
Published as a conference paper at ICLR 2021

GAUGE EQUIVARIANT MESH CNNS
ANISOTROPIC CONVOLUTIONS ON GEOMETRIC GRAPHS

Pim de Haan∗
Qualcomm AI Research†
University of Amsterdam

Maurice Weiler∗
QUVA Lab
University of Amsterdam

Taco Cohen
Qualcomm AI Research

Max Welling
Qualcomm AI Research
University of Amsterdam

ABSTRACT

A common approach to define convolutions on meshes is to interpret them as
a graph and apply graph convolutional networks (GCNs). Such GCNs utilize
isotropic kernels and are therefore insensitive to the relative orientation of vertices
and thus to the geometry of the mesh as a whole. We propose Gauge Equivariant
Mesh CNNs which generalize GCNs to apply anisotropic gauge equivariant kernels.
Since the resulting features carry orientation information, we introduce a geometric
message passing scheme defined by parallel transporting features over mesh edges.
Our experiments validate the significantly improved expressivity of the proposed
model over conventional GCNs and other methods.

1 INTRODUCTION

Convolutional neural networks (CNNs) have been established as the default method for many machine
learning tasks like speech recognition or planar and volumetric image classification and segmentation.
Most CNNs are restricted to flat or spherical geometries, where convolutions are easily defined
and optimized implementations are available. The empirical success of CNNs on such spaces has
generated interest to generalize convolutions to more general spaces like graphs or Riemannian
manifolds, creating a field now known as geometric deep learning (Bronstein et al., 2017).

A case of specific interest is convolution on meshes, the discrete analog of 2-dimensional embedded
Riemannian manifolds. Mesh CNNs can be applied to tasks such as detecting shapes, registering
different poses of the same shape and shape segmentation. If we forget the positions of vertices, and
which vertices form faces, a mesh M can be represented by a graph G. This allows for the application
of graph convolutional networks (GCNs) to processing signals on meshes.

∗Equal Contribution
†Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

Figure 1: Two local neighbourhoods around vertices p and their representations in the tangent planes TpM .
The distinct geometry of the neighbourhoods is reflected in the different angles θpqi of incident edges from
neighbours qi. Graph convolutional networks apply isotropic kernels and can therefore not distinguish both
neighbourhoods. Gauge Equivariant Mesh CNNs apply anisotropic kernels and are therefore sensitive to
orientations. The arbitrariness of reference orientations, determined by a choice of neighbour q0, is accounted
for by the gauge equivariance of the model.

1

Published as a conference paper at ICLR 2021

However, when representing a mesh by a graph, we lose important geometrical information. In
particular, in a graph there is no notion of angle between or ordering of two of a node’s incident edges
(see figure 1). Hence, a GCNs output at a node p is designed to be independent of relative angles
and invariant to any permutation of its neighbours qi ∈ N (p). A graph convolution on a mesh graph
therefore corresponds to applying an isotropic convolution kernel. Isotropic filters are insensitive to
the orientation of input patterns, so their features are strictly less expressive than those of orientation
aware anisotropic filters.

To address this limitation of graph networks we propose Gauge Equivariant Mesh CNNs (GEM-CNN),
which minimally modify GCNs such that they are able to use anisotropic filters while sharing weights
across different positions and respecting the local geometry. One obstacle in sharing anisotropic
kernels, which are functions of the angle θpq of neighbour q with respect to vertex p, over multiple
vertices of a mesh is that there is no unique way of selecting a reference neighbour q0, which has the
direction θpq0 = 0. The reference neighbour, and hence the orientation of the neighbours, needs to
be chosen arbitrarily. In order to guarantee the equivalence of the features resulting from different
choices of orientations, we adapt Gauge Equivariant CNNs (Cohen et al., 2019b) to general meshes.
The kernels of our model are thus designed to be equivariant under gauge transformations, that
is, to guarantee that the responses for different kernel orientations are related by a prespecified
transformation law. Such features are identified as geometric objects like scalars, vectors, tensors,
etc., depending on the specific choice of transformation law. In order to compare such geometric
features at neighbouring vertices, they need to be parallel transported along the connecting edge.

