
Supplemental Material: Efficient Neural Network Training via
Forward and Backward Propagation Sparsification

This appendix can be divided into four parts. To be precise,

1. Section A gives the detailed proof of Theorem 1 and discuss the convergence of our method.

2. Section B present experimental configurations of this work.

3. Section C present calculation schemes on train-cost savings and train-computational time.

4. Section D discusses the potentials and limitations of this work.

A Proof of Theorem 1

A.1 Properties of Overparameterized Deep Neural Networks

Before giving the detailed proof, we would like to present the following two properties of overparam-
eterized deep neural networks, which are implied by the latest studies based on the mean field theory.
We will empirically verify these properties in this section and adopt them as assumptions in our proof.

Property 1. Given the probability s and the weights w for an overparameterized deep neural
network, then for two independent masks m and m′ sampled from p(·|s), L(m)− L(m′) is always
small. That is

V (s) := Em∼p(·|s)Em′∼p(·|s) (L(m)− L(m′))
2 (6)

is small.

The mean field theory based studies [39, 7] proved that discrete deep neural networks can be viewed
as sampling neurons/channels from continuous networks according to certain distributions. As the
numbers of neurons/channels increase, the output of discrete networks would converge to that of the
continuous networks (see Theorem 3 in [39] and Theorem 1 in [7]). Although in standard neural
networks we do not have the scaling operator as [39, 7] for computing the expectation, due to the batch
normalization layer, the affect caused by this difference can largely be eliminated. The subnetworks
m and m′ here can be roughly viewed as sampled from a common continuous network. Therefore,
L(m)− L(m′) would be always small. That’s why Property 1 holds.

Property 2. Given the probability s and the weights w for an overparameterized deep neural
network, consider a mask m sampled from p(·|s), if we flip one component of m, then the network
would not change too much. Combined with Property 1, this can be stated as: for any j ∈ C, we
denote m−j and s−j to be all the components of m and s except the j-th component, and define

Vmax(s) := max
mj∈{0,1},j∈C

Em−j∼p(·|s−j)Em′∼p(·|s) (L(m)− L(m′))
2
,

then

Vmax(s) ≈ V (s). (7)

In the mean field based studies [39, 7], they model output of a neuron/channel as a expectation of
weighted sum of the neurons/channels in the previous layer w.r.t. a certain distribution. Therefore,
the affect of flipping one component of the mask on expectation is negligible. Therefore Property 2
holds.

15

A.2 Detailed Proof

Proof. In this proof, we denote
(L(m)− L(m′))Hα(s)∇s ln p(m|s)

as Gα(m,m′|s). Note that the total variance
Var(Gα(m,m′|s))

=Em∼p(·|s)Em′∼p(·|s)∥Gα(m,m′|s)∥22 − ∥Em∼p(·|s)Em′∼p(·|s)Gα(m,m′|s)∥22,
we only need to prove that the term Em∼p(·|s)Em′∼p(·|s)∥Gα(m,m′|s)∥22 is bounded.

We let m−j and s−j be all the components of m and s except the j-th component
with j ∈ C. We consider the j-th component of Gα(m,m′|s), i.e., Gαj (m,m′|s), then
Em∼p(·|s)Em′∼p(·|s)∥Gαj (m,m′|s)∥22 can be estimated as

Em∼p(·|s)Em′∼p(·|s)
(
Gαj (m,m′|s)

)2
=Em∼p(·|s)Em′∼p(·|s) (L(m)− L(m′))

2
[Hα(s)∇s ln p(m|s)]2j

=Em∼p(·|s)Em′∼p(·|s) (L(m)− L(m′))
2

(
s2αj (1− sj)

2α (mj − sj)
2

s2j (1− sj)2

)
(8)

=Em∼p(·|s)Em′∼p(·|s) (L(m)− L(m′))
2
(
s
2(α−1)
j (1− sj)

2(α−1)(mj − sj)
2
)

=Emj∼p(·|sj)

(
Em−j∼p(·|s−j)Em′∼p(·|s) (L(m)− L(m′))

2
)(

s
2(α−1)
j (1− sj)

2(α−1)(mj − sj)
2
)

≤
(7)
Vmax(s)Emj∼p(·|sj)

(
s
2(α−1)
j (1− sj)

2(α−1)(mj − sj)
2
)

(9)

=
(
s2αj (1− sj)

(2α−1) + s2α−1
j (1− sj)

2α
)
Vmax(s). (10)

Thus Em∼p(·|s)Em′∼p(·|s)∥Gα(m,m′|s)∥22 can be estimated as follows:

Em∼p(·|s)Em′∼p(·|s)∥Gα(m,m′|s)∥22
=
∑
j∈C

Em∼p(·|s)Em′∼p(·|s)
(
Gαj (m,m′|s)

)2
≤Vmax(s)

∑
j∈C

s2αj (1− sj)
(2α−1) + s2α−1

j (1− sj)
2α. (11)

Thus, when α ∈ [12 , 1), we have

Em∼p(·|s)Em′∼p(·|s)∥Gα(m,m′|s)∥22
≤Vmax(s)

∑
j∈C

s2αj (1− sj)
(2α−1) + s2α−1

j (1− sj)
2α

≤|C|Vmax(s).

