion employs 8 branches of SD [5]
model and correspondence-aware attention mechanism
to generate multi-view images simultaneously. We first
fine-tune the pre-trained model of MVDiffusion on Struc-
tured3D for 10 epochs(about 3 days). Since each gener-
ated subview image of MVDiffusion is at 512× 512 res-
olution, the final panorama is pretty large. We resize the
generated panorama of MVDiffusion from 4096 × 2048
to 1024 × 512. Then the 8 subview perspective images

are extracted from the post-processed panorama using
the same camera settings (FOV=90◦,rotation=45◦). The
same operation is adopted on our generated panoramic
images. Finally, we combine the panorama from MVDif-
fusion with the depth estimation [14] and Poisson recon-
struction [3] module to create a 3D mesh.

• Text2Light [1]: Text2Light creates HDR panoramic im-
ages from text using a multi-stage auto-regressive gener-
ative model. We choose Text2Light as one of the baseline
for our panorama generation and 3D room mesh gener-
ation. We first generate RGB panoramas from the input
text using Text2Light, then lift it into 3D mesh using the
same panoramic reconstruction module as MVDiffusion.
When evaluating the panoramic image quality, we adopt
the same processing as MVDiffusion to get multi-view
perspective images of Text2Light.

• Text2Room [2]: Text2Room is the current state-of-the-art
and off-the-shelf method for 3D room mesh generation.
It utilizes 20 camera spots of a pre-defined trajectory to
expand new areas as much as possible by generating 10
images at each spot. Here We use its final fused poison
mesh for 3D mesh comparison. For a fair comparison of
2D renderings evaluation, we only use the renderings at
the origin of the final mesh.

• Text2NeRF [15] generates 3D scenes from a text prompt
using NeRF as the 3D representation and leverages a
pre-trained text-to-image diffusion model and monocu-
lar depth estimation to constrain the 3D reconstruction.
However, we found it fails to reconstruct 360◦ scenes.
We present some NeRF reconstructions from Text2NeRF
stitched into panorama images in Fig.15. Note that only
∼154° horizontal field of view (FOV) and ∼113° vertical
FOV is shown since the rest of the scene is not recon-
structed by the method. Thus we skip the comparison
with this method.
To ensure a fair comparison, we render 60 perspective

images at the origin using the final textured meshes of all
methods. The camera field of view is set to 140◦ to cap-
ture scene layout information for evaluating the CS and IS
scores. Additionally, we render corresponding geometric
images in Fig. 12 to showcase the geometry quality.

6. Panorama Generation Comparison
In Fig. 8, we study the performance of our panorama gen-
eration module with and without loop-consistent sampling
mechanism, the ablation indicates the loop-consistent sam-
pling helps the generated panorama obtain better texture
consistency. Fig. 9 presents additional results for panorama
generation. Given a simple partial-scene text prompt,
our approach obtains better RGB panorama than that of
Text2Light [1] and MVDiffusion [10], which demonstrates
the effectiveness of our well-designed framework. While
Text2Light suffers from the inconsistent loop and unex-
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Figure 8. Ablation of loop-consistent sampling examples. We rotate the generated panorama by 180◦ to better visualize the leftmost and
rightmost content consistency.

pected content of the generated panorama, MVDiffusion
fails to recover a reasonable room layout from the text
prompt.

7. Additional Qualitative Results
In Fig. 10, we first visualize more generated room layouts
generation of typical rooms in the format of semantic 3D
bounding boxes. Then, we show additional qualitative com-
parison results between our method and baselines in Fig. 12.
We demonstrate more scene editing results of our method in
Fig. 11.

8. User Study
Follow Text2Room [2], we conduct a user study and ask
n = 61 ordinary users to score the Perceptual Qual-
ity(PQ) and 3D Structure Completeness(3DS) of the gen-
erated room on a scale of 1− 5. Different from Text2room
which only demonstrates the perspective renderings of the
3D room, we directly show users the generated mesh to
get a global evaluation of the whole generated 3D room.
We show an example of the presented interface of the user
study in Fig. 13. In total, we presented 40 top-down views
from 10 scenes and report averaged results for each method.
Users favor our approach, which emphasizes the superior-
ity of our more plausible geometry, along with the vivid
texture.