In our implementation we first specify the transformation laws of the feature spaces and compute a
space of gauge equivariant kernels. Then we pick arbitrary reference orientations at each node, relative
to which we compute neighbour orientations and compute the corresponding edge transporters. Given
these quantities, we define the forward pass as a message passing step via edge transporters followed
by a contraction with the equivariant kernels evaluated at the neighbour orientations. Algorithmically,
Gauge Equivariant Mesh CNNs are therefore just GCNs with anisotropic, gauge equivariant kernels
and message passing via parallel transporters. Conventional GCNs are covered in this framework for
the specific choice of isotropic kernels and trivial edge transporters, given by identity maps.

In Sec. 2, we will give an outline of our method, deferring details to Secs. 3 and 4. In Sec. 3.2,
we describe how to compute general geometric quantities, not specific to our method, used for
the computation of the convolution. In our experiments in Sec. 6.1, we find that the enhanced
expressiveness of Gauge Equivariant Mesh CNNs enables them to outperform conventional GCNs
and other prior work in a shape correspondence task.

2 CONVOLUTIONS ON GRAPHS WITH GEOMETRY

We consider the problem of processing signals on discrete 2-dimensional manifolds, or meshes M .
Such meshes are described by a set V of vertices in R3 together with a set F of tuples, each consisting
of the vertices at the corners of a face. For a mesh to describe a proper manifold, each edge needs to
be connected to two faces, and the neighbourhood of each vertex needs to be homeomorphic to a disk.
Mesh M induces a graph G by forgetting the coordinates of the vertices while preserving the edges.

A conventional graph convolution between kernel K and signal f , evaluated at a vertex p, can be
defined by

(K ? f)p = Kselffp +
∑

q∈Np

Kneighfq, (1)

where Np is the set of neighbours of p in G, and Kself ∈ RCin×Cout and Kneigh ∈ RCin×Cout are two
linear maps which model a self interaction and the neighbour contribution, respectively. Importantly,
graph convolution does not distinguish different neighbours, because each feature vector fq is
multiplied by the same matrix Kneigh and then summed. For this reason we say the kernel is isotropic.

Consider the example in figure 1, where on the left and right, the neighbourhood of one vertex p,
containing neighbours q ∈ Np, is visualized. An isotropic kernel would propagate the signal from the
neighbours to p in exactly the same way in both neighbourhoods, even though the neighbourhoods
are geometrically distinct. For this reason, our method uses direction sensitive (anisotropic) kernels
instead of isotropic kernels. Anisotropic kernels are inherently more expressive than isotropic ones
which is why they are used universally in conventional planar CNNs.

2

Published as a conference paper at ICLR 2021

Algorithm 1 Gauge Equivariant Mesh CNN layer

Input: mesh M , input/output feature types ρin, ρout, reference neighbours (qp0 ∈ Np)p∈M .
Compute basis kernels Ki

self,K
i
neigh(θ) B Sec. 3

Initialise weights wiself and wineigh.
For each neighbour pair, p ∈M, q ∈ Np: B App. A.

compute neighbor angles θpq relative to reference neighbor
compute parallel transporters gq→p

Forward
(
input features (fp)p∈M , weights wiself, w

i
neigh

)
:

f ′p ←
∑
i w

i
selfK

i
selffp +

∑
i,q∈Np

wineighK
i
neigh(θpq)ρin(gq→p)fq

We propose the Gauge Equivariant Mesh Convolution, a minimal modification of graph convolution
that allows for anisotropic kernels K(θ) whose value depends on an orientation θ ∈ [0, 2π).1 To
define the orientations θpq of neighbouring vertices q ∈ Np of p, we first map them to the tangent
plane TpM at p, as visualized in figure 1. We then pick an arbitrary reference neighbour qp0 to
determine a reference orientation2 θpqp0 := 0, marked orange in figure 1. This induces a basis on
the tangent plane, which, when expressed in polar coordinates, defines the angles θpq of the other
neighbours.