The last inequality holds since the term s2αj (1 − sj)
(2α−1) + s2α−1

j (1 − sj)
2α is monotonically

decreasing w.r.t. α ∈ [12 , 1).

Therefore, from Property 1 and 2, we can see that the variance is bounded for any s.

Remark 3. Eqn. (8) and (9) indicate thatHα(s) is introduced to reduce the variance of the stochastic
PGE term ∇s ln p(m|s). Without Hα(s) (i.e., α = 0), from Eqn.(11), we can see that the total
variance bound would be

Vmax(s)
∑
j∈C

1

(1− sj)
+

1

sj
.

Because of the sparsity constraints, lots of sj would be close to 0. Hence, the total variance in this
case could be very large.
Remark 4. Our preconditioning matrix Hα(s) plays a role as adaptive step size. The hyper-
parameter α can be used to tune its effect on variance reduction. For a large variance∇s ln p(m|s)
we can use a large α. In our experiments, we find that simply letting α = 1

2 works well.

16

20 40 60 80
Epoch

10−5

10−4

10−3

10−2

10−1

100

101

Va
lu

e

Expectation Value Comparison

E(L2(m)) Vmax(s) V(s)

Figure 4: Experiments on ResNet32 on CIFAR-10. V (s) and Vmax(s) are very close during the
whole training process and they are smaller than Em∼p(·|s)L2(m) by four orders of magnitude.

A.3 Convergence of Our Method

For the weight update, the convergence can be guaranteed since we use the standard stochastic
gradient descent with the gradient calculated via backward propagation.

For the parameter s, as stated in Section 4.2.2, we update it as:

s← s− η (L (m)− L (m′))Hα(s)∇s ln p(m|s). (12)

Let ∆s(m,m′|s) be (L (m)− L (m′))Hα(s)∇s ln p(m|s), we can have

Em∼p(·|s)Em′∼p(·|s)∆s(m,m′|s)
=Em∼p(·|s)Em′∼p(·|s) (L (m)− L (m′))Hα(s)∇s ln p(m|s)
=Em∼p(·|s)L (m)Hα(s)∇s ln p(m|s)− Em∼p(·|s)Em′∼p(·|s)L (m′)Hα(s)∇s ln p(m|s)
=Hα(s)Em∼p(·|s)L (m)∇s ln p(m|s)−Hα(s)Em′∼p(·|s)L (m′)Em∼p(·|s)∇s ln p(m|s)︸ ︷︷ ︸

I

=Hα(s)Em∼p(·|s)L (m)∇s ln p(m|s) (13)

=Hα(s)∇sEm∼p(·|s)L (m) ,

where Eqn.(13) holds since term I = ∇sEm∼p(·|s)1 ≡ 0.

Therefore, we can see that ∆s(m,m′|s) is an unbiased gradient estimator associated with an adaptive
step size, i.e., our VR-PGE is a standard preconditioned stochastic gradient descent method. Thus,
the convergence can be guaranteed.

A.4 Experiments Verfiying Properties 1 and 2 in A.1

Figure 4 presents the values of Em∼p(·|s)L2(m), V (s) and Vmax(s) during the training process of
ResNet-32 on CIFAR-10. We can see that V (s) and Vmax(s) are very close during the whole training
process and they are smaller than Em∼p(·|s)L2(m) by four orders of magnitude. This verifies our
Property 1 and 2.

B Experimental Configurations

[CIFAR-10/100 Experiments] GPUs: 1 for VGG and ResNet and 2 for WideResNet. Batch Size:
256. Weight Optimizer: SGD. Weight Learning Rate: 0.1. Weight Momentum: 0.9. Probability
Optimizer: Adam. Probability Learning Rate: 12e-3. WarmUp: ✗. Label Smoothing: ✗.

[ImageNet-1K Experiments] GPUs: 4. Batch Size: 256. Weight Optimizer: SGD. Weight Learning
Rate: 0.256. Weight Momentum: 0.875. Probability Optimizer: Adam. Probability Learning Rate:
12e-3. WarmUp: ✓. Label Smoothing: 0.1.

