
Heterophilic Graph Invariant Learning for Out-of-Distribution of
Fraud Detection

Lingfei Ren
renlingfei@whu.edu.cn

School of Computer Science, Wuhan
University, China

Ruimin Hu∗
hrm@whu.edu.cn

School of Computer Science, Wuhan
University, China

Zheng Wang
wangzwhu@whu.edu.cn

School of Computer Science, Wuhan
University, China

Yilin Xiao
yilin.xiao@connect.polyu.hk

Hong Kong Polytechnic University,
China

Dengshi Li
reallds@126.com

School of Artificial Intelligence,
Jianghan University, China

Junhang Wu
wjh920925@whu.edu.cn

College of Information Science and
Technology, Shihezi University, China

Jinzhang Hu
hujinzhang@whu.edu.cn

School of Computer Science, Wuhan
University, China

Yilong Zang
zangyl@whu.edu.cn

School of Computer Science, Wuhan
University, China

Zijun Huang
huangzijun@whu.edu.cn

School of Computer Science, Wuhan
University, China

ABSTRACT
Graph-based fraud detection (GFD) has garnered increasing atten-
tion due to its effectiveness in identifying fraudsters withinmultime-
dia data such as online transactions, product reviews, or telephone
voices. However, the prevalent in-distribution (ID) assumption sig-
nificantly impedes the generalization of GFD approaches to out-of-
distribution (OOD) scenarios, which is a pervasive challenge consid-
ering the dynamic nature of fraudulent activities. In this paper, we
introduce the Heterophilic Graph Invariant Learning Framework
(HGIF), a novel approach to bolster the OOD generalization of GFD.
HGIF addresses two pivotal challenges: creating diverse virtual
training environments and adapting to varying target distributions.
Leveraging edge-aware augmentation, HGIF efficiently generates
multiple virtual training environments characterized by generalized
heterophily distributions, thereby facilitating robust generalization
against fraud graphs with diverse heterophily degrees. Moreover,
HGIF employs a shared dual-channel encoder with heterophilic
graph contrastive learning, enabling the model to acquire stable
high-pass and low-pass node representations during training. Dur-
ing the Test-time Training phase, the shared dual-channel encoder
is flexibly fine-tuned to adapt to the test distribution through graph
contrastive learning. Extensive experiments showcase HGIF’s su-
perior performance over existing methods in OOD generalization,
setting a new benchmark for GFD in OOD scenarios.
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1 INTRODUCTION
Recently, there has been a surge in interest in graph-based fraud
detection (GFD) due to their exceptional efficacy in identifying
fraudulent activities within multimedia data, such as online trans-
actions, product reviews, or telephone voices. For example, identi-
fying telecom fraudsters based on call voice, text message content,
Internet records, and online purchase history has become a hot
research topic [25]. Among these methods, graph neural networks
(GNNs) have emerged as prominent tools [8, 13, 33, 42]. GNNs
aggregate information from neighbouring nodes and iteratively up-
date node representations, thereby enabling accurate identification
of fraudulent entities [14].

However, a significant challenge faced by most GNN-based al-
gorithms stems from their reliance on the in-distribution (ID) as-
sumption, presupposing that the test data adheres to the same
distribution as the training data[11, 20, 38]. Unfortunately, this as-
sumption is often invalid in fraud detection scenarios, where data
extracted from complex systems is often out-of-distribution (OOD).
For instance, owing to the subjective annotation preferences of
human experts, fraudsters exhibiting significant homophily ((i.e.,
those closely linked to annotated fraudsters) tend to be more likely
to be annotated, leading to a structural shift between the train-
ing and test set [11]. Moreover, the inherently dynamic nature of
fraudulent behaviour gives rise to attribute and structural shifts in
collected fraud data across different timeframes [26]. According to
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Figure 1: An empirical study of the OOD generalization prob-
lem for GFD approaches. Although the GNN-based model
trained on fraud graphs collected at time𝑇1 efficiently detects
fraudsters in the training domain, its performance degrades
dramatically on the graphs collected at 𝑇2 and 𝑇3 due to at-
tribute shifts and structure shifts.

[28], GNNs are prone to exploit the shortcut feature for decision-
making, which is noncausal but discriminative, leading to a marked
decline in performance on test data misaligned with the training
distribution. As shown in Fig 1, GNN-based algorithms trained in
𝑇1 show poor generalization in 𝑇2 and 𝑇3.

The OOD generalization of GFD approaches is an unexplored
problem for two primary reasons. Firstly, collecting fraud data
poses significant challenges, often resulting in insufficient samples
to train a generalized model. Second, complex distributional drifts
may exist between the test and training graphs containing attribute
and structural shifts. While AugAN [44] attempts to improve the
generalization of fraud detection models using meta-learning al-
gorithms, multiple observed training environments are required,
and the OOD generalization based on a single training graph re-
mains unexplored. Invariant learning has demonstrated efficacy
in capturing invariant patterns, effectively disregarding spurious
correlations across diverse training environments [1, 2, 4]. This
prompts us to exploit invariant relationships between features and
labels by constructing multiple virtual training environments with
varied distributions, offering potential improvements in the OOD
generalization of GFD approaches.