As we will motivate in the next section, features in a Gauge Equivariant CNN are coefficients of
geometric quantities. For example, a tangent vector at vertex p can be described either geometrically
by a 3 dimensional vector orthogonal to the normal at p or by two coefficients in the basis on the
tangent plane. In order to perform convolution, geometric features at different vertices need to be
linearly combined, for which it is required to first “parallel transport” the features to the same vertex.
This is done by applying a matrix ρ(gq→p) ∈ RCin×Cin to the coefficients of the feature at q, in order
to obtain the coefficients of the feature vector transported to p, which can be used for the convolution
at p. The transporter depends on the geometric type (group representation) of the feature, denoted by
ρ and described in more detail below. Details of how the tangent space is defined, how to compute
the map to the tangent space, angles θpq , and the parallel transporter are given in Appendix A.

In combination, this leads to the GEM-CNN convolution

(K ? f)p = Kselffp +
∑

q∈Np

Kneigh(θpq)ρ(gq→p)fq (2)

which differs from the conventional graph convolution, defined in Eq. 1 only by the use of an
anisotropic kernel and the parallel transport message passing.

We require the outcome of the convolution to be equivalent for any choice of reference orientation.
This is not the case for any anisotropic kernel but only for those which are equivariant under changes
of reference orientations (gauge transformations). Equivariance imposes a linear constraint on the
kernels. We therefore solve for complete sets of “basis-kernels” Ki

self and Ki
neigh satisfying this

constraint and linearly combine them with parameters wiself and wineigh such that Kself =
∑
i w

i
selfK

i
self

and Kneigh =
∑
i w

i
neighK

i
neigh. Details on the computation of basis kernels are given in section 3.

The full algorithm for initialisation and forward pass, which is of time and space complexity linear in
the number of vertices, for a GEM-CNN layer are listed in algorithm 1. Gradients can be computed
by automatic differentiation.

The GEM-CNN is gauge equivariant, but furthermore satisfies two important properties. Firstly,
it depends only on the intrinsic shape of the 2D mesh, not on the embedding of the mesh in R3.
Secondly, whenever a map from the mesh to itself exists that preserves distances and orientation,
the convolution is equivariant to moving the signal along such transformations. These properties are
proven in Appendix D and empirically shown in Appendix F.2.

1In principle, the kernel could be made dependent on the radial distance of neighboring nodes, by
Kneigh(r, θ) = F (r)Kneigh(θ), where F (r) is unconstrained and Kneigh(θ) as presented in this paper. As
this dependency did not improve the performance in our empirical evaluation, we omit it.

2Mathematically, this corresponds to a choice of local reference frame or gauge.

3

Published as a conference paper at ICLR 2021

p

qA
qB

qC

p

qA
qB

qC

p
qA

qB
qC

p
qA

qB
qC

pick gauge
q0 = qA

map back
to mesh

pick gauge
q0 = qB

map back
to mesh

geometric conv

conv in
gauge A

conv in
gauge B

gauge
transform

ation
A
→
B

gauge
transform

ation
A
→
B

(a) Convolution from scalar to scalar features.

p

qA
qB

qC

p

qA
qB

qC

p
qA

qB
qC

p
qA

qB
qC

pick gauge
q0 = qA

map back
to mesh

pick gauge
q0 = qB

map back
to mesh

geometric conv

conv in
gauge A

conv in
gauge B

gauge
transfrom

ation
A
→
B

gauge
transfrom

ation
A
→
B

(b) Convolution from scalar to vector features.