17

Remark 5. The bold-face probability learning rate 12e-3 is the only hyperparameter obtained by
grid search on CIFAR-10 experiments and applied directly to larger datasets and networks. Other
hyperparameters are applied following the same practice of previous works [34, 20, 27, 51]. The
channels of ResNet32 for CIFAR experiments are doubled following the same practice of [42].

Table 5: Forward/backward time of dense/sparse networks and accompanying properties.

Model Val Acc(%) Params(%) Forward(min) Backward(min) Train-Computational
Time(min)

VGG-19

93.84 100.00 6.89 14.96 21.85 (1.00×)
93.46 23.71 6.41 7.63 14.04 (1.55×)
93.11 12.75 4.89 5.54 10.43 (2.09×)
92.23 6.69 3.10 3.73 6.83 (3.20×)
90.82 3.06 2.15 2.71 4.86 (4.50×)
87.97 0.80 1.27 1.68 2.95 (7.41×)

C Calculation Schemes on Train-cost Savings and Train-computational Time

C.1 Train-cost Savings

The train-cost of vanilla dense training can be computed as two parts: in forward propagation,
calculating the loss of weights and in backward propagation, calculating the gradient of weights and
gradient of the activations of the previous layers. The FLOPs of backward propagation is about 2∼3
times of forward propagation [2]. In the following calculation, we calculate the FLOPs of forward
propagation concretely and consider FLOPs of backward propagation 2 times of forward propagation
for simplicity.

[GrowEfficient] The forward propagation of dense network is fD. The forward propagation of
GrowEfficient is partially sparse with FLOPs being fS and backward propagation is dense. Therefore
the train-cost saving is computed as fD+2fD

fS+fD
= 3

2+fS/fD
, upper-bounded by 3

2 .

[Ours] The forward propagation of dense network is fD. The forward propagation and backward
propagation is totally sparse. The FLOPs of forward propagation is fS and the FLOPs of backward
propagation is 2∗fS . The forward propagation has to be computed two times. Therefore the train-cost
saving is computed as fD+2∗fD

2∗fS+2∗fS = 3
4fS/fD

. Actually, fS/fD is roughly equal to ρ2, leading to
drastically higher train-cost savings.

C.2 Train-computational Time

The calculation of train-computational time focuses on the forward and backward propagation of
dense/sparse networks. For both of the dense and sparse networks, we sum up the computation time
of all the forward and backward propagation in the training process as the train-computational time.
The detailed time cost is presented in Table 5. We can see that we can achieve significant speedups in
computational time.

D Potentials and Limitations of This Work

[On Computational Cost Saving] Although our method needs two forward propagation in each
iteration, we have to point out that our method can achieve significant computational cost saving.
The reason is that our forward and backward is completely sparse, whose computational complexity
is roughly ρ2 ∗ 100% of the conventional training algorithms with ρ being the remain ratio of the
channels.

[On Exploring Larger Networks] About the potential of our method in exploring larger networks,
we’d like to clarify the following three things:

18

1. The memory cost of the structure parameters s is negligible compared with the original
weight w as each filter is associated with only one structure parameter, therefore our s
would hardly increase the total memory usage.

2. Although in our method, we need to store the parameter of the full model, this would not
hinder us from exploring larger networks. The reason is that, in each iteration, we essentially
perform forward and backward propagation on the sparse subnetwork. More importantly,
we find that reducing the frequency of sampling subnetwork, e.g., sample a new subnetwork
for every 50 iterations, during training would not affect the final accuracy. In this way, we
can store the parameters of the full model on CPU memory and store the current subnetwork
on GPU, and synchronize the parameters’ updates to the full model only when we need to
resample a new subnetwork. Hence, our method has great potentials in exploring larger
deep neural networks. We left such engineering implements as the future work and we also
welcome the engineers in the community to implement our method more efficiently.

3. In exploring larger networks, the channel remain ratio ρ can be much smaller than the one
in the experiments in the main text. Notice that our method can reduce the computational
complexity to ρ2 ∗ 100% of the full network. It implies that, in this scenario, the potential
of our method can be further stimulated. We left this evaluation as future work after more
efficient implementation as discussed above.

19

	Proof of Theorem 1
	Properties of Overparameterized Deep Neural Networks
	Detailed Proof
	Convergence of Our Method
	Experiments Verfiying Properties 1 and 2 in A.1

	Experimental Configurations
	Calculation Schemes on Train-cost Savings and Train-computational Time
	Train-cost Savings
	Train-computational Time

	Potentials and Limitations of This Work