Developing this intuitive solution is not trivial. Firstly, there’s
the issue of training environment augmentation in fraud detection
scenarios. EERM [37] introduced structure generators to construct
diverse virtual environments, albeit at high training costs. Fur-
thermore, while heterophily emerges as a critical factor impacting
GFD approaches performance [10, 35], structure generators can-
not ensure sufficiently generalized graph heterophily distributions
within virtual training environments. Secondly, adapting to down-
stream fraud detection tasks poses another challenge. Although

existing invariant learning algorithms can extrapolate to distribu-
tions similar to the training environments, generalizing to diverse
fraud detection tasks remains arduous, considering the inability to
access the test set distribution beforehand. FLOOD [21] incorpo-
rated a bootstrapped learning component to understanding the test
graph distribution. However, bootstrapped representation learn-
ing primarily applies to homophilic graphs, making learning the
distribution of fraud nodes in heterophilic graphs challenging.

To address the above challenges, we propose a Heterophilic
Graph Invariant learning Framework (HGIF) for OOD generaliza-
tion of GFD. For the first challenge, we employ edge-aware augmen-
tation to generate multiple virtual training environments. This ap-
proach is computationally efficient and enables the construction of
diverse heterophily distributions by adjusting edges (Fraud-Fraud,
Fraud-Normal and Normal-Normal edges) with different probabili-
ties. As for the second challenge, we design a shared dual-channel
encoder for learning node high-pass and low-pass representations,
respectively. This encoder is trained through heterophilic graph
contrastive learning and variance risk extrapolation. During the
test-time training phase, the heterophilic graph contrastive learn-
ing module fine-tunes the shared two-channel encoder to fit the
distribution of test graphs. In this way, the output representation
of the shared encoder can generalize well to the test distribution
and mitigate the effect of the distribution shift. Our contributions
can be summarized as follows:

• We formally define and investigate the novel problem of
OOD generalization of GFD approaches, aiming to improve
the accuracy of models on unseen test graphs using a single
training graph, a scenario that is more aligned with real-
world application than multiple training graphs setting.

• We propose a heterophilic graph invariant learning frame-
work, HGIF, which has an edge-aware augmentation module,
a shared dual-channel encoder, and heterophilic graph con-
trastive learning. The encoder can be fine-tuned during the
test-time training phase to fit the test distribution.

• We conduct extensive experiments to validate the effective-
ness of our approach for OOD generalization. Additionally,
we analyze the contributions of critical components of HGIF
to its overall performance and assess sensitivity to training
parameters. The dataset and code are publicly available on
Github: https://github.com/Ling-Fei-Ren/HGIF.git.

2 RELATEDWORK
GNN-based Fraud Detection can be defined as an unbalanced
binary classification task that identifies outlier nodes that devi-
ate significantly from the majority [19, 36]. This paper aims to
perform node-level fraud detection on static graphs. The GNN-
based fraud detection model mainly uses graph space-based and
graph spectrum-based methods. The graph space-based methods
are including GraphConsis [24], CARE-GNN [8], FRAUDER [42],
PC-GNN [22], and GAGA [34]. The graph spectrum-based methods
are are including H2-FDetector [27], AMNet [3], BWGNN [29], and
GAD [10]. Although some encouraging progress has been achieved,
these methods are based on ID assumptions, and the models have
poor OOD generalization ability.
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Graph Invariant Learning builds on the invariance principle
to address graph OOD generalization. The invariance principle as-
sumes invariance within the data so that such invariance can be
found in multiple environments, thus achieving OOD generaliza-
tion [16]. MoleOOD [40], CIGA [6], StableGNN [9], and GIL [17]
investigate OOD generalization on graph classification. Different
from them, we consider the OOD problem of node-level tasks on
graphs. EERM [37], SRGNN [45] and FLOOD [21] can be applied
to node-level tasks, but neither can be directly applied to GFD due
to graph heterophily.

Graph Contrastive Learning aims to learn low-dimensional
node representations on graphs without any supervised labels, like
DGI [31], MVGRL [12], GraphCL [41], BGRL [30], and CCA-SSG
[43]. However, due to the nature of low-pass filtering, existing graph
contrastive learning methods tend to smooth the representation of
each connected node pair and are, therefore, difficult to apply to
heterophilic graphs. Different from them, GREET [23] and PolyGCL
[? ] consider graph contrastive learning in heterophilic graphs.
However, GREET designs edge discrimination to determine the
edge type, leading to high training costs; PolyGCL uses different
encoders between different views and cannot be combined with
graph invariant learning.

3 DEFINITION
The paper’s notation is first introduced, and then a formal defini-
tion of the problem is given. Given G = (V,A,X,Y) denotes an
attribute fraud graph, where V = {𝑣1, 𝑣2, · · · 𝑣𝑁 } denotes node set,
A ∈ [0, 1]𝑁×𝑁 denotes adjacency matrix of graph G and A𝑖, 𝑗 = 1
denotes the edge between node 𝑣𝑖 and node 𝑣 𝑗 . X ∈ R𝑁×𝑑 denotes
the feature matrix and 𝑑 is the dimension, and Y = {𝑦1, 𝑦2, · · ·𝑦𝑁 }
is the label matrix and 𝑦𝑖 = 0 is benign node while 𝑦𝑖 = 1 is fraud
node.

Out-of-distribution generalization of graph-based fraud
detection. In general, the purpose of OOD generalization of GFD
approaches is to maximize the fraud detection performance on an
invisible test distribution by using a limited number of training
graphs and assuming that the test distribution has an OOD shift
from the training distribution. Since obtaining graph fraud detec-
tion graphs is challenging, this paper aims to improve the OOD
generalization of GFD approaches based on a single training graph.

