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A ANALYSIS OF THE DIVERSITY AUGMENTED REGULARIZATION

DivAugGAN introduces a novel regularization for cGANs to promote local sensitivity. It directly
augments the diversity of generated samples, i.e., G(x, zr) with the latent style code zr. A large
norm of the first-order derivative ensures the sensitive responses to style codes, and a moderate norm
of the second-order derivative encourages weak decay of the sensitivity. Motivated from this point,
we formulate the DivAugGAN regularizer as:

Lda = max
G

Ezr

{
λ1

∥∥∥∥∂G(x, zr)

∂z

∥∥∥∥− λ2 ∥∥∥∥∂2G(x, zr)

∂z2

∥∥∥∥} . (1)

Since a conditional generator G(x, z) : R` × Rk → Rd is a multivariate function with
high-dimensional outputs, it is very difficult to optimize the norms of its derivatives explicitly.
As illustrated in Figure 1, we consider to approximating these norms with the average norms of the
corresponding directional derivatives along any random direction v ∼ N (0, σ2Ik), which can be
further estimated with finite difference methods from data pairs (G(x, zr),x, zr,∆z).

Directional Derivatives. For a multivariate function g(x) : R` → R and a directional vector v ∈ R`,
its first-order and second-order directional derivatives are closely related to the corresponding
derivatives, i.e., ‖v‖2 dg(x)

dv = vT dg(x)
dx , ‖v‖22

d2g(x)
dv2 = vT d2g(x)

dx2 v. By replacing the norms in
Eq. 1 with average norms of the corresponding directional derivatives along a random direction
v ∼ N (0, σ2Ik), we define the transformed regularization as:

Lda = max
G

Ezr

{
λ1Ev

[∥∥∥∥∂G(x, zr)

∂v

∥∥∥∥]− λ2Ev

[∥∥∥∥∂2G(x, zr)

∂v2

∥∥∥∥]} , (2)

where ∂G(x,zr)
∂v and ∂2G(x,zr)

∂v2 refer to the first-order partial directional derivative and the second-order
partial directional derivative of G(x, z) to z, respectively.

When `1 norm is employed, we can prove the following proportional expression holds between the
first-order norms:

Ev∼N (0,σ2Ik)

[∥∥∥∥∂G(x, z)

∂v

∥∥∥∥] ∝ ∥∥∥∥∂G(x, z)

∂z

∥∥∥∥ . (3)

This proportional expression implies that average norms of directional derivatives can function as a
surrogate for norms of derivatives, especially in formulating regularization losses.

Finite Differences of Directional Derivatives. Finite difference methods provide a simple and useful
technique to approximate directional derivatives of multivariate functions. Taking the first-order
derivative as an example, forward, backward and central difference approximations of ∂G(x,zr)

∂v can
be defined as:∥∥∥∥∂G(x, zr)

∂v

∥∥∥∥ =
‖G(x, zr + β∆z)−G(x, zr)‖

‖β∆z‖2
+O(β‖∆z‖2),∥∥∥∥∂G(x, zr)

∂v

∥∥∥∥ =
‖G(x, zr)−G(x, zr − α∆z)‖

‖α∆z‖2
+O(α‖∆z‖2),∥∥∥∥∂G(x, zr)

∂v

∥∥∥∥ =
‖G(x, zr + β∆z)−G(x, zr − α∆z)‖

‖(α+ β)∆z‖2
+O((α+ β)2‖∆z‖22),

(4)
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where the principal parts on the right hand side are named as DR terms of the diversity augmented
regularization.

Figure 1: Theoretical derivation of the diversity augmented regularizer in DivAugGAN.

For the second-order derivative ∂2G(x,zr)
∂v2 , it holds that∥∥∥∥∂2G(x, zr)

∂v2

∥∥∥∥ =
‖G(x, zr + β∆z)− 2G(x, zr) +G(x, zr − β∆z)‖

‖β∆z‖22
+O(β3‖∆z‖32),∥∥∥∥∂2G(x, zr)

∂v2

∥∥∥∥ =
‖G(x, zr + 2β∆z)− 2G(x, zr + β∆z) +G(x, zr)‖

‖β∆z‖22
+O(β2‖∆z‖22),∥∥∥∥∂2G(x, zr)

∂v2

∥∥∥∥ =
‖G(x, zr)− 2G(x, zr − α∆z) +G(x, zr − 2α∆z)‖

‖α∆z‖22
+O(α2‖∆z‖22),

(5)

where the principal parts on the right hand side are named as RVC terms of the diversity augmented
regularization.

