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Figure 1: Left: video virtual try-on results (512 × 384) generated by our method on VVT (1-st row) and our (2-nd and 3-rd row)
datasets. The faces are blurred due to privacy concerns. Right: image-based virtual try-on results (1024 × 768) generated by our
method on VITON-HD (1-st row) and Dress Code (2-nd and 3-rd row) datasets. Best viewed on a zoomed, color monitor.

ABSTRACT
Video Virtual Try-On aims to transfer a garment onto a person in
the video. Previous methods typically focus on image-based virtual
try-on, but directly applying these methods to videos often leads
to temporal discontinuity due to inconsistencies between frames.
Limited attempts in video virtual try-on also suffer from unrealistic
results and poor generalization ability. In light of previous research,
we posit that the task of video virtual try-on can be decomposed
into two key aspects: (1) single-frame results are realistic and natu-
ral, while retaining consistency with the garment; (2) the person’s
actions and the garment are coherent throughout the entire video.
To address these two aspects, we propose a novel two-stage frame-
work based on Latent DiffusionModel, namely Garment-Preserving
Diffusion for Video Virtual Try-On (GPD-VVTO). In the first stage,
the model is trained on single-frame data to improve the ability of
generating high-quality try-on images. We integrate both low-level
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texture features and high-level semantic features of the garment
into the denoising network to preserve garment details while ensur-
ing a natural fit between the garment and the person. In the second
stage, the model is trained on video data to enhance temporal con-
sistency. We devise a novel Garment-aware Temporal Attention
(GTA) module that incorporates garment features into temporal at-
tention, enabling the model to maintain the fidelity to the garment
during temporal modeling. Furthermore, we collect a video vir-
tual try-on dataset containing high-resolution videos from diverse
scenes, addressing the limited variety of current datasets in terms
of video background and human actions. Extensive experiments
demonstrate that our method outperforms existing state-of-the-art
methods in both image-based and video-based virtual try-on tasks,
indicating the effectiveness of our proposed framework.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Virtual Try-On, Diffusion Models, Video Editing

1 INTRODUCTION
Given a segment of human video and an image of a garment, Video
Virtual Try-On aims to synthesize a natural and coherent video of

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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the specific person wearing the provided garment. With the rise
of e-commerce, this technology has garnered widespread attention
in the industry, offering consumers an immersive and interactive
online shopping experience.

Previous virtual try-on methods [6, 12, 15, 23, 26, 28, 34, 42, 43,
52] typically focus on image-based operations, employing Genera-
tive Adversarial Networks [11] (GANs) or Diffusion Models [17] as
the foundational architecture. For instance, GP-VTON [42] warps
local garment parts individually and assembles them via global
parsing. StableVITON [23] introduces zero cross-attention mod-
ules to learn the semantic correspondence between the human
and the garment. However, these methods still struggle to balance
the naturalness of person-garment blending and the fidelity to the
garment’s appearance. Moreover, the experience provided by image-
based virtual try-on is far less immersive for consumers compared
to video virtual try-on. Even though we can directly apply these
image-based methods to video virtual try-on with a frame-by-frame
method, this often leads to discontinuity in the generated videos
due to inconsistencies between frames.

Several efforts have been made in the domain of video virtual
try-on. FW-GAN [8] integrates optical flow prediction to warp the
preceding frames for subsequent frame generation. MV-TON [51]
introduces a memory refinement module that aggregates spatiotem-
poral information of multiple frames to enhance the generated
frames. ClothFormer [21] proposes a novel warping and track-
ing module to ensure temporal consistency in garment warping.
Despite the improvements in the spatiotemporal consistency of
generated videos, these methods rely on GAN-based frameworks
and necessitate separate warping modules, resulting in poor realism
of generated videos and limited generalization of the models.

In light of previous research, we posit that the task of video
virtual try-on can be decomposed into two key aspects. First, every
single frame in the generated video is realistic and natural, while
keeping the background regions unchanged and preserving the
details of the garment as much as possible. Second, the actions of
the person and the appearance of the garment are consistent and
coherent throughout the entire video.

To address the aforementioned two aspects, we propose a novel
two-stage video virtual try-on method based on Latent Diffusion
Model [32], namelyGarment-PreservingDiffusion forVideoVirtual
Try-On (GPD-VVTO). In the first stage, the model is trained on
image-based virtual try-on task to ensure the high quality of in-
dividual frames. To retain more garment details, we extract both
high-level semantic features and low-level texture features of the
garment and inject them into the denoising network. On the one
hand, global semantic features of the garment at different abstrac-
tion levels are extracted by a pre-trained DINOv2 [30] encoder,
which are utilized to conduct cross-attention with feature maps
of different spatial resolution in our proposed Semantic-enhanced
Cross-Attention (SCA) modules. On the other hand, we employ a
U-Net-based garment encoder to extract multi-level dense features
of the garment. The obtained garment features are incorporated
into the main U-Net within our proposed Joint Spatial Attention
(JSA) modules and jointly perform self-attention with the features
of the main U-Net. Through the combination of global and local
garment information, the model is capable of generating realistic
try-on images while preserving the overall style and fine-grained