Formally, Given a training graph G𝑡𝑟𝑎𝑖𝑛 and set of test graphs{
G𝑖𝑡𝑒𝑠𝑡 |𝑖 ∈ {1, 2, · · ·𝑈 }

}
, there are distribution shifts between train-

ing graph and test graphs: 𝑃𝑖𝑡𝑒𝑠𝑡 (X,A) ≠ 𝑃𝑡𝑟𝑎𝑖𝑛 (X,A), and they
do not share any nodes and edges: {G𝑖𝑡𝑒𝑠𝑡 ∩ G𝑡𝑟𝑎𝑖𝑛 = ∅}. The goal
of OOD generalization of GFD is to learn an optimal graph encoder
𝑓𝑤∗ (·) that can effectively detect fraudsters in the testing graphs:

𝑓𝑤∗
(
G𝑖𝑡𝑒𝑠𝑡

)
→ Ŷ𝑡𝑒𝑠𝑡 (1)

Heterophily. Given connections between nodes and their first-
order neighbors, an edge is called a heterophilic connection if the
source and target nodes of the connection have different labels
(i.e., fraud node and benign node). The heterophily of node can be
defined as:

ℎ𝑒𝑡𝑒𝑟𝑜 (𝑣) = 1
|𝑁 (𝑣) | |𝑢 : 𝑢 ∈ 𝑁 (𝑣) , 𝑦𝑣 ≠ 𝑦𝑢 | (2)

where |𝑁 (𝑣) | is the number of first-order neighbours of node 𝑣 .

4 METHODOLOGY
To improve the OOD generalization ability of GFD approaches, we
propose a novel heterophilic graph invariant learning framework,
as depicted in Fig 2.

Specifically, we first employ edge-aware augmentation to obtain
multiple virtual training environments with diverse heterophily to
improve the robustness of the model to heterophily distribution.
Secondly, we use a dual-channel encoder to obtain stable high-pass
and low-pass representations of nodes. Next, a Variance Risk Ex-
trapolation is designed to train the encoder for OOD generalization.
Thirdly, two training environments that are randomly selected are
considered as different views, and a heterophilic graph contrastive
learning shares the dual-channel encoder and is trained jointly
with Variance Risk Extrapolation. Lastly, the shared dual-channel
encoder is updated in the test-time training phase to obtain a better
representation of the test set.

4.1 Edge-aware Augmentation
First, we construct𝑀 virtual training environments with different
node features and heterophily from the original training graph
G𝑡𝑟𝑎𝑖𝑛 = (X,A). We performed two typical graph augmentation,
i.e., feature augmentation [41] and structural augmentation [7].

We randomly mask the initial node features in different dimen-
sionality for feature augmentation with a 𝑝𝑠 probability. For 𝑘-
th training environments, we sample a binary vector S𝑘 ∈ R1×𝐹

from the Bernoulli distribution with a probability of
(
1 − 𝑝𝑘𝑠

)
, i.e.,

S𝑘
𝑖
∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖

(
1 − 𝑝𝑘𝑠

)
, 𝑖 ∈ {1, · · · 𝐹 }, and perform element-wise

multiplication with the features of each node:

𝑥𝑘𝑖 = 𝑥𝑘𝑖 ⊙ S𝑘𝑖 (3)

For structural augmentation, we focus on graph heterophily
and hope to construct𝑀 training environments with a wide range
of heterophily ratios to improve the generalization ability of the
fraud detection model in graph heterophily distributions. For 𝑘-
th training environment, we sample three binary masking matrix
E1
𝑁,𝑁

, E1
𝑁,𝐹

, E1
𝐹,𝐹

∈ {0, 1}𝑁𝑖×𝑁𝑖 from the Bernoulli distribution

with three probability of
(
1 − 𝑝𝑘,1

𝑁,𝑁

)
,
(
1 − 𝑝𝑘,1

𝑁,𝐹

)
,
(
1 − 𝑝𝑘,1

𝐹,𝐹

)
for

edges between normal users (N-N), edges between fraudsters and
normal users (F-N), and edges between fraudsters (F-F). The masked
adjacent matrix Ā1 can be obtained:

Ā1 =


A𝑁,𝑁 , A𝑁,𝐹

A𝐹,𝑁 , A𝐹,𝐹

 ⊙

E1
𝑁,𝑁

, E1
𝑁,𝐹

E1
𝑁,𝐹

, E1
𝐹,𝐹

 (4)

where the A𝑁,𝑁 , A𝑁,𝐹 and A𝐹,𝐹 are subgraph adjacent matrix
of N-N, F-N, and F-F, respectively. Similarly, we can also obtain
added adjacent matrix Ā2:

Ā2 =


A𝑁,𝑁 , A𝑁,𝐹

A𝐹,𝑁 , A𝐹,𝐹

 ⊙

E2
𝑁,𝑁

, E2
𝑁,𝐹

E2
𝑁,𝐹

, E2
𝐹,𝐹

 (5)

where E2
𝑁,𝑁

, E2
𝑁,𝐹

, E2
𝐹,𝐹

∈ {0, 1}𝑁𝑖×𝑁𝑖 are three binary adding
matrix from the Bernoulli distribution with three probability of
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Figure 2: An illustration of the proposed framework of HGIF. The train graph G𝑡𝑟𝑎𝑖𝑛 is augmented by an edge-aware augmenta-
tion module to construct 𝑀 virtual training environments. The shared dual-channel encoder outputs stable high-pass and
low-pass representations of the nodes in each environment, which are then merged and forwarded to the classifier, and a
Variance Risk Extrapolation is applied to improve generalization. Meanwhile, two training environments are randomly selected
to map their high-pass and low-pass representations to another latent space via a nonlinear projection head, and then the loss
of heterophilic graph contrastive learning is obtained and trained with Variance Risk Extrapolation. The parameters of the
shared dual-channel encoder were fine-tuned under a self-supervised task on the test set during the test-time training phase.(
1 − 𝑝𝑘,2

𝑁,𝑁

)
,
(
1 − 𝑝𝑘,2

𝑁,𝐹

)
,
(
1 − 𝑝𝑘,2

𝐹,𝐹

)
. The the total adjacent matrix

Ā:
Ā = Ā1 + Ā2 (6)

Since N-N, N-F and F-F have different augmentation rates, we
can obtain more training environments with varying ratios of het-
erophily than structure generators.