9. Free style prompts
We show the adaptability of our method by utilizing Large
Language Model (LLM) GPT-4 Vision (GPT-4V) [13] to

generate text captions from panorama images of Struc-
tured3D [16] bedroom scenes. The prompt used for the
LLM is as shown in Table 1.

We train and test with the LLM generated captions as
conditioning for layout generation. Fig. 14 shows some re-
sults from the test set and corroborates our ability to pro-
duce plausible 3D room layout following free-style test
prompts.
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image. MVDiffusion [10] fails to synthesize reasonable content for the target room type. In contrast, our method obtains layout plausible
and vivid panorama from the given text prompt of partial scene.
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Figure 10. Additional room layout generations. In the bedroom, the bed is often attached to the wall, with a picture above it and a television
in front of it. In the living room, there is often a double-seat sofa accompanied by a table and a single-seat sofa. The dining table is usually
placed in a separate area of the living room, along with cabinets and chairs. In the kitchen, common furniture includes a stove, sink,
fridge, and hood, which are all well-placed in the room. In the study, there is typically a desk accompanied by a chair and one or more
bookshelves, and sometimes there is also a bed in the room. In the bathroom, there is usually a sink with a mirror, a toilet, and a shower.

(a) Resize the sofa (b) Remove the chair

Figure 11. Additional scene editing results. In each sub-figure, the left part is the original 3D room, the right part shows the final mesh
after users’ interactive editing.
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The study has four walls. The room has two cabinets and a window. 

Text2Light MVDiffusion Text2Room Ours

Text2Light MVDiffusion Text2Room Ours

The bedroom has four walls. The room has a window and a picture.

Text2Light MVDiffusion Text2Room Ours

The living room has ten walls. The room has a picture and a window.

Text2Light MVDiffusion Text2Room

The living room has twelve walls. The room has a cabinet and a fridge .
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Figure 12. Additional qualitative comparison with previous works.The first row shows a textured 3D room model, and the second row
shows perspective colored renderings and geometric renderings from the room model.



Figure 13. User study interface. We provide users with multiple top-down images from different methods and ask users to rate the given
3D meshes on a scale from 1 to 5, according to the criteria of Perceptual Quality and 3D Structure Completeness.

A bed is positioned in the center with pillows on it and a 
night stand is next to it on each side.
A picture is above the bed on the wall. 
A window with curtains is on the wall to the left of the bed. 
A television is on the wall opposite the bed.

A bed with pillows is in front of a window. 
A night stand is to the right of the bed. 
A lamp is on the night stand. 
A picture is on the wall above the bed.

Figure 14. Text-conditioned layout generation on Structured3D using GPT-4V text prompts. Our method synthesizes a plausible scene
layout that matches the description.

Table 1. Prompt for GPT-4V to generate captions from panorama images

Describe what is displayed in the panoramic image succinctly in 3 or 4 sentences encoded in ASCII.
Do not use lengthy or compound sentences. Do not mention that it is an image or a panoramic image.
Do not describe the background, lighting, color palette or count the number of objects.
Do not describe size like “small”, “large”, etc.
Describe the relative positions of each objects in the scene using only these relationships: “on”, “above”,
“surrounding”, “inside”, “left touching”, “right of”, “front touching”, ‘in front of”, “right touching”, “left
of”, “behind touching”, “behind”, “next to”, “left of”, “right of”. Optionally, describe the object attributes
(color, texture etc).
In the description only use these objects: table, night stand, picture, door, cabinet, curtain, bathtub, bed,
sink, fridge, shelves, window, lamp, chair, pillow, dresser, bookshelf, sofa, counter, desk, mirror, television,
wall



Figure 15. Text2NeRF results. The NeRF reconstructions are stitched into panorama images. Only 154° horizontal FOV and 113° vertical
FOV is shown since the method was not able to reconstruct the rest of the scene.
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