details of the garment. Furthermore, the JSA module implicitly es-
tablishes a soft spatial correspondence between the human and the
garment, facilitating their natural blending. In the second stage, the
model is fine-tuned on video data to enhance the temporal consis-
tency of the generated videos with additional temporal modules. To
maintain the fidelity to the garment during temporal modeling, we
devise a novel Garment-aware Temporal Attention (GTA) module,
which leverages features extracted from the target garment to per-
form temporal attention. Specifically, we introduce an extra spatial
cross-attention operation that shares weights with the JSA module,
while the human video features serve as queries, and the garment
features serve as keys and values. Therefore, the person-garment
correspondence established by the JSAmodule enables the resulting
feature maps to represent the garment features spatially aligned to
the human video. Subsequently, we append these features to the
feature sequence of the human video in the temporal dimension for
temporal self-attention. In this way, the model can not only improve
the continuity of the generated videos by referencing features from
preceding and subsequent frames, but also preserve more garment
details by leveraging features from the garment encoder.

In addition, current video virtual try-on datasets [8] lack diver-
sity in terms of video backgrounds and human actions, diverging
significantly from real-world scenarios. To address the limitation
of data, we collect a high-resolution video virtual try-on dataset
from well-known e-commerce platforms, which contains videos
of numerous models performing various actions in diverse scenes
and the corresponding garment images. Extensive experiments
demonstrate that our method outperforms previous state-of-the-
art methods on both public and our collected datasets. We also
evaluate our model of the first stage on two image-based virtual
try-on benchmarks [5, 29]. Our model surpasses existing image-
based virtual try-on methods in all metrics, further validating the
effectiveness of our proposed modules.

In summary, our contributions are as follows:
• We explore the capability of diffusion models in video virtual
try-on for the first time, and propose a two-stage framework
that leverages both global semantic features and local texture
features of the garment to preserve garment details.

• We devise a novel Garment-aware Temporal Attention mod-
ule that integrates features of the garment into temporal
attention, improving the temporal consistency of the gener-
ated videos while maintaining the fidelity to the garment.

• We collect a video virtual try-on dataset with more diversity
to resolve the limited variety of current datasets in terms of
video background and human actions. Extensive experiments
demonstrate that our method outperforms previous state-
of-the-art methods on both image-based and video-based
virtual try-on datasets.

2 RELATEDWORK
2.1 Image-based Virtual Try-On
GAN-based methods.Most GAN-based methods [15, 26, 34, 42]
follow a two-stage generation framework, first deforming the tar-
get garment to fit the person’s body, and then fusing the deformed
garment with the reference person. HR-VITON [26] proposes a try-
on condition generator that predicts simultaneously the warped
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garment and the segmentation map, removing the misalignment
and handling occlusions of clothes by body parts naturally. GP-
VTON [42] employs local flows to warp garment parts individually
and assembles the local warped results via global garment parsing,
avoiding the garment squeezing and texture distortion problems
during warping. However, the generational capacity of GANs sig-
nificantly restricts the performance of GAN-based methods.

Diffusion-based methods. Recently, diffusion models have
emerged as a promising alternative to GANs due to their exceptional
performance in generating high-quality images at high resolutions.
Consequently, there has been growing interest in exploring the
application of diffusion models in virtual try-on tasks [6, 12, 23, 28,
43, 52]. TryOnDiffusion [52] introduces a try-on framework with
parallel U-Nets to handle garment warping and person blending
simultaneously. Despite its promising performance, this approach is
computationally intensive due to the requirement for multiple diffu-
sion models in concatenation. DCI-VTON [12] and LaDI-VTON [28]
treat virtual try-on as an exemplar-based inpainting task, and fine-
tunes the pre-trained inpainting diffusion model on virtual try-on
datasets. StableVITON [23] eliminates the warping module and em-
ploys zero cross-attention blocks to learn semantic correspondence
between person and garment in an end-to-end manner. However, it
is still difficult for these methods to preserve detailed textures of the
garment. Our method employs a pre-trained DINOv2 [30] encoder
to provide global semantic features and a parallel U-Net-based gar-
ment encoder to extract local texture features of the garment, which
are integrated into the SCA and JSA modules of the main U-Net,
leading to a better preservation of garment details.

2.2 Video Virtual Try-On
Compared with image virtual try-on, video virtual try-on [8, 21, 51]
offers a more user-friendly and natural try-on experience. FW-
GAN [8] enhances spatiotemporal smoothing in generated videos
by incorporating optical flow with a warping net for person and
garment manipulation. MV-TON [51] proposes a memory refine-
ment operation to improve the details of initially generated results
by referring to the previous frames. ClothFormer [21] adopts Trans-
former [39] architecture and proposes a new warping module and
tracking module to warp the garment with temporal consistency.
However, previous methods commonly utilize GAN-based frame-
works and require separate warping modules, leading to a complex
processing workflow. In this work, we explore the capability of diffu-
sion models in video virtual try-on. We forgo the standalone warp-
ing module and enable the model to implicitly learn fine-grained
spatial correspondence between the person and garment within
the JSA module.