4.2 Dual-Channel Encoder
Recently, studies have found that high-frequency information is
essential for fraud detection tasks [39]. Meanwhile, PolyGCL [?
] has demonstrated that plugging learnable graph filters directly
into self-supervised settings as the encoder causes performance
degradation compared with the simple low-pass GCN. Thus, we
propose a non-learnable filter as the encoder. Motivated by BWGNN
[29], we designed a non-learnable graph filter 𝑓𝑤 (·):

H𝑘
𝑖
=𝑊𝑖,𝐶−𝑖

(
𝑀𝐿𝑃

(
X̄𝑘

) )
H𝑘
𝐿
= 𝑀𝐿𝑃𝐿

[
H𝑘0




H𝑘0 · · ·



H𝑘

𝐾

]
H𝑘
𝐻

= 𝑀𝐿𝑃𝐻

[
H𝑘
𝐾+1




H𝑘
𝐾+2 · · ·




H𝑘
𝐶

] (7)

where𝑀𝐿𝑃 (·),𝑀𝐿𝑃𝐿 (·), and𝑀𝐿𝑃𝐻 (·) denote multi-layer percep-
tion,𝑊𝑝,𝑞 is Beta wavelet transform defined as:

𝑊𝑝,𝑞 = 𝑈 𝛽∗𝑝,𝑞 (Λ)𝑈𝑇 = 𝛽∗𝑝,𝑞 (𝐿) =

(
𝐿
2

)𝑝 (
𝐼 − 𝐿

2

)𝑞
2𝐵 (𝑝 + 1, 𝑞 + 1)

(8)

where 𝑝, 𝑞 ∈ N+ and 𝐵 (𝑝 + 1, 𝑞 + 1) = 𝑝!𝑞!/(𝑝 + 𝑞 + 1)!. 𝛽∗𝑝,𝑞 (𝑤) is
a transform of the probability density function of Beta distribution,
i,e., 𝛽∗𝑝,𝑞 (𝑤) = 1

2 𝛽𝑝,𝑞
(
𝑤
2
)
to cover the complete spectral range of

Laplacian 𝐿 that satisfy 𝜆 ∈ [0, 2].

𝛽𝑝,𝑞 (𝑤) =


(𝑤 )𝑝 (𝐼−𝑤 )𝑞
2𝐵 (𝑝+1,𝑞+1) If w ∈ [0, 1]

0 Otherwise
(9)

By setting a Tunable hyperparameter 𝐾 , we can split𝑊 to �̂�𝐿 and
�̂�𝐻 to capture low-pass and high-pass frequency signals, respec-
tively. The transform �̂�𝑝,𝑞 is:

�̂�𝐿 =
(
𝑊0,𝐶 ,𝑊1,𝐶−1 · · ·𝑊𝐾,𝐶−𝐾

)
�̂�𝐻 =

(
𝑊𝐾+1,𝐶−𝐾−1,𝑊𝐾+2,𝐶−𝐾−2 · · ·𝑊𝐶,0

) (10)
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The overall representation of a node in 𝑘-th training environment
can be obtained by connecting the low-pass and high-pass repre-
sentation matrix:

H(𝑘 ) = H𝑘𝐿 ⊕ H𝑘𝐻 (11)

Finally, a GNN-based classifier 𝑓𝜃 (·) is trained to get the fraud
probability. The GNN parameterized by (𝑤, 𝜃 ) is trained by mini-
mizing the weighted cross-entropy loss defined as:

L𝑘
𝑡𝑜𝑡𝑎𝑙

(𝑤, 𝜃 ) = −
∑︁

𝑣𝑖 ∈V

[
𝛾𝑦𝑣𝑖 log

(
𝑝𝑘𝑣𝑖

)
+
(
1 − 𝑦𝑣𝑖

)
log

(
1 − 𝑝𝑘𝑣𝑖

)]
P𝑘 = 𝑓𝜃

(
H𝑘

)
(12)

where 𝛾 is the ratio of anomaly labels (𝑦𝑣𝑖 = 1) to normal labels
(𝑦𝑣𝑖 = 0) in training environment.

4.3 Variance Risk Extrapolation
The OOD generalization is achieving low error rates on unseen test
distributions. We obtain 𝑀 virtual training environments which
are denoted as

{(
X̄1, Ā1

)
,
(
X̄2, Ā2

)
, · · ·

(
X̄𝑀 , Ā𝑀

)}
, and according

to Empirical Risk Minimization (ERM), we minimize the average
loss across all training environments:

R𝐸𝑅𝑀 (𝑤, 𝜃 ) = 𝐸(X̄𝑘 ,Ā𝑘 )∼𝐷
[
𝑓𝜃

(
𝑓𝑤

(
X̄𝑘 , Ā𝑘

)
, 𝑦
) ]

= 1
𝑀

𝑀∑
𝑒=1

|𝐷𝑒 |𝐸(X̄𝑘 ,Ā𝑘 )∼𝐷𝑘

[
𝑓𝜃

(
𝑓𝑤

(
X̄𝑘 , X̄𝑘

)
, 𝑦
) ]