B APPLICATION TO UNCONDITIONAL GAN

Apart from conditional GAN, we further explore the regularization effect of DivAugGAN on
unconditional GAN with a mixture of twenty-five 2D Gaussians arranged as a 5×5 square matrix.
In order to reduce regularization from network structures, we simply set the generator and the
discriminator as a three-layer MLP and a two-layer MLP, respectively, without any normalization.We
collect 5000 real samples as training data and visualize 2500 generated samples. For all regularization
methods, the best regularization coefficient is chosen from {1, 10, 50, 100, 200}. As illustrated in
Figure 2, the mode-collapse problem can be effectively alleviated by applying our DivAugGAN
regularizer to encourage the generator to efficiently explore the data space. DivAugGAN regularizer
successfully enables the generator to capture much more modes, when compared to vanilla GAN,
DSGAN and MSGAN setting.

C RELATED WORKS

GANs Goodfellow et al. (2014) have demonstrate remarkable effectiveness in various computer
vision and graphics tasks, e.g., image/video synthesis, image/video translation, domain adaptation
and data augmentation. cGANs, built upon GANs, takes additional information as extra conditional
inputs, and can be applied to various applications. However, cGANs are often observed to suffer mode
collapse problems Arjovsky & Bottou (2017), resulting in only small subsets of output distribution
are represented by the generator. In image-to-image translation task, this issue leads to a deterministic
mapping from input to output distributions, and multi-modal nature of the mapping is sacrificed.

Extensive studies have been performed to resolve the commonly appeared mode collapse problem
in both of standard and conditional GAN settings, such as incorporating the mini-batch statistics
into the discriminator Salimans et al. (2016), employing the improved divergence metrics, objective
functions and optimization processes to smooth the loss of the discriminator Arjovsky et al. (2017);
Gulrajani et al. (2017); Mao et al. (2017); Odena et al. (2018); Heusel et al. (2017); Srivastava
et al. (2017); Miyato et al. (2018), and introducing auxiliary networks, like multiple generators or
discriminators with weight-sharing mechanism Liu & Tuzel (2016); Ghosh et al. (2018); Hoang et al.
(2018); Nguyen et al. (2017); Che et al. (2016), extra encoders Dumoulin et al. (2017); Donahue
et al. (2017); Larsen et al. (2016) and additional classifier Odena et al. (2017); Lin et al. (2019), etc.
Hybrid model of cGAN and VAE with random injected latent codes is also presented to address
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Ground truth
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Figure 2: Density plots of ground-truth, vanilla GAN (1st row), DSGAN (2nd row), MSGAN (3rd
row) and DivAugGAN (4th row). Please zoom the image to see the details.

mode-collapse issue in cGANs based framework for multimodal image-to-image translation task.
Specifically, Zhu et al. design an invertible generator in BiCycleGAN with an additional encoder
network for latent code reconstruction from the generated image. Similarly, domain-specific decoders
are developed to interpret the latent codes for generating images with various styles in multi-modal
image translation by Lee et al. Lee et al. (2018) and Huang et al. Huang et al. (2018), respectively.

Odena et al. propose a regularization method to clamp the generator Jacobian within a certain
range Odena et al. (2018). Sharing a similar idea as Odena et al. (2018), Yang et al. presented
DSGAN with an objective function to simply maximize the norm of the generator gradient with
an optional upper-bound Yang et al. (2019), and Mao et al. proposed MSGAN with an additional
mode seeking regularization term on the generator to maximize the ratio of the distance between
the produced images with respect to the distance between the injected latent vectors. However, all
such regularization fail to maintain the relative change coherence, as they only include the absolute
distinction requirements while ignore to present relative consistency constraints, which may bring
about unexpected mode override or mode fusion issues.

D TRAINING DETAILS

We train all experiments on Tesla V100 GPUs 32G using PyTorch Paszke et al. (2019).

Two-domain multimodal image-to-image translation. All models are trained using AdamKingma
& Ba (2015) with β1 = 0.5 and β2 = 0.999 and batch size is 12. We also use a weight decay at rate
of 0.0001. We train all experiments on Dog 
 Cat and Summer 
 Winter datasets for 2000 and
1200 epochs, respectively. We keep the same learning rate of 0.0001 for the first 600 epochs and
lineaely decay the rate to the last epoch. For training data, we resized them to 256× 256, and random
cropped them to 216× 216. For testing data, we resized them to 256× 256, and center cropped them
to 216× 216. The network weights are initialized with Gaussian initialization.
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Multi-domain multimodal image-to-image translation. For MDMM, MDMM+MSGAN and
DivAugGAN(M), the hyper-parameters keep same with two-domain image-to-image translation
experiments. Except that, AFHQ dataset is trained for 2000 epochs, and the other three are trained for
1200 epochs. For StarGANv2 and DivAugGAN(s), we using the Adam with β1 = 0 and β2 = 0.99
and batch size is 8. We also use a weight decay at rate of 0.0001. We train all experiments 100K
iterations. The learning rates of Generator, Discriminator and Style encoder are set to 10−4, while
that of Mapping network is set to 10−6. For training data, we random cropped them with the scale
0.8 to 1.0, then resized to 256 × 256. They are flipped horizontally with a probability of 0.5. For
testing data, we just resized them to 256× 256. The network weights are initialized with Kaiming
initializationHe et al. (2015).