2.3 Diffusion Models for Video Generation
Given the notable advancements of diffusion models in image gen-
eration [27, 31–33, 37, 45, 48], numerous studies have extended
text-to-image (T2I) diffusion models to video-related tasks, includ-
ing text-to-video (T2V) [2, 7, 9, 14], image-to-video (I2V) [20, 44, 49]
and video editing [4, 41, 53]. AnimateDiff [14] introduces a plug-
and-play motion module that can be seamlessly integrated into

personalized T2I models, forming an animation generator. Pixel-
Dance [49] proposes straightforward modifications on the T2V U-
Net, incorporating the latent of image condition with input noise to
facilitate I2V generation. Tune-A-Video [41] enhances self-attention
layers to enable each frame to attend to both the previous and first
frames. Cut-and-Paste [53] integrates an extra reference image with
the text condition to achieve more precise and fine-grained video
editing. As a specific case of video editing, video virtual try-on ne-
cessitates maintaining the temporal consistency of the video while
ensuring the fidelity to the garment. Our proposed GTA module
incorporates features of the garments into temporal attention mech-
anisms, enabling the model to simultaneously address temporal
continuity and garment consistency.

3 METHOD
3.1 Preliminary: Stable Diffusion
Our proposed GPD-VVTO builds upon Stable Diffusion (SD), an
advanced image generation model derived from Latent Diffusion
Model (LDM) [32]. LDM operates the diffusion process in the latent
space to mitigate computational complexity.

During training, a latent encoder [25, 38] compresses the input
image x into a latent code z0 = E(x) using an encoder E. SD
performs forward diffusion process by adding Gaussian noise to
the latent:

𝑞(z𝑡 |z0) = N(z𝑡 ;
√
𝛼𝑡 z0,

√
1 − 𝛼𝑡 I), (1)

where 𝑡 stands for the number of diffusion timesteps and {𝛼𝑖 }𝑡𝑖=1
control the diffusion schedule. The denoising U-Net is trained to
reverse this process by predicting the added noise. The optimization
objective of this process is expressed as:

L = Ez𝑡 ,𝑐,𝜖∼N(0,1),𝑡 | |𝜖 − 𝜖𝜃 (z𝑡 , 𝑐, 𝑡) | |22, (2)

where 𝜖𝜃 represents the function of U-Net, 𝑡 stands for the num-
ber of diffusion timesteps and 𝑐 is the embedding of conditional
information. In the original SD, conditional text is embedded using
a CLIP-based transformer. Each typical block in denoising U-Net
contains three types of computation: 2D convolution, self-attention
and cross-attention with conditional text embedding.

During inference, z𝑡 is randomly sampled from a Gaussian dis-
tribution, and progressively denoised to obtain z0 following a pre-
defined sampling schedule [17, 36]. Finally, a latent decoder D
decodes the result back into the image space.

3.2 Overview
An overview of GPD-VVTO is illustrated in Figure 2 (a). Given a
segment of human video {x}𝑇1 = {x1, ..., x𝑇 } ∈ R𝑇×3×𝐻×𝑊 and a
garment image c ∈ R3×𝐻×𝑊 , where 𝐻 and𝑊 denote the height
and width of each frame and 𝑇 denotes the length of the segment,
GPD-VVTO aims to synthesis a realistic and natural video sequence
{x̄}𝑇1 ∈ R𝑇×3×𝐻×𝑊 that presents the person in {x}𝑇1 wearing the
garment c.

GPD-VVTO contains two U-Net branches. On the one hand, the
person video {x}𝑇1 and the cloth-agnostic video {a}𝑇1 are encoded
to the latent space by the encoder of VAE E. A Gaussian noise is
then added to E({x}𝑇1 ) to form the noisy latent {z}𝑇1 ∈ R𝑇×4×ℎ×𝑤 ,
where ℎ = 𝐻/8 and 𝑤 = 𝑊 /8. The main U-Net is an inpainting
network that takes a 9-channel tensor as input, with 4 channels of
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Figure 2: (a) Overall architecture of GPD-VVTO. The main U-Net takes the concatenation of the noisy latent of the video, the
latent of the cloth-agnostic video and the binary agnostic mask sequence as input. DensePose sequence is encoded by the pose
encoder and added to the input of the main U-Net. The garment image is processed by the U-Net-based garment encoder and
the DINO encoder to extract local texture and global semantic features respectively. The garment features are injected into
the main U-Net within the JSA, SCA and GTA modules to preserve garment details. The encoder and decoder of VAE are not
shown for clarity. (b) Detailed illustration of the attention block in the main U-Net. Left branch: the feature maps from the
main U-Net and garment encoder are concatenated in the spatial dimension to jointly perform self-attention (JSA module).
Only the left half (that from the main U-Net) of the obtained feature map is utilized to conduct cross-attention (SCA module)
with features extracted by the DINO encoder. Right branch (GTA module): we compute a spatial cross-attention that shares
weights with the self-attention operation, where the features from main U-Net serve as queries and garment features serve as
keys and values. The obtained feature sequence contains garment features spatially aligned with the human video, which is
appended to the human feature sequence from the main U-Net to perform temporal attention. Best viewed in color.