= 1
𝑀

𝑀∑
𝑒=1

|𝐷𝑒 |𝐸(X̄𝑘 ,Ā𝑘 )∼𝐷𝑘

[
L𝑘
𝑡𝑜𝑡𝑎𝑙

(𝑤, 𝜃 )
] (13)

However, ERM is not the way to get the optimal generalization
parameters since the test set may have both covariate and concept
shifts compared to the training set [15]. To seek good OOD gen-
eralization, we employ the principle of Risk Extrapolation (REx)
as in Eq. (14): decreasing the risk of the domain with the lowest
risk while decreasing the overall similarity of the training risk to
seek to increase the risk of the domain with the best performance.
While this may lead to higher training risk, it also means that if the
variation in distribution between training domains is amplified at
the time of testing, the variation in risk will be more minor.

𝑅𝑅𝐸𝑥 (𝑤, 𝜃 ) = (1 −𝑀𝜆min) max
𝑒
𝑅𝐸𝑅𝑀 (𝑤, 𝜃 )

+ 𝜆min

𝑀∑︁
𝑒=1

𝑅𝑅𝐸𝑥 (𝑤, 𝜃 )
(14)

where the hyperparameter 𝜆min controls how much we extrapolate.
As there is a maximum value in Eq. (14), optimizing REx is difficult
and unstable. To solve this problem, we replace the maximum value
with the variance of the risk and obtain the V-REx to display as
Eq. (15):

𝑅𝑉 −𝑅𝐸𝑥 = min
𝑤,𝜃

𝑉𝑎𝑟

({
L𝑘
𝑡𝑜𝑡𝑎𝑙

(𝑤, 𝜃 ) |𝑘 ∈ {1, 2, · · · , 𝑀}
})

+ 𝛽

𝑀

𝑀∑︁
𝑘=1

L𝑘
𝑡𝑜𝑡𝑎𝑙

(𝑤, 𝜃 )
(15)

where 𝛽 ∈ [0,∞) controls the balance between the variance of risks
and the mean of risks, with 𝛽 = 0 leading R𝑉 −𝑅𝐸𝑥 to focus entirely
on making the risks equal, and 𝛽 → ∞ recovering R𝐸𝑅𝑀 .

4.4 Heterophilic Graph Contrastive Learning
As described in the Introduction section, although the OOD general-
ization ability can be improved using exploratory risk minimization,
it is difficult to fully adapt to the downstream tasks due to the in-
ability to obtain the exact distribution of the test set in advance, so
we design a graph contrastive learning module for learning the dis-
tribution of test set in the test-time training phase. Specifically, in
the training phase, the graph contrastive learning loss participation
in training with classification loss and shares the dual-channel en-
coder. In the testing phase, we perform graph contrastive learning
on the test set to fine-tune the dual-channel encoder parameters to
fit the distribution of the test set.

Although graph contrastive learning has been achieved in a
wide range of studies, most of them are based on the assumption
of graph homophily, which makes it challenging to apply to highly
heterophilic scenarios such as fraud detection. We develop a het-
erophilic graph contrastive learning mechanism that extracts su-
pervised information from high-pass and low-pass representations
in different augmented views.

We randomly select two training environments as augmented
views, i.e.,

(
X̄𝑘 , Ā𝑘

)
and

(
X̄𝑒 , Ā𝑒

)
. Before comparing the high-pass

and low-pass representations, we pass the high-pass representation
(H𝑘

𝐻
and H𝑒

𝐻
) and low-pass representation (H𝑘

𝐿
and H𝑒

𝐿
) of the

two views to a nonlinear projection head 𝑓𝜑 (·), which maps the
filtered views to another latent space.We use a two-layer perceptron
network to obtain Z𝑘

𝐻
= 𝑓𝜑

(
H𝑘
𝐻

)
, Z𝑒

𝐻
= 𝑓𝜑

(
H𝑒
𝐻

)
, Z𝑘

𝐿
= 𝑓𝜑

(
H𝑘
𝐿

)
and Z𝑒

𝐿
= 𝑓𝜑

(
H𝑒
𝐿

)
.

We consider the high-pass to high-pass representation and low-
pass to low-pass representation of the same node between views
as positive pairs and the representations of different nodes as nega-
tive pairs. In addition, to force the high-pass and low-pass filters
to capture different information about the nodes, we regard the
same node’s high-pass representation and low-pass representation
of intra-views and inter-views as negative pairs. Inspired by the
InfoNCE contrastive loss [5], the graph contrastive learning loss of
high-pass representation is defined as:

L𝑐𝐻 = − log 𝑒
cos

(
𝑧𝑘
𝑖,𝐻

,𝑧𝑒
𝑖,𝐻

)
/𝜏𝑐

𝑒
cos

(
𝑧𝑘
𝑖,𝐻

,𝑧𝑘
𝑖,𝐿

)
/𝜏𝑐 +𝑒cos

(
𝑧𝑘
𝑖,𝐻

,𝑧𝑒
𝑖,𝐿

)
/𝜏𝑐 +∑

𝑔≠𝑖
𝑒

cos
(
𝑧𝑘
𝑖,𝐻

,𝑧𝑒
𝑔,𝐻

)
/𝜏𝑐

(16)
By combining the low-frequency representation, the total het-

erophilic contrasting learning loss is denoted as:

L𝑐 = 1
2 |V |

∑
𝑣𝑖 ∈V

[
L𝑐 (𝐻 )