Figure 2: Visualization of the Gauge Equivariant Mesh Convolution in two configurations, scalar to scalar and
scalar to vector. The convolution operates in a gauge, so that vectors are expressed in coefficients in a basis and
neighbours have polar coordinates, but can also be seen as a geometric convolution, a gauge-independent map
from an input signal on the mesh to a output signal on the mesh. The convolution is equivariant if this geometric
convolution does not depend on the intermediate chosen gauge, so if the diagram commutes.

3 GAUGE EQUIVARIANCE & GEOMETRIC FEATURES

On a general mesh, the choice of the reference neighbour, or gauge, which defines the orientation
of the kernel, can only be made arbitrarily. However, this choice should not arbitrarily affect the
outcome of the convolution, as this would impede the generalization between different locations
and different meshes. Instead, Gauge Equivariant Mesh CNNs have the property that their output
transforms according to a known rule as the gauge changes.

Consider the left hand side of figure 2(a). Given a neighbourhood of vertex p, we want to express
each neighbour q in terms of its polar coordinates (rq, θq) on the tangent plane, so that the kernel
value at that neighbour Kneigh(θq) is well defined. This requires choosing a basis on the tangent
plane, determined by picking a neighbour as reference neighbour (denoted q0), which has the zero
angle θq0 = 0. In the top path, we pick qA as reference neighbour. Let us call this gauge A, in
which neighbours have angles θAq . In the bottom path, we instead pick neighbour qB as reference
point and are in gauge B. We get a different basis for the tangent plane and different angles θBq
for each neighbour. Comparing the two gauges, we see that they are related by a rotation, so that
θBq = θAq − θAqB . This change of gauge is called a gauge transformation of angle g := θAqB .

In figure 2(a), we illustrate a gauge equivariant convolution that takes input and output features such
as gray scale image values on the mesh, which are called scalar features. The top path represents the
convolution in gauge A, the bottom path in gauge B. In either case, the convolution can be interpreted
as consisting of three steps. First, for each vertex p, the value of the scalar features on the mesh at
each neighbouring vertex q, represented by colors, is mapped to the tangent plane at p at angle θq
defined by the gauge. Subsequently, the convolutional kernel sums for each neighbour q, the product
of the feature at q and kernel K(θq). Finally the output is mapped back to the mesh. These three
steps can be composed into a single step, which we could call a geometric convolution, mapping
from input features on the mesh to output features on the mesh. The convolution is gauge equivariant
if this geometric convolution does not depend on the gauge we pick in the interim, so in figure 2(a),
if the convolution in the top path in gauge A has same result the convolution in the bottom path in
gauge B, making the diagram commute. In this case, however, we see that the convolution output
needs to be the same in both gauges, for the convolution to be equivariant. Hence, we must have that
K(θq) = K(θq − g), as the orientations of the neighbours differ by some angle g, and the kernel
must be isotropic.

As we aim to design an anisotropic convolution, the output feature of the convolution at p can, instead
of a scalar, be two numbers v ∈ R2, which can be interpreted as coefficients of a tangent feature

4

Published as a conference paper at ICLR 2021

vector in the tangent space at p, visualized in figure 2(b). As shown on the right hand side, different
gauges induce a different basis of the tangent plane, so that the same tangent vector (shown on the
middle right on the mesh), is represented by different coefficients in the gauge (shown on the top and
bottom on the right). This gauge equivariant convolution must be anisotropic: going from the top
row to the bottom row, if we change orientations of the neighbours by −g, the coefficients of the
output vector v ∈ R2 of the kernel must be also rotated by −g. This is written as R(−g)v, where
R(−g) ∈ R2×2 is the matrix that rotates by angle −g.