the noisy latent of the video, 4 channels of the latent of the cloth-
agnostic video and 1 channel of the binary agnostic mask sequence.
On the other hand, the garment encoder is a standard text-to-image
diffusion model with the latent of the garment E(c) ∈ R4×ℎ×𝑤 as
input. Both the main U-Net and the garment encoder receive the
embedding of garment image extracted by the DINO encoder for
cross-attention. To further enhance the preservation of the body
shape and pose of the person, the DensePose sequence {p}𝑇1 is
embedded by a zero-initialized lightweight fully convolutional pose
encoder and incorporated into the main U-Net via element-wise
addition.

3.3 Pre-processing
To construct the cloth-agnostic video {a}𝑇1 and agnostic mask se-
quence {m}𝑇1 , we first extract the human parsing results using
Graphonomy [10] in a frame-by-frame manner, and mask out re-
gions related to the garment (e.g., clothes, coat, and body skin for
upper-body garments). Subsequently, we utilize DWPose [47] re-
sults to mask the arms, leaving the hands exposed for better realism
of the generation results. Finally, we take the bounding rectangle
of the mask to eliminate the influence of the original garment style
on the results. Areas unrelated to clothing are left exposed to better

preserve the identity of the person. We utilize [13] to extract the
DensePose sequence frame by frame as the input of pose encoder.

3.4 Semantic-enhanced Cross-Attention
In the original SD, cross-attention is performed using text embed-
dings extracted by CLIP text encoder. To better adapt to the virtual
try-on task, we replace these embeddings with features extracted
from the garment image by DINOv2 [30], which contain rich global
semantic information (e.g., style). Previous works [23, 46] only uti-
lize the last hidden state for all cross-attention modules. However,
since different blocks in the U-Net have varying degrees of spatial
dimension compression, semantic features of different abstraction
levels are required.

To make full use of semantic features of different abstraction
levels, we propose a Semantic-enhanced Cross-Attention (SCA)
module that applies multiple intermediate features from the DINO
encoder to different blocks of the two U-Net branches. Specifically,
we define a mapping function 𝜎 : {1, ..., 𝑁 } → {1, ..., 𝑀}, where
𝑁 denotes the number of cross-attention modules in the U-Net,
𝑀 denotes the number of layers in DINO encoder, and 𝜎 (𝑖) repre-
sents which layer of semantic features should be utilized in the 𝑖-th
cross-attention module. The operations in the SCA module can be
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expressed as follow:

f̃𝑖 = Attn(𝜙𝑖𝑞 (f̂𝑖 ), 𝜙𝑖𝑘 (s
𝜎 (𝑖 ) ), 𝜙𝑖𝑣 (s𝜎 (𝑖 ) )), (3)

where f̂𝑖 stands for the feature map before the 𝑖-th cross-attention
module in the U-Net, s denotes the semantic features extracted
by DINO encoder, and 𝜙𝑖𝑞, 𝜙

𝑖
𝑘
, 𝜙𝑖𝑣 are linear projection layers for

queries, keys and values respectively. By incorporating semantic
features from different abstraction levels into corresponding blocks,
the model can better preserve the overall style of the garment.

3.5 Joint Self-Attention
Although injecting global semantic information of the garment
helps preserve the overall style, the features extracted by the DINO
encoder do not attach importance to local texture features, resulting
in the loss of many local details (e.g., text, lines and patterns). Hence,
we leverage a parallel garment encoder to extract multi-level dense
features of the garment, which are integrated with the features from
main U-Net to perform self-attention in the Joint Self-Attention
(JSA) modules. To ensure compatibility between garment features
and human features, the garment encoder adopts the same archi-
tecture as the main U-Net, but is initialized using the weights of
pre-trained text-to-image Stable Diffusion model. In each JSA mod-
ule, the human feature map from the main U-Net f𝑖 is concatenated
with the corresponding garment feature map from the garment
encoder g𝑖 to jointly compute self-attention. Concretely, the 𝑖-th
JSA module in the main U-Net is computed as follow:

ĥ𝑖 = Attn(𝜓 𝑖
𝑞 (h𝑖 ),𝜓 𝑖

𝑘
(h𝑖 ),𝜓 𝑖

𝑣 (h𝑖 )), (4)

where h𝑖 = Concat(f𝑖 , g𝑖 ) is the concatenation of human feature
map and garment feature map in the spatial dimension, and 𝜓 𝑖

𝑞 ,
𝜓 𝑖
𝑘
, 𝜓 𝑖

𝑣 are linear projections. Afterwards, only the half from the
main U-Net undergoes further computation. By integrating the
dense garment feature maps abound of local texture information
into self-attention modules, the main U-Net can selectively extract
local features from the garment feature map, achieving the effective
transfer of detailed garment appearance. Furthermore, through the
joint self-attention of human and garment features, we establish
a soft spatial correspondence between the human image and the
garment image, implicitly deforming the garment to fit the pose of
the person more naturally.