(
𝑧𝑘
𝑖,𝐻
, 𝑧𝑒
𝑖,𝐻

)
+ L𝑐 (𝐿)

(
𝑧𝑘
𝑖,𝐿
, 𝑧𝑒
𝑖,𝐿

)]
(17)

where 𝜏𝑐 ∈ (0, 1] is a temperature hyper-parameter for con-
trastive learning and cos (·) is cosine similarity. In practice, we
calculate the contrastive loss in a mini-batch manner [5] for large
graph datasets. In the training phase, both invariant learning and
graph contrastive learning are jointly optimized under the overall
loss as:

min
𝑤,𝜃,𝜑

L𝑡𝑟𝑎𝑖𝑛 = R𝑉 −𝑅𝐸𝑥 + 𝛼L𝑐 (18)

where 𝛼 is a balance parameter. In the test-time training phase,
given a test graph G𝑡𝑒𝑠𝑡 (X,A), we random shuffle the graph and
obtain two augmented environment Ḡ1

𝑡𝑒𝑠𝑡 and Ḡ2
𝑡𝑒𝑠𝑡 , the shared
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Algorithm 1: Training process of HGIF
Data: Input data: 𝑋 , Training graph: G𝑡𝑟𝑎𝑖𝑛 = (X,A),

Training epochs: 𝑁𝑒𝑝𝑜𝑐ℎ , Training environments:𝑀 .
Result: The prediction of nodes in G𝑡𝑒𝑠𝑡 (X,A).

1 Initialize parameters𝑤, 𝜃, 𝜑 ;
2 Construct𝑀 training environments via Edge-aware

Augment;
3 for 𝑖𝑡𝑒𝑟 ∈ 0, 1, . . . , 𝑁𝑒𝑝𝑜𝑐ℎ do
4 for 𝑘 ∈ 1, · · · , 𝑀 do
5 Generate low-pass and high-pass representation H𝑘

𝐿

and H𝑘
𝐻
via Eq.7;

6 The representation H𝑘 can be obtain via Eq.11;
7 The loss L𝑘

𝑡𝑜𝑡𝑎𝑙
can be obtain via Eq.12;

8 Calculate the REx R𝑉 −𝑅𝐸𝑥 via Eq.15;
9 Get Z𝑘

𝐿
, Z𝑘
𝐻
, Z𝑒
𝐿
and Z𝑒

𝐻
from 𝑘-th and 𝑒-th training

environment;
10 Calculate contrastive loss L𝑐 via Eq.16;
11 Train𝑤, 𝜃, 𝜑 via minimizing Eq. 18;
12 Construct two test environments Ḡ1

𝑡𝑒𝑠𝑡 and Ḡ2
𝑡𝑒𝑠𝑡 via

random shuffle G𝑡𝑒𝑠𝑡 (X,A);
13 Fine-tune𝑤 and 𝜑 via minimizing Eq. 19;
14 Return node label in the test graph G𝑡𝑒𝑠𝑡 (X,A) via Eq. 20;

dual-channel encoder and the nonlinear projections are fine-tuned
by minimizing the graph contrastive learning loss as follows:

min
𝑤,𝜑

L𝑡𝑒𝑠𝑡 = L𝑐 (𝑤,𝜑)
���(Ḡ1

𝑡𝑒𝑠𝑡 , Ḡ2
𝑡𝑒𝑠𝑡

)
(19)

Then, the node label in the test graph based on the fine-tuned
model by the test-time training is predicted via the GNN model
𝑓 (·, ·,𝑤∗, 𝜃∗) as:

𝑦 = 𝑓
(
G𝑡𝑒𝑠𝑡 ,𝑤∗, 𝜃∗

)
(20)

The overall training algorithm is summarized in Algorithm 1.

5 EXPERIMENTS
In this section, we empirically evaluate real-world fraud detection
data to answer the following research questions:

RQ1: Does Edge-aware Augmentation achieve training environ-
ments with more generalized heterophily than structure generator?

RQ2: Does HGIF outperform the state-of-the-art methods for
OOD generalizations of GFD?

RQ3: How do the key components benefit the method perfor-
mance?

RQ4: What is the performance concerning different training
parameters?

5.1 Dataset
We conducted experiments on four real-world datasets targeted
at fraud detection. They are YelpChi, Amazon, and two recently
released transactional datasets, T-Finance and T-Social. The YelpChi
dataset consists of filtered and recommended hotel and restaurant
reviews from Yelp. The Amazon dataset includes product reviews
in the category of musical instruments. The T-Finance and T-Social

Table 1: Statistics of Datasets for OOD generalization of GFD.

Datasets YelpChi Amazon T-Finance T-Social
Original Nodes 45,954 11,944 39,357 5,781,065
Original Edges 3,846,979 4,398,392 21,222,543 73,105,508
Original Feature 32 25 10 10
Environments 5 5 5 5
Nodes (avg.) 9,190 2,388 7,871 1,156,213
Edeges (avg.) 769,395 879,678 4,244,508 14,621,101
New Feature 52 45 30 30

Heterophily
Ratio (avg.)

[0.26,0.49
0.63,0.72
0.90]

[0.72,0.84
0.93,0.94
0.99]

[0.55,0.74
0.82, 0.87
0.95]

[0.01,0.05
0.10, 0.13
0.39]

Anomaly(avg.) 14.53% 8.97% 4.58% 3.01%
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Figure 3: An illustration of the heterophily distribution for
five virtual training environments in Amazon generated by
Edge-aware Augmentation and Structure Generators.

datasets detect anomalous accounts in transactional and social net-
works. To construct the OOD scenarios, motivated by [44], for
each dataset, 1) we randomly divide the big graph into five non-
overlapping subgraphs of similar size, each subgraph is viewed
as data collected in different environments; 2) generate spurious
features based on node features and environment id, respectively; 3)
change the graph heterophily ratios for different environments by
controlling the probability of edges between the fraudsters (prob-
ability in [0.05, 0.015, 0.0075, 0.005 and 0.001]), and use the first
environment graph as the training set and the rest as test sets.
Table 1 summarizes the original and processed datasets’ statistics.