E EVALUATION DETAILS

Dog 
 Cat dataset Lee et al. (2018). There are 771 and 1264 training images in the class of Cat and
Dog, respectively. The number of test images in each class is 100.

Summer 
 Winter dataset Zhu et al. (2017). This dataset contains images downloaded from Flickr
with the tag yosemite. The training size of each class is 1232 (Summer) and 962 (Winter) and the test
size of each class is 309 (Summer) and 238 (Winter)

Alps Seasons dataset Anoosheh et al. (2018). This data set is collected from images on Flickr. The
images are categorized into four seasons based on the provided timestamp of when it was taken. It
consists of four categories: Spring, Summer, Fall, and Winter. The training data consists of 6053
images of four seasons, while the test data consists of 400 images.

WikiArts dataset Zhu et al. (2017). This data set includes painting images of four artists Monet, Van
Gogh, Cezanne, and Ukiyo-e, and another real photo data set. There are 1072, 525, 400, 562, and
6287 images, for the class of Monet, Van Gogh, Cezanne, Ukiyo-e, and real photo, respectively, in
the training set, while there are 121, 58, 400, 263, and 751 images, for the class of Monet, Van Gogh,
Cezanne, Ukiyo-e, and real photo, respectively, in the test set.

Image weather conditions dataset Chu et al. (2017). We only select four different weather condition
images, i.e., sunny, cloudy, snowy, and foggy in this work. The training data consists of 1202, 1202,
1202, and 307 images for sunny, cloudy, snowy, and foggy weather condition, respectively, while the
test set consists of 50 images for each class.

AFAQ dataset Choi et al. (2020). This data sets includes three domains of animal face images: cat,
dog, and wildlife. For each domain, we use 4500 images as the training set, and remain 500 images
as the test set. Note that in AFAQ dataset, all images are vertically and horizontally aligned to make
the eyes at the center.

E.1 EVALUATION METRICS

We conduct quantitative evaluations using the following metrics.

Frechét inception distance (FID) Heusel et al. (2017). FID measures the distance between the
distributions of the two images sets. Following Choi et al. (2020), the feature vectors from the last
average pooling layer of the ImageNet Deng et al. (2009); Russakovsky et al. (2015) pretrained
Inception-V3 network Szegedy et al. (2016) are used. We translate each test image from the source
domain into the target domain with 10 randomly sampled latent vectors. Then, the FID between the
translated images and training images in the target domain is calculated for each domain pairs and
the average scores are reported. Lower FID values indicate better quality of the generated images.

Learned perceptual image patch similarity (LPIPS) Zhang et al. (2018). LPIPS measures the diversity
of the generated images using the L1 distance between the extracted features from the pretrained
AlexNet Krizhevsky et al. (2012). Following Choi et al. (2020) , we generate 10 output images of a
target domain using 10 randomly sampled latent vectors for each test image from the source domain.
Next, the average of the pairwise distances among all 45 pairs outputs generated from the same input
is calculated, and the mean LPIPS values for all test images are reported. Note that higher LPIPS
scores indicate better diversity among the generated images.
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Number of statistically-different bins (NDB)Richardson & Weiss (2018). NDB is a bin-based metric
for measuring the similarity between the distribution between real generated and images. NDB metric
is employed to measure level of the mode collapse. Following Richardson & Weiss (2018), we first
execute a standard K-means algorithm with 10 random initializations to cluster the training samples
into different bins (N = 100, 200 or 300), which represents the modes of the real data distribution.
Next, each generated sample is assigned to its nearest bin. Note that each bin center is the mean of
all samples assigned to the same cluster. In the third step, the bin-proportions of the training and
synthesized samples are computed respectively to evaluate the difference between the generated
distribution and the real data distribution. Lastly, we find NDB of the bin-proportion by determining
the mode missing extent. Note that lower NDB scores indicate the generated data distribution fits the
real data distribution better with more modes.

Jensen-Shannon divergence(JSD) Richardson & Weiss (2018). We also compute the JSD metric
between the reference bins distribution and the tested model bins distribution, which is used as an
alternative to the NDB metric.

J(P ||Q) = 1
2ΣP (xi)log

P (xi)
M(xi)

+ 1
2ΣQ(xi)log

Q(xi)
M(xi)

, where M(xi) = P (xi)+Q(xi)
2

E.2 REFERENCE MODELS

We compare the performance of the proposed DivAugGAN with the following reference models:

DRIT Lee et al. (2018). DRIT is a two domain multimodal image translation framework trained with
unpaired data.

MSGAN Mao et al. (2019). This method uses a mode seeking regularization to alleviate the
mode-collapse problem in conditional generation tasks. Given a conditional image I , latent vectors
z1 and z2, and a conditional generator G, it use the mode seeking regularization term to maximize the
ratio of the distance between G(I, z1) and G(I, z2) with respect to the distance between z1 and z2.