3.6 Garment-aware Temporal Attention
Both the SCA and JSA modules focus on the realism and fidelity of
individual frame results without establishing correlations between
frames, thus unable to address the issue of temporal inconsistency.
To efficiently transform an image generationmodel into a video gen-
eration model, AnimateDiff [14] proposes a plug-and-play motion
module that involves temporal attention to improve the smoothness
of generated videos. However, since other parameters of the model
are not updated during the training of motion modules, there is a
stagnation or even degradation in the quality of single-frame re-
sults. Moreover, fine-tuning the entire model on video data requires
abundant computational resources and time.

To overcome this issue, we devise a novel Garment-aware Tempo-
ral Attention (GTA) based on the motion module, which preserves
fidelity to the garment by referencing garment features during the

temporal modeling process. As illustrated in the right branch of
Figure 2 (b), we conduct an extra spatial cross-attention in parallel
with the JSA module, with the human features from the main U-Net
as queries and the garment features from the garment encoder as
keys and values:

ĝ𝑖 = Attn(𝜓 𝑖
𝑞 (f𝑖 ),𝜓 𝑖

𝑘
(g𝑖 ),𝜓 𝑖

𝑣 (g𝑖 )). (5)

It is worth noting that the feature maps used in this operation (i.e.,
f𝑖 and g𝑖 ), as well as the weights of the linear projection layers (i.e.,
𝜓 𝑖
𝑞 ,𝜓 𝑖

𝑘
and𝜓 𝑖

𝑣 ), are the same as those in the JSA module. Therefore,
the learned spatial correspondence between the person and the gar-
ment in the JSA module remains effective. In this way, the obtained
feature map ĝ𝑖 represents the garment features corresponding to
each spatial position in the human image, and it is spatially aligned
with the human feature map f𝑖 . Subsequently, the human feature
maps {f̃𝑖 }𝑇1 are concatenated with {ĝ𝑖 }𝑇1 in the temporal dimen-
sion to jointly compute temporal self-attention. Similar to the JSA
module, only the sequence from the main U-Net is retained for
further operations. By incorporating aligned garment features into
the temporal attention, we simultaneously enhance the temporal
continuity of the video and the quality of individual frames.

3.7 Training and Inference
Training scheme. The training scheme of GPD-VVTO comprises
two stages:

In the first stage, we take single frames as input and initialize the
main U-Net as a 2D inpainting model, improving the model’s ability
of generating high-quality try-on images. All parameters except for
the pre-trained DINO encoder are updated. To further align basic
features of the results, we compute perceptual loss [22] utilizing
a pre-trained VGG [35] model. The total optimization objective of
the first stage is expressed as follow:

L1 = Eẑ |𝑡 ,p,c,𝜖,𝑡 | |𝜖 − 𝜖𝜃 (ẑ|𝑡 , p, c, 𝑡) | |22 + 𝜆L𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 , (6)

where ẑ|𝑡 = Concat(z|𝑡 ,m, a) is the input of the main U-Net at
timestep 𝑡 and 𝜆 is the weight of the perceptual loss.

In the second stage, we fine-tune the model on video data by
inflating the 2D convolutions to spatial-only pseudo-3D convolu-
tions [14, 19], and insert GTA modules to enhance the temporal
consistency. We only update the parameters of GTA modules and
linear layers that project the features extracted by DINO encoder to
the same dimensions as the U-Nets. The total optimization objective
of the second stage is expressed as follow:

L2 = E{ẑ}𝑇1 |𝑡 ,{p}𝑇1 ,c,𝜖,𝑡
| |𝜖 − 𝜖𝜃 ({ẑ}𝑇1 |𝑡 , {p}

𝑇
1 , c, 𝑡) | |

2
2 . (7)

Classifier-free guidance.We apply classifier-free guidance [18]
on the garment image during inference to obtainmore robust results.
Specifically, we randomly set c = Ø during the whole training
phase, with all elements in Ø ∈ R3×𝐻×𝑊 equal to zero. In this
way, the model is trained on both conditional and unconditional
settings. During inference, we utilize a scalar guidance scale 𝑠𝑔 ≥ 1
to combine the conditional and unconditional results. For instance,
the final noise predicted by the model in the first stage is as below:

𝜖𝜃 (ẑ|𝑡 , p, c, 𝑡) = 𝑠𝑔 · 𝜖𝜃 (ẑ|𝑡 , p, c, 𝑡) + (1 − 𝑠𝑔) · 𝜖𝜃 (ẑ|𝑡 , p,Ø, 𝑡). (8)

Inference with sliding windows. To enhance the temporal
coherence and smoothness for long videos, we follow [44] to adopt
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Table 1: Quantitative results of video virtual try-on task on the VVT and our dataset. GPD-VVTO† denotes the first-stage model
of our method. StableVITON‡ denotes the adaptation of StableVITON to Video Virtual Try-On task by inserting temporal
attention modules. ∗ means the results are from previous works.