5.2 Compared Methods
To demonstrate the superior performance of our proposed HGIF in
OOD generalizations of GFD, we compare it with several state-of-
the-art methods. The first group considers some traditional GNN-
based fraud detection methods: CARE-GNN [8], FRAUDRE [42],
PC-GNN [22], BWGNN [29]. The second group considers graph
OOD methods: GDN [11], SRGNN [45], EERM [37], FLOOD [21].

We also compare three variants to analyze the contribution of
critical modules to performance. They are HGIF\Eaa, which re-
places edge-aware augmentationwith structure generators. HGIF\Inv
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Table 2: Performance of fraud detection under OOD scenarios.

Method Datasets YelpChi Amazon T-Finance T-Social
Metrics F1-macro AUC F1-macro AUC F1-macro AUC F1-macro AUC

Traditional
Methods

CARE-GNN 45.75 56.28 53.29 58.28 50.12 67.28 45.29 65.28
FRAUDRE 42.23 58.27 51.00 55.28 53.29 70.09 41.98 69.02
PC-GNN 50.09 60.89 47.29 60.76 49.92 75.89 45.29 72.99
BWGNN 49.01 54.66 51.04 59.39 53.25 74.96 48.03 74.07
GDN 52.52 63.01 55.39 73.23 51.23 74.12 69.13 80.00

Graph OOD
SRGNN 53.87 65.12 61.09 76.23 50.98 73.16 73.90 79.72
EERM 58.25 68.90 69.62 82.42 59.17 76.03 OOM OOM
FLOOD 52.96 65.01 67.88 77.90 59.20 71.79 79.87 85.01

Ablation

HGIF\Eaa 62.98 71.01 71.92 85.27 55.42 80.01 OOM OOM
HGIF\Inv 52.67 62.38 50.23 61.09 53.99 76.01 50.23 79.84
HGIF\TtT 64.23 73.76 70.23 87.82 52.76 79.37 78.33 89.12

Ours HGIF 66.90 76.49 76.49 89.75 57.23 82.02 82.90 90.02

removes invariant learning and performs test-time training on
GNNs trained on the original graph. HGIF\TtT removes test-time
training and performs prediction using an invariant model.

5.3 Metrics
As graph-based fraud detection is a class-imbalanced classification
problem, this paper utilizes two widely adopted metrics: F1-macro
and AUC. F1-macro considers the weighted average of F1 scores
across multiple classes, and AUC is the area under the ROC Curve.
Specifically, we show the average F1-macro and AUC of the four
test sets of 5 runs.

5.4 Hyper-parameter Settings
Ourmethod selects theAdamoptimizerwith a learning rate lr𝑡𝑟𝑎𝑖𝑛 =

1𝑒 − 3 in the training phase and lr𝑡𝑒𝑠𝑡 = 5𝑒 − 5 in the test-time train-
ing phase. The embedding size is set to 16, 𝐾 equals half the length
of𝑊 , the training epochs 𝑁𝑒𝑝𝑜𝑐ℎ is set to 50, the number of training
environments𝑀 is set to 5, 𝐶 in the dual-channel encoder is set to
2 for Yelchi and Amazon, 3 for T-Finance and T-Social, the training
batch size 𝑁𝑏𝑎𝑡𝑐ℎ is set to 1024. 𝛽 , 𝜏𝑐 and 𝛼 are set to 1.0, 0.5, and
0.05, respectively. We use DGL for our algorithm implementation,
and all experiments were conducted by Pytorch 1.9.0 with Python
3.8 on Ubuntu 20.04.1.

5.5 Heterophily Evidence (RQ1)
To answer RQ1, we investigate whether the virtual training environ-
ments generated by edge-aware augmentation have a more general-
ized heterophily distribution than structure generators. Specifically,
we count the heterophily of fraud nodes in five virtual training
environments based on the Amazon dataset, and similar results can
be observed in other datasets. As shown in Fig 3, the heterophily of
the training environments generated by the edge-aware augmen-
tation has a significant variance while the heterophily of training
environments generated by the structure generators is very simi-
lar. This shows that edge-aware augmentation can generate more
generalized heterophilic training environments.

5.6 Performance Comparison (RQ2)
To answer RQ2, we evaluate the fraud detection performance of
HGIF and the baseline methods in OOD scenarios. we report the
results under average AUC and average F1-macro in Table 2. Ac-
cordingly, we have the following observations.

(1) Importance of OOD generalization. The performance of
traditional GFD methods (e.g., PC-GNN, BWGNN) generally suffers
a severe degradation in OOD scenarios, i.e., their generalization
is poor. This is because they are all designed based on the ID as-
sumption, and the GNN encoder tends to learn shortcut features,
which can easily change in OOD scenarios, thus making the GNN
classifier less generalizable.

(2) Importance of graph-invariant learning. The graph OOD
method works better than traditional methods, proving that learn-
ing invariant features can promote the model’s generalization abil-
ity. EERM performs second only to HGIF on three datasets (Yelpchi,
Amazon, and T-finance), which proves that graph invariant learn-
ing can enhance the generalization ability of GNNs. In addition,
the performance of EERM and FLOOD is better than that of GDN
and SRGNN, indicating that the graph-invariant learning methods
are more suitable for OOD scenarios than the regularization-based
methods.