MDMM Lee et al. (2020). This method uses a single generator G and a single discriminator D to
perform translation among multiple domains. GivenK domains {Ki}i=1∼k and their one-hot domain
codes {zid}i=1∼k, the method encodes the images onto a shared content spaceC, and domain-specific
attribute spaces {Ai}i=1∼k. It uses the target domain code, the target domain attribute and a random
content to generate a target image. The discriminator not only aims to discriminate between real
images and translated images, but also performs domain classification.

StarGANv2 Choi et al. (2020). This method trains a single generator G that can generate diverse
images of multiple domains. It consists of four modules, a generator, a mapping network, a
style encoder and a discriminator. The mapping network works to transform a latent code into
domain-specific style codes for multiple domains and the style encoder is used to extract the style
code of an input image. Then, the generator uses the domain-specific style code to translate an input
image to the target domain. The discriminator consists of multiple output branches, each branch
responsible for a certain domain to determine whether an image is a real image of its domain or a
fake image produced by G.

F ADDITIONAL RESULTS

F.1 MORE TWO-DOMAIN MULTIMODAL IMAGE-TO-IMAGE TRANSLATION RESULTS

Figures 3, 4 and 5 present more two-domain multimodal image-to-image translation results on dog 

cat, Yosemite summer 
 winter, and photo 
 cezanne/monet/ukiyoe/vangogh datasets. DivAugGAN
generates much diverse outputs over DRIT and MSGAN.

F.2 MORE MULTI-DOMAIN MULTIMODAL IMAGE-TO-IMAGE TRANSLATION RESULTS

Comparison on weather condition dataset. As the quantitative experimental results exhibited in Table
??, the proposed DivAugGAN performs favorably against MDMM and StarGANv2 in all metrics for
this multi-domain translation task on the weather condition dataset. DivAugGAN generates much
diverse outputs over MDMM with superior image visual quality. For example, in sunny→ foggy
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Figure 3: More qualitative comparisons of DivAugGAN with DRIT and MSGAN on dog 
 cat and
Yosemite summer 
 winter for two-domain multimodal image-to-image translation tasks.
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Figure 4: More qualitative comparisons of DivAugGAN with DRIT and MSGAN on dog 
 cat and
Yosemite summer 
 winter for two-domain multimodal image-to-image translation tasks.
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Figure 5: More qualitative comparisons of DivAugGAN with DRIT and MSGAN on dog 
 cat and
Yosemite summer 
 winter for two-domain multimodal image-to-image translation tasks.
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Figure 6: More qualitative results of DivAugGAN on photo 
 cezanne/monet/ukiyoe/vangogh for
two-domain multimodal image-to-image translation tasks. Rotate the figure 90 degrees clockwise to
see.
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Table 1: Quantitative comparison results of MDMM, MDMM with MSGAN regularizer and MDMM
with DivAugGAN regularizer on weather condition dataset.

FID ↓ LPIPS ↑ NDB ↓ JSD ↓

MDMM

Cloudy→ Sunny 125.61±0.28 0.0658±0.0012 26.00±2.00 0.164±0.002
Snow→ Sunny 177.33±0.66 0.0739±0.0025 22.33±2.67 0.157±0.005
Foggy→ Sunny 135.76±0.76 0.0658±0.0035 27.00±2.00 0.206±0.004
Sunny→ Cloudy 119.36±0.25 0.0637±0.0017 17.33±0.67 0.110±0.005
Snow→ Cloudy 174.90±0.68 0.0722±0.0031 25.00±2.00 0.169±0.003
Foggy→ Cloudy 131.44±0.54 0.0629±0.0015 19.00±3.00 0.110±0.002
Sunny→ Snow 170.42±0.41 0.0683±0.0022 26.00±1.00 0.190±0.007
Cloudy→ Snow 167.92±0.30 0.0695±0.0020 28.67±2.33 0.248±0.007
Foggy→ Snow 160.11±0.32 0.0627±0.0023 28.67±0.67 0.261±0.003
Sunny→ Foggy 146.50±0.24 0.0637±0.0017 13.00±1.00 0.130±0.005
Cloudy→ Foggy 148.39±0.30 0.0662±0.0027 8.67±0.67 0.084±0.004
Snow→ Foggy 198.48±0.48 0.0691±0.0031 15.67±1.33 0.228±0.009