VVT OursCategory Method SSIM ↑ LPIPS ↓ VFID ↓ SSIM ↑ LPIPS ↓ VFID ↓

Image-based VTON
LaDI-VTON [28] 0.878 0.190 5.88 0.644 0.213 10.88
StableVITON [23] 0.902 0.078 3.54 0.697 0.189 7.54

GPD-VVTO† (Ours) 0.922 0.058 1.79 0.745 0.161 4.82

Video VTON

MV-TON∗ [51] 0.853 0.233 8.37 - - -
ClothFormer∗ [21] 0.921 0.081 3.97 - - -
StableVITON‡ [23] 0.903 0.080 4.05 0.701 0.190 6.52
GPD-VVTO (Ours) 0.928 0.056 1.28 0.760 0.160 3.98

a sliding window method during inference. We divide the long
video into multiple overlapping segments of length 𝑇 and perform
inference on each segment. For overlapping frames, the final result
is obtained by taking the average over each inference.

4 EXPERIMENTS
4.1 Datasets
Video Virtual Try-On. We conduct the experiments of video
virtual try-on using VVT dataset [8] and our collected dataset.
The VVT dataset contains 791 video clips with a resolution of
256 × 192. Following previous works [8, 21], we partition it into a
training set of 661 clips and a test set of 130 clips. However, the
VVT dataset lacks diversity in terms of video backgrounds and
human actions, leading to significant disparities from real-world
scenarios. Hence, we collect a video virtual try-on dataset from
well-known e-commerce platforms, which contains high-resolution
videos of numerous models performing various actions in diverse
scenes, together with the corresponding garment image. More-
over, our dataset possesses a greater diversity of garment styles
and more intricate patterns on the garments compared to VVT
dataset. Visual comparisons between VVT dataset and our dataset
are illustrated in the supplementary materials. Our dataset con-
tains 3, 156/1, 295/7, 631 pairs of human video clips and upper-
body garment/lower-body garment/dress images. We randomly
split the dataset into training and testing sets according to a ratio
of 0.85 : 0.15 for each garment category.

Image-based Virtual Try-On. To further validate the effective-
ness of our method, we also conduct experiments on two public
image-based virtual try-on datasets (i.e., VITON-HD [5] and Dress
Code [29]) using our first-stage model. The VITON-HD dataset
contains 13, 679 pairs of upper-body model and garment images,
with 2, 032 pairs utilized for testing. The Dress Code dataset con-
tains 15, 363/8, 951/2, 947 pairs of full-body model and upper-body
garment/lower-body garment/dress images, with 1, 800 pairs of
each category utilized for testing.

4.2 Implementation Details
We initialize the main U-Net with pre-trained Stable Diffusion 2
inpainting1 model and initialize the garment encoder with Stable

1https://huggingface.co/stabilityai/stable-diffusion-2-inpainting

Diffusion v2.1 [32]. The pose encoder consists of three convolutional
blocks, which down-sample the input DensePose to match the
latent’s spatial shape. The weights of its final layer are initialized to
zero following previous works [20]. We apply data augmentation
with random horizontal flipping at a probability of 0.5 to enhance
the robustness of the model. For image-based virtual try-on task,
our model is trained at a resolution of 512 × 384 and 1024 × 768
separately, while for video virtual try-on task, we only train at
512×384 resolution. We adopt Adam [24] optimizer with a constant
learning rate of 5 × 10−5. All the experiments are conducted using
16 NVIDIA A100 GPUs. In the first stage, we utilize a batch size of
64 for high-resolution and 256 for low-resolution models. In the
second stage, we sample 16-frame sequences and set batch size to 64.
The model is trained for 20, 000 iterations during the first stage and
10, 000 iterations during the second stage. The weight of perceptual
loss 𝜆 is set to 10−3. During inference, we set the guidance scale
𝑠𝑔 = 1.5. We utilize the DDIM [36] sampler, sampling on a single
NVIDIA A100 GPU for 50 steps.

4.3 Quantitative Results
Video Virtual Try-On. We evaluate the performance of video
virtual try-on in two test settings. In the paired setting, the model
is provided with both a person video and their original garment
for reconstruction, while the unpaired setting involves substituting
the garment of a person video with a different garment. Following
previous work [21], for the paired setting, we utilize two image-level
metrics, SSIM [40] and LPIPS [50], to measure the model’s ability of
reconstructing original videos. For the unpaired setting, we employ
the Video Fréchet Inception Distance (VFID) by replacing the 2D
image backbone in FID [16] with a 3D backbone I3D [3] to measure
the realism and fidelity of generated videos.