(3) Superiority ofHGIF.HGIF performs best on all four datasets
compared to traditional GFD and graph OOD methods. The im-
provements range from 3.7% to 14.8% in F1-macro and 5.8% to 11.0%
in AUC. On the one hand, compared to EERM, the edge-aware aug-
mentation used by HGIF not only avoids a large amount of training
resources but also obtains diverse heterophilic training environ-
ments, which is crucial for improving the generalization of GFD.
On the other hand, compared to FLOOD, the dual-channel encoder
and the heterophilic graph contrastive learning designed by HGIF
can efficiently learn the proper distribution of the test graph during
the test-time training phase, whereas the bootstrap representation
learning in FLOOD may learn the wrong distribution.

(4) Limitation of HGIF. We find that the F1-macro metric of
FLOOD is slightly higher than that of HGIF on the T-Finance dataset,
which is a very peculiar phenomenon. We find that T-Finance is the
dataset with the largest average node degree (539) of the four ones
(YelpChi:83, Amazon:368, T-social:12 ). HGIF uses a graph filter to
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Figure 4: Performance of HGIF with embedding size, number of environments, and steps in the Test-time Training phase.

adapt to the global heterophily of the graph. FLOOD adopts the GAT-
like aggregation strategy, which is more sensitive to heterophilic
connections in the face of large node degrees.

5.7 Ablation Study (RQ3)
To answer RQ3, we evaluated the key modules in HGIF by removing
or replacing each module separately, i.e., edge awareness augmen-
tation, invariant representation learning, and heterophilic graph
contrastive learning. We report the results in Table 2, where the
whole model HGIF consistently achieves the best scores compared
to the three variants, HGIF\Eaa, HGIF\Inv, and HGIF\TtT, suggest-
ing that each of the modules is necessary for OOD generalization
of GFD.

Replacing edge-aware augmentation with structure generators
results in a weaker performance than HGIF, which demonstrates
the effectiveness of edge-aware augmentation in improving the
OOD generalization ability of GFD. Edge-aware augmentation pro-
duces training environments with a broader range of heterophily by
applying different probabilities to different types of edges (F-F and
F-N and N-N), whereas the structure generators can only change
the network structure. In addition, the inability of HGIF\Eaa to be
applied to large-scale datasets such as T-social suggests that edge-
aware augmentation reduces training resources, making large-scale
graph applications possible.

After replacing heterophilic graph contrastive learning with
bootstrap representation learning, HGIF\TtT has performance degra-
dation compared to HGIF on Yelpchi, Amazon, and T-finance and a
slight decrease on T-social. As shown in Table 1, Yelpchi, Amazon,
and T-finance are heterophilic graphs, while T-social is a homophilic
graph, and bootstrap representation learning performs well on ho-
mophilic graphs.

In the absence of an invariant learning component, HGIF\Inv is
only able to fine-tune the GNN encoder through graph contrastive
learning during the test-time training phase, and the results show an
evenmore significant performance degradation thanHGIF\TtT. The
results concluded that combining test-time training with invariant
learning is more helpful in improving the generalization.

5.8 Sensitivity Analysis (RQ4)
To answer RQ4, we further evaluate the sensitivity of HGIF con-
cerning the embedding size, the number of virtual training envi-
ronments, and the steps in the test-time training phase. We only
report results for Yelpchi and Amazon for visual presentation. The
other datasets also show similar sensitivity trends.

First, we vary the the embedding size 𝑑 in the range [4,128].
The result is shown in Fig 4(a). It first improves as the embedding
size increases and becomes stable after 16. Considering that larger
embedding dimensions require higher computational complexity,
we finally set 𝑑 to 16 to balance performance and complexity.

Second, we vary the number of virtual training environments
in the range [2,10], and the results are shown in Fig 4(b). It first
improves as the number of virtual training environments increases
and becomes stable after 5. This is because a smaller number of
training environments may be unable to cover the generalized
distribution, and training environments that are too large do not
provide additional benefits. Considering that more virtual training
environments require higher computational resources, we finally
set the training environments to 5 to balance the performance and
computational resources.

The number of steps in the test-time training phase determines
how much we update the shared dual-channel encoder to fit the
test distribution. As shown in Fig 4(c), it reaches best at 35 for
YelpChi and 30 for Amazon. If the number of steps exceeds 35, the
supervised information in the training data is lost by over-updating,
even though the shared encoder may fit the target distribution.

6 CONCLUSION AND FUTUREWORK
In this paper, we introduce HGIF, a heterophilic graph invariant
learning framework for improving the out-of-distribution general-
ization of graph-based fraud detection approaches. In this frame-
work, we construct virtual training environments with generalized
heterophily and use Variance Risk Extrapolation to train a shared
dual-channel encoder to capture invariant features of nodes in dif-
ferent virtual training environments for OOD generalization. In
addition, heterophilic graph contrastive learning is designed to
allow the model to undergo self-supervised learning during the
test-time training phase to adapt to the test distribution. Extensive
experiments show that our approach improves OOD generaliza-
tion for graph-based fraud detection compared to state-of-the-art
GNN-based algorithms and graph OOD methods. For future work,
considering that large language models (LLMs) show good general-
ization ability in natural language understanding [18, 32], combin-
ing LLMs with GNN may be a promising direction to improve the
generalization of OOD for graph-based fraud detection
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