MDMM
+MSGAN

Cloudy→ Sunny 118.64±0.56 0.1102±0.0028 30.00±1.00 0.179±0.004
Snow→ Sunny 168.57±0.47 0.1315±0.0013 21.33±1.33 0.157±0.006
Foggy→ Sunny 137.41±0.54 0.1130±0.0043 25.00±3.00 0.206±0.003
Sunny→ Cloudy 118.16±0.39 0.1131±0.0023 14.00±2.00 0.108±0.004
Snow→ Cloudy 167.08±0.63 0.1206±0.0047 24.33±2.67 0.172±0.005
Foggy→ Cloudy 133.17±0.70 0.1020±0.0038 19.67±1.33 0.112±0.004
Sunny→ Snow 165.74±0.64 0.1091±0.0026 24.33±2.33 0.184±0.013
Cloudy→ Snow 165.05±0.83 0.1032±0.0027 26.33±0.67 0.247±0.010
Foggy→ Snow 165.46±0.22 0.1020±0.0017 30.00±1.00 0.284±0.008
Sunny→ Foggy 145.76±0.79 0.1059±0.0007 11.67±2.67 0.124±0.007
Cloudy→ Foggy 144.54±0.51 0.1053±0.0042 8.00±1.00 0.096±0.007
Snow→ Foggy 188.93±0.43 0.1141±0.0037 19.00±1.00 0.275±0.010

DivAug
GAN(M)

Cloudy→ Sunny 116.74±0.19 0.1596±0.0052 19.33±1.33 0.146±0.008
Snow→ Sunny 150.86±0.92 0.1736±0.0041 18.00±2.00 0.134±0.011
Foggy→ Sunny 126.90±0.57 0.1630±0.0012 20.33±0.67 0.193±0.010
Sunny→ Cloudy 109.01±0.70 0.1624±0.0036 15.33±3.67 0.094±0.002
Snow→ Cloudy 148.54±0.20 0.1784±0.0030 23.67±1.67 0.170±0.004
Foggy→ Cloudy 125.71±0.51 0.1595±0.0024 19.33±0.67 0.090±0.007
Sunny→ Snow 148.16±0.84 0.1570±0.0042 23.33±1.33 0.185±0.005
Cloudy→ Snow 153.84±1.37 0.1616±0.0097 26.00±2.00 0.218±0.005
Foggy→ Snow 147.19±0.92 0.1619±0.0084 29.67±1.67 0.244±0.009
Sunny→ Foggy 140.13±0.55 0.1650±0.0063 14.67±0.67 0.151±0.005
Cloudy→ Foggy 150.87±0.55 0.1699±0.0034 11.00±1.00 0.139±0.010
Snow→ Foggy 186.51±0.32 0.1776±0.0089 18.67±0.67 0.220±0.007

translation task, we achieve much higher LPIPS score, i.e. 0.1650 [DivAugGAN(M)] v.s. 0.1059
[MDMM+MSGAN] v.s. 0.0637 [MDMM], and lower FID score, i.e., 140.13 [DivAugGAN(M)] v.s.
145.76 [MDMM+MSGAN] v.s. 146.50 [MDMM]. Figures 7, 8, 9, and 10 present the complete results
of the qualitative comparisions of DivAugGAN (M) with MDMM and MSGAN integratd MDMM on
image weather condition dataset for multi-domain multimodal image-to-image translation. We show
all twelve translation results, including cloudy→ foggy, cloudy→snow, cloudy→sunny, foggy→
cloudy, foggy→snow, foggy→sunny, snow→ foggy, snow→cloudy, snow→sunny, sunny→ cloudy,
sunny→snow, and sunny→ foggy.

Qualitative and quantitative comparisons on AFAQ data set. As the quantitative experimental
results exhibited in Table 2, the proposed DivAugGAN performs favorably against MDMM and
StarGANv2 in most metrics for this multi-domain multimodal image-to-image translation task.
DivAugGAN achieves slightly diverse outputs over MDMM and StarGANv2. For example, in
dog→cat translation, we achieve higher LPIPS score, i.e. 0.5141 [DivAugGAN(S)] v.s. 0.4956
[StarGANv2], 0.4433 [DivAugGAN(M)] v.s. 0.4177 [MDMM+MSGAN] v.s. 0.2901 [MDMM].
Note that StarGANv2 is specifically designed for this task. Figure 11 presents the complete results of
the qualitative comparisons DivAugGAN (S) with StarGANv2 on AFHQ dataset for multi-domain
multimodal image-to-image translation. We show all six translation results within three domains:
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Figure 7: Qualitative comparisons of DivAugGAN (M) with MDMM and MSGAN integratd
MDMM on image weather condition dataset for multi-domain multimodal image-to-image translation.
Translation results of cloudy → foggy/snow/sunny are illustrated. Rotate the figure 90 degrees
clockwise to see.
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Figure 8: Qualitative comparisons of DivAugGAN (M) with MDMM and MSGAN integratd
MDMM on image weather condition dataset for multi-domain multimodal image-to-image translation.
Translation results of foggy → cloudy/snow/sunny are illustrated. Rotate the figure 90 degrees
clockwise to see.
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Figure 9: Qualitative comparisons of DivAugGAN (M) with MDMM and MSGAN integratd
MDMM on image weather condition dataset for multi-domain multimodal image-to-image translation.
Translation results of snow → cloudy/foggy/sunny are illustrated. Rotate the figure 90 degrees
clockwise to see.
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Figure 10: Qualitative comparisons of DivAugGAN (M) with MDMM and MSGAN integratd
MDMM on image weather condition dataset for multi-domain multimodal image-to-image translation.
Translation results of sunny → cloudy/foggy/snow are illustrated. Rotate the figure 90 degrees
clockwise to see.
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Table 2: Quantitative comparison results of MDMM Lee et al. (2020), MDMM with MSGAN Mao
et al. (2017) regularizer, StarGANv2 Choi et al. (2020), MDMM with DivAugGAN regularizer, and
StarGANv2 with DivAugGAN regularizer on AFHQ dataset.