Table 1 presents the quantitative results of video virtual try-on
task on VVT [8] and our dataset. To validate the effectiveness of our
models of both two stages, and highlight the limitations of image-
based try-on methods in video try-on task, we compare our method
with both image-based virtual try-on and video virtual try-on meth-
ods. Our first-stage model surpasses the other two image-based
VTONmethods and even outperforms video virtual try-on methods,
demonstrating its capability to generate high-quality single-frame
images. After training in the second stage, our final model surpasses
all other methods in terms of all metrics on both datasets. Compared

https://huggingface.co/stabilityai/stable-diffusion-2-inpainting
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Table 2: Quantitative results of image-based virtual try-on
task on the VITON-HD dataset.

Method SSIM ↑ LPIPS ↓ FID ↓ KID ↓
HR-VITON [26] 0.876 0.096 12.31 3.81
GP-VTON [42] 0.890 0.085 9.82 1.42
LaDI-VTON [28] 0.875 0.091 9.32 1.55
DCI-VTON [12] 0.890 0.072 8.77 0.89
StableVITON [23] 0.878 0.075 9.43 1.54
GPD-VVTO† (Ours) 0.891 0.070 8.57 0.78

with the first-stage model, there is a noticeable improvement in the
VFID score (−0.51 on VVT and −0.84 on our dataset), demonstrat-
ing the significance of temporal attention for video virtual try-on
task. Furthermore, our final model exhibits a higher SSIM score
compared to the first-stage model, indicating that the model’s abil-
ity to preserve garment details is improved by referencing garment
information in the GTA module.

Image-based Virtual Try-On. To further demonstrate the ef-
fectiveness of our proposed method, we also evaluate our first-stage
model trained at a resolution of 512 × 384 on image-based virtual
try-on task. Similar to video virtual try-on, we evaluate the perfor-
mance of image-based virtual try-on under the paired and unpaired
settings. We utilize SSIM [40] and LPIPS [50] metrics for the paired
setting, and FID [16] and KID [1] for the unpaired setting.

We compare with both GAN-based and diffusion-based meth-
ods. Table 2 displays the qualitative results on the VITON-HD [15]
dataset. Our proposed GPD-VVTO achieves the best performance
across all metrics, demonstrating that our method can generate re-
alistic and natural images while preserving the structure of original
image. We notice that the FID score of diffusion-based methods
is generally lower than that of GAN-based methods, indicating
that diffusion models can generate images with more fidelity. We
also conduct experiments on the Dress Code [29] dataset, which
contains a greater variety of garment types and presents more chal-
lenging scenarios. The results are shown in Table 3. By adjusting the
mask strategy, our method can be applied to garments of different
categories. Our method outperforms previous methods by a large
margin in all the garment categories as well as overall evaluation
(−2.57 FID score and −1.88 KID score compared with the second
best result), showcasing its capability to handle complex cases.

4.4 Qualitative Results
Video Virtual Try-On. The left panel of Figure 1 illustrates the
video virtual try-on results of our method on the VVT dataset and
our collected dataset. The videos in the VVT dataset primarily
feature a model walking towards and away from the camera. Our
generated results maintain both the fidelity to the target garment
and the consistency between frames as the model walks and turns.
In our dataset, the video backgrounds and human poses are more
complex. Despite this, our generated results still manage tomaintain
consistency in both background and garment, demonstrating the
robustness of our method. More video results are available in the
supplementary materials.

Input GP-VTON DCI-VTON StableVITON GPD-VVTO (ours)

Figure 3: Qualitative comparison on VITON-HD dataset.
Shortcomings of previous methods are highlighted in red
dashed boxes. Better viewed on a zoomed, color monitor.

Input GP-VTON LaDI-VTON GPD-VVTO 
(ours)

Figure 4: Qualitative comparison on Dress Code dataset.
Shortcomings of previous methods are highlighted in red
dashed boxes. Better viewed on a zoomed, color monitor.

Image-based Virtual Try-On. The right panel of Figure 1 il-
lustrates the image-based virtual try-on results of our method on
VITON-HD and Dress Code datasets. Our approach is capable of
preserving highly intricate patterns and text on garments, and
demonstrates strong robustness in challenging human pose sce-
narios. We also conduct qualitative comparisons between previ-
ous and our method. The qualitative comparison on VITON-HD
dataset is shown in Figure 3. In the first row, GP-VTON [42] and
DCI-VTON [12] employ separate warping modules, resulting in
unnatural blending between the garment and the person. StableVI-
TON [23] achieves a natural fitting, but fails to preserve the text on
the garment. In contrast, our method ensures the seamless blending
between the garment and the person while retaining the text on the
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Table 3: Quantitative results of image-based virtual try-on task on Dress Code dataset. ∗ means the results are reported in
previous works.