Vectors and scalars are not the only type of geometric features that can be inputs and outputs of
a GEM-CNN layer. In general, the coefficients of a geometric feature of C dimensions changes
by an invertible linear transformation ρ(−g) ∈ RC×C if the gauge is rotated by angle g. The map
ρ : [0, 2π)→ RC×C is called the type of the geometric quantity and is formally known as a group
representation of the planar rotation group SO(2). Group representations have the property that
ρ(g + h) = ρ(g)ρ(h) (they are group homomorphisms), which implies in particular that ρ(0) = 1

and ρ(−g) = ρ(g)−1. For more background on group representation theory, we refer the reader
to (Serre, 1977) and, specifically in the context of equivariant deep learning, to (Lang & Weiler,
2020). From the theory of group representations, we know that any feature type can be composed
from “irreducible representations” (irreps). For SO(2), these are the one dimensional invariant scalar
representation ρ0 and for all n ∈ N>0, a two dimensional representation ρn,

ρ0(g) = 1, ρn(g) =

(
cosng 9 sinng
sinng cosng

)
.

where we write, for example, ρ = ρ0 ⊕ ρ1 ⊕ ρ1 to denote that representation ρ(g) is the direct sum
(i.e. block-diagonal stacking) of the matrices ρ0(g), ρ1(g), ρ1(g). Scalars and tangent vector features
correspond to ρ0 and ρ1 respectively and we have R(g) = ρ1(g).

The type of the feature at each layer in the network can thus be fully specified (up to a change of
basis) by the number of copies of each irrep. Similar to the dimensionality in a conventional CNN,
the choice of type is a hyperparameter that can be freely chosen to optimize performance.

3.1 KERNEL CONSTRAINT

Given an input type ρin and output type ρout of dimensions Cin and Cout, the kernels are Kself ∈
RCout×Cin and Kneigh : [0, 2π)→ RCout×Cin . However, not all such kernels are equivariant. Consider
again examples figure 2(a) and figure 2(b). If we map from a scalar to a scalar, we get that Kneigh(θ−
g) = Kneigh(θ) for all angles θ, g and the convolution is isotropic. If we map from a scalar to a vector,
we get that rotating the angles θq results in the same tangent vector as rotating the output vector
coefficients, so that Kneigh(θ − g) = R(−g)Kneigh(θ).

ρin → ρout linearly independent solutions for Kneigh(θ)

ρ0 → ρ0 (1)

ρn → ρ0 (cosnθ sinnθ) , (sinnθ 9 cosnθ)

ρ0 → ρm

(
cosmθ
sinmθ

)
,
(

sinmθ
9 cosmθ

)
ρn → ρm

(
c9 9s9
s9 c9

)
,
(
s9 c9
9c9 s9

)
,
(
c+ s+
s+ 9c+

)
,
(
9s+ c+
c+ s+

)
ρin → ρout linearly independent solutions for Kself

ρ0 → ρ0 (1)

ρn → ρn

(
1 0
0 1

)
,
(

0 1
91 0

)
Table 1: Solutions to the angular kernel constraint
for kernels that map from ρn to ρm. We denote
c± = cos((m± n)θ) and s± = sin((m± n)θ).

In general, as derived by Cohen et al. (2019b)
and in appendix B, the kernels must satisfy for
any gauge transformation g ∈ [0, 2π) and angle
θ ∈ [0, 2π), that

Kneigh(θ − g) = ρout(−g)Kneigh(θ)ρin(g), (3)
Kself = ρout(−g) Kself ρin(g). (4)

The kernel can be seen as consisting of multiple
blocks, where each block takes as input one irrep
and outputs one irrep. For example if ρin would
be of type ρ0⊕ρ1⊕ρ1 and ρout of type ρ1⊕ρ3,
we have 4× 5 matrix

Kneigh(θ) =

(
K10(θ) K11(θ) K11(θ)
K30(θ) K31(θ) K31(θ)

)
where e.g. K31(θ) ∈ R2×2 is a kernel that takes as input irrep ρ1 and as output irrep ρ3 and needs
to satisfy Eq. 3. As derived by Weiler & Cesa (2