FID ↓ LPIPS ↑ NDB ↓ JSD ↓

MDMM

Dog→ Cat 40.61±0.42 0.2901±0.0032 38.00±2.00 0.070±0.002
Wild→ Cat 23.40±0.23 0.3001±0.0015 40.00±2.00 0.096±0.001
Cat→ Dog 66.02±0.23 0.3591±0.0015 34.67±1.67 0.064±0.001

Wild→ Dog 49.49±0.24 0.3353±0.0010 35.67±0.67 0.070±0.002
Cat→Wild 46.31±0.07 0.3198±0.0010 34.67±0.67 0.072±0.001
Dog→Wild 72.30±0.36 0.2544±0.0014 40.00±1.00 0.078±0.008

MDMM
+MSGAN

Dog→ Cat 12.22±0.18 0.4177±0.0012 36.00±2.00 0.072±0.001
Wild→ Cat 13.01±0.30 0.4050±0.0008 40.00±2.00 0.075±0.002
Cat→ Dog 31.18±0.03 0.4880±0.0005 43.67±1.67 0.095±0.004

Wild→ Dog 28.01±0.74 0.4762±0.0003 39.33±2.33 0.102±0.001
Cat→Wild 19.24±0.26 0.4611±0.0013 42.33±1.33 0.169±0.004
Dog→Wild 24.34±0.60 0.4642±0.0010 39.67±0.67 0.170±0.004

DivAug
GAN(M)

Dog→ Cat 13.85±0.20 0.4433±0.0022 39.00±1.00 0.125±0.002
Wild→ Cat 15.96±0.15 0.4378±0.0004 39.33±0.67 0.122±0.004
Cat→ Dog 50.75±0.30 0.4860±0.0012 42.00±2.00 0.110±0.001

Wild→ Dog 49.39±0.12 0.4881±0.0004 36.67±1.67 0.120±0.004
Cat→Wild 24.65±0.85 0.4584±0.0022 37.00±2.00 0.097±0.002
Dog→Wild 24.31±0.80 0.4642±0.0007 37.00±1.00 0.090±0.002

StarGANv2

Dog→ Cat 8.59±0.25 0.4956±0.0006 21.33±1.67 0.024±0.001
Wild→ Cat 6.83±0.17 0.4876±0.0009 26.33±4.33 0.025±0.002
Cat→ Dog 39.50±0.66 0.5197±0.0006 25.67±1.67 0.026±0.003

Wild→ Dog 33.16±0.57 0.5206±0.0039 29.67±1.67 0.032±0.004
Cat→Wild 14.24±0.10 0.4889±0.0001 41.00±1.00 0.109±0.005
Dog→Wild 14.38±0.33 0.4921±0.0004 36.67±3.33 0.111±0.004

DivAug
GAN(S)

Dog→ Cat 9.01±0.17 0.5141±0.0008 40.00±1.00 0.117±0.001
Wild→ Cat 6.65±0.11 0.5114±0.0020 42.33±2.67 0.119±0.004
Cat→ Dog 36.52±0.15 0.5296±0.0006 43.67±1.33 0.130±0.008

Wild→ Dog 32.49±0.32 0.5287±0.0013 46.33±1.33 0.128±0.003
Cat→Wild 14.05±0.13 0.4893±0.0007 30.33±0.67 0.044±0.001
Dog→Wild 13.46±0.31 0.4879±0.0017 29.33±0.67 0.046±0.002

wild→ cat, cat→wild, wild→dog, dog→ wild, cat→dog, and dog→cat. The produced images by
both of DivAugGAN(M) and DivAugGAN(S) shows superior visual quality.