Upper-body Lower-body Dresses AllMethod FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ SSIM ↑ LPIPS ↓ FID ↓ KID ↓
PSAD∗ [29] 17.51 7.15 19.68 8.90 17.07 6.66 0.918 0.058 10.61 6.17
GP-VTON [42] 14.80 3.22 14.05 2.60 13.76 2.55 0.918 0.069 6.98 3.02
LaDI-VTON [28] 14.05 2.95 14.29 2.56 14.13 3.00 0.902 0.071 6.75 2.27
GPD-VVTO† (Ours) 10.11 0.28 11.02 0.69 10.46 0.70 0.924 0.045 4.18 0.39

Table 4: Ablation study to verify the effectiveness of different
components of GPD-VVTO.

Method SSIM ↑ LPIPS ↓ VFID ↓
w/o SCA modules 0.925 0.062 1.31
w/o JSA modules 0.890 0.087 1.60
w/o GTA modules 0.921 0.058 1.28
GPD-VVTO 0.928 0.056 1.28

garment. Moreover, our method restores the fabric of the garment
more faithfully. In the second row, the target garment is an off-
shoulder top. While GP-VTON and DCI-VTON manage to preserve
the appearance of the garment, they exhibit artifacts around the
arms and neck. StableVITON changes the style of the target gar-
ment and introduces color discrepancies. In contrast, our method
preserves the style of the garment while retaining its appearance.
Similar phenomenons can be observed in the qualitative compar-
ison on Dress Code dataset as shown in Figure 4. GP-VTON [42]
and LaDI-VTON [28] fail to preserve the local texture or overall
style of the target garment and exhibit artifacts in the blending of
the person and the garment. On the contrary, our method excels in
both the naturalness and fidelity of the garment.

4.5 Ablation Studies
Different components of GPD-VVTO. The quantitative results
of ablating different components in GPD-VVTO on the VVT dataset
are reported in Table 4. In the 1-st row, we replace the garment
features used in the cross-attention modules with the final out-
put of the DINO encoder instead of multiple intermediate features.
The performance exhibits some decline compared with our full
model, indicating that the SCA modules enhance the quality of the
generated results by leveraging semantic features from different
abstraction levels. In the 2-nd row, we discard the garment encoder
and substitute the JSA modules with standard self-attention. We
observe a significant decrease in the model’s performance, demon-
strating the crucial impact of multi-scale dense garment features
on the try-on results. In the 3-rd row, we replace the GTA mod-
ules with normal temporal attention without referring to garment
features. The LPIPS and VFID scores remain relatively consistent
with the full model, but there is a notable discrepancy in SSIM, in-
dicating that concatenating garment feature sequences in the GTA
module benefits the preservation of garment information. Overall,
the modules proposed in our method enhance the fidelity to the
garment and temporal consistency of the generated results.

Table 5: Effects of the guidance scale 𝑠𝑔 and the weight of
perceptual loss 𝜆.

(a) Effects of 𝑠𝑔 .

𝑠𝑔 SSIM ↑ LPIPS ↓ VFID ↓
1.0 0.915 0.068 1.35
1.5 0.928 0.056 1.28
2.0 0.926 0.055 1.30
2.5 0.921 0.062 1.32

(b) Effects of 𝜆.

𝜆 SSIM ↑ LPIPS ↓ FID ↓
0 0.920 0.062 1.31

10−4 0.921 0.060 1.31
10−3 0.928 0.056 1.28
10−2 0.923 0.060 1.30

Effects of hyperparameters. We also investigate the effects of
hyperparameters on the performance of our model, including the
guidance scale 𝑠𝑔 and the weight of perceptual loss 𝜆. Table 5 (a)
presents the ablation study on 𝑠𝑔 . When 𝑠𝑔 = 1, the classifier-free
guidance is not activated, resulting in relatively inferior perfor-
mance. As 𝑠𝑔 increases, the performance of the model first improves
and then declines. We find that a larger guidance scale can preserve
more complete patterns, but there is a significant color discrepancy
of the garment. Taking into account the overall performance of
the model under different values of 𝑠𝑔 , we set 𝑠𝑔 = 1.5 according
to experimental results. Table 5 (b) shows the effects of changing
the value of 𝜆. As 𝜆 becomes larger, the weight of the perceptual
loss gradually increases. We observe that the model’s performance
first improves and then declines. This may be because when 𝜆 is
small, the perceptual loss has little effect; and when 𝜆 is large, the
update of model’s parameters relies more on the perceptual loss
rather than the MSE loss, leading to a degradation of the quality
of generated results. Given the ablation results, we set 𝜆 = 10−3 in
our experiments.

5 CONCLUSION
In this paper, we focus on the task of video virtual try-on and pro-
pose a LDM-based two-stage framework for the first time. Our
method leverages both global semantic features and local texture
features of the garment to preserve garment details as much as
possible. We devise a novel Garment-aware Temporal Attention
module that integrates features of the garment into temporal atten-
tion, improving the temporal consistency of the generated videos
while maintaining the fidelity to the garment. Furthermore, we
collect an in-the-wild video virtual try-on dataset to address the
limited variety in terms of video background and human actions of
current datasets. Extensive experimental results demonstrate that
our method outperforms previous state-of-the-art methods on both
image-based and video-based virtual try-on datasets, indicating the
effectiveness of our proposed framework.
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