Qualitative and quantitative comparisons on alps seasonal transfer dataset. As the quantitative
experimental results presented in Table 3, the proposed DivAugGAN performs favorably against
MDMM and StarGANv2 with a margins in all metrics for this multi-domain translation task.
DivAugGAN generates much diverse outputs over MDMM and StarGANv2 with superior image
visual quality. For example, in winter→ spring translation task, we achieve much higher LPIPS
score, i.e., 0.4312 [DivAugGAN(S)] vs 0.2966 [StarGANv2], 0.1803 [DivAugGAN(M)] v.s.
0.1352 [MDMM+MSGAN] v.s. 0.0869 [MDMM], and lower FID/JSD scores, i.e., 58.26/0.051
[DivAugGAN(S)] v.s. 68.84/0.073 [StarGANv2], 78.27/0.045 [DivAugGAN(M)] v.s. 82.05/0.066
[MDMM+MSGAN] v.s. 89.22/0.076 [MDMM]. Figure 12, 13, 14, and 15, present the complete
results of qualitative comparison of DivAugGAN with MDMM and StarGANv2 on alps seasonal
transfer dataset for multi-domain multimodal image-to-image translation. We show all twelve
translation results with in fourth domains: spring→ summer, spring→autumn, spring→ winter,
summer → spring, summer→autumn, summer→winter, autumn →spring, autumn →summer,
autumn→winter, winter→ spring, winter→summer, and winter→autumn.

More qualitative results on WikiArts dataset. More results of our DivAugGAN(S) are shown
in Figure 16 to demonstrate its effectiveness and generality. Translation results of photo →
cezanne/monet/ukiyoe/vangogh are illustrated.
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Figure 11: Qualitative comparisons of DivAugGAN (S) with StarGANv2 on AFHQ dataset for
multi-domain multimodal image-to-image translation. Complete translation results of Wild 
 Cat,
Wild 
 Dog, and Dog 
 Cat are illustrated.
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Table 3: Quantitative comparison of MDMM Lee et al. (2020), MDMM with MSGAN Mao et al.
(2019) regularizer, StarGANv2 Choi et al. (2020), MDMM with DivAugGAN regularizer, and
StarGANv2 with DivAugGAN regularizer on alps seasonal transfer dataset.

FID ↓ LPIPS ↑ NDB ↓ JSD ↓

MDMM

Summer→ Spring 81.40±0.34 0.0833±0.0017 20.33±2.67 0.056±0.008
Autumn→ Spring 84.63±0.60 0.0865±0.0028 20.00±1.00 0.061±0.002
Winter→ Spring 89.22±0.25 0.0869±0.0033 17.33±1.33 0.076±0.002

Spring→ Summer 73.16±0.09 0.0817±0.0015 15.67±2.67 0.039±0.005
Autumn→ Summer 64.57±0.16 0.0847±0.0022 11.00±2.00 0.033±0.005
Winter→ Summer 78.45±0.25 0.0847±0.0032 25.00±2.00 0.084±0.004
Spring→ Autumn 71.44±0.20 0.0833±0.0008 17.33±2.33 0.042±0.006

Summer→ Autumn 66.01±0.31 0.0890±0.0025 15.67±0.67 0.036±0.002
Winter→ Autumn 75.31±0.40 0.0848±0.0028 31.33±1.67 0.095±0.009
Spring→Winter 80.64±0.14 0.0882±0.0030 24.67±2.33 0.131±0.007

Summer→Winter 78.10±0.10 0.0902±0.0017 28.00±1.00 0.122±0.005
Autumn→Winter 76.87±0.53 0.0921±0.0041 26.33±2.67 0.113±0.003

MDMM
+MSGAN

Summer→ Spring 75.38±0.19 0.1353±0.0034 14.33±0.67 0.041±0.004
Autumn→ Spring 79.54±0.23 0.1426±0.0054 17.00±3.00 0.046±0.006
Winter→ Spring 82.05±0.54 0.1352±0.0047 19.67±0.67 0.066±0.005

Spring→ Summer 69.33±0.23 0.1328±0.0021 21.00±2.00 0.051±0.005
Autumn→ Summer 60.69±0.08 0.1396±0.0016 16.00±2.00 0.038±0.001
Winter→ Summer 72.07±0.27 0.1362±0.0009 22.00±2.00 0.087±0.004
Spring→ Autumn 66.34±0.33 0.1396±0.0052 16.33±2.67 0.043±0.005

Summer→ Autumn 60.26±0.29 0.1420±0.0034 14.33±1.33 0.037±0.002
Winter→ Autumn 66.79±0.35 0.1386±0.0018 25.00±1.00 0.090±0.004
Spring→Winter 73.45±0.41 0.1397±0.0016 20.33±1.33 0.089±0.004

Summer→Winter 68.25±0.30 0.1438±0.0048 22.33±1.33 0.072±0.003
Autumn→Winter 70.20±0.51 0.1513±0.0035 26.67±2.33 0.094±0.006

DivAug
GAN(M)

Summer→ Spring 73.81±0.22 0.1697±0.0016 11.67±1.33 0.044±0.003
Autumn→ Spring 76.03±0.23 0.1715±0.0045 18.00±1.00 0.048±0.003
Winter→ Spring 78.27±0.33 0.1803±0.0004 13.67±1.33 0.045±0.002

Spring→ Summer 65.57±0.12 0.1672±0.0036 18.00±3.00 0.047±0.004
Autumn→ Summer 55.67±0.28 0.1671±0.0007 15.67±1.33 0.040±0.003
Winter→ Summer 69.59±0.56 0.1707±0.0026 20.00±2.00 0.059±0.001
Spring→ Autumn 62.80±0.13 0.1706±0.0025 15.33±1.67 0.040±0.001

Summer→ Autumn 57.87±0.15 0.1684±0.0016 13.33±1.67 0.032±0.004
Winter→ Autumn 66.88±0.18 0.1729±0.0058 20.33±3.67 0.058±0.006
Spring→Winter 68.75±0.34 0.1822±0.0024 27.00±2.00 0.112±0.003

Summer→Winter 64.54±0.20 0.1759±0.0026 20.67±1.67 0.078±0.006
Autumn→Winter 62.15±0.16 0.1801±0.0019 23.67±2.33 0.101±0.008

StarGANv2

Summer→ Spring 58.51±0.38 0.2889±0.0042 16.67±1.33 0.043±0.002
Autumn→ Spring 58.12±0.54 0.3009±0.0030 17.33±1.67 0.051±0.004
Winter→ Spring 68.84±0.20 0.2966±0.0015 22.00±2.00 0.073±0.005

Spring→ Summer 46.13±0.46 0.2811±0.0058 13.33±1.33 0.028±0.002
Autumn→ Summer 43.30±0.24 0.2865±0.0062 10.00±3.00 0.025±0.004
Winter→ Summer 51.54±0.40 0.3019±0.0021 20.33±0.67 0.075±0.009
Spring→ Autumn 42.26±0.31 0.3005±0.0063 15.67±2.33 0.038±0.003

Summer→ Autumn 45.04±0.64 0.2934±0.0029 12.67±0.67 0.035±0.003
Winter→ Autumn 49.03±0.38 0.3223±0.0047 18.67±1.33 0.069±0.002
Spring→Winter 48.10±0.08 0.3182±0.0018 12.33±2.67 0.038±0.004

Summer→Winter 48.82±0.50 0.3292±0.0080 14.67±3.33 0.040±0.003
Autumn→Winter 47.46±0.28 0.3313±0.0073 10.33±0.67 0.039±0.003

DivAug
GAN(S)

Summer→ Spring 54.57±0.36 0.4055±0.0082 15.67±1.67 0.039±0.004
Autumn→ Spring 53.44±0.68 0.4190±0.0051 12.33±1.33 0.033±0.003
Winter→ Spring 58.26±0.72 0.4312±0.0049 15.33±1.33 0.051±0.003

Spring→ Summer 39.02±0.24 0.4054±0.0032 13.67±2.33 0.032±0.001
Autumn→ Summer 37.56±0.31 0.4052±0.0084 10.00±2.00 0.027±0.005
Winter→ Summer 43.35±0.35 0.4277±0.0045 20.33±1.33 0.075±0.005
Spring→ Autumn 35.38±0.28 0.4295±0.0018 12.33±1.67 0.030±0.006

Summer→ Autumn 37.32±0.85 0.4216±0.0059 10.67±2.33 0.027±0.005
Winter→ Autumn 39.96±0.71 0.4625±0.0046 19.00±2.00 0.060±0.007
Spring→Winter 42.98±0.39 0.4202±0.0059 13.00±2.00 0.035±0.002

Summer→Winter 44.50±0.05 0.4247±0.0074 14.00±4.00 0.038±0.004
Autumn→Winter 42.75±0.71 0.4271±0.0071 11.33±2.67 0.041±0.003
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Figure 12: Qualitative comparison results on alps seasonal transfer dataset for multi-domain
multimodal image-to-image translation. Translation results of spring → summer/autumn/winter
are illustrated. Rotate the figure 90 degrees clockwise to see.
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Figure 13: Qualitative comparison results on alps seasonal transfer dataset for multi-domain
multimodal image-to-image translation. Translation results of summer → spring/autumn/winter
are illustrated. Rotate the figure 90 degrees clockwise to see.
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Figure 14: Qualitative comparison results on alps seasonal transfer dataset for multi-domain
multimodal image-to-image translation. Translation results of autumn→ spring/summer/winter
are illustrated. Rotate the figure 90 degrees clockwise to see.
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Figure 15: Qualitative comparison results on alps seasonal transfer dataset for multi-domain
multimodal image-to-image translation. Translation results of winter → spring/summer/autumn
are illustrated. Rotate the figure 90 degrees clockwise to see.
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Figure 16: More qualitative results of DivAugGAN on photo 
 cezanne/monet/ukiyoe/vangogh for
multi-domain multimodal image-to-image translation tasks. Rotate the figure 90 degrees clockwise
to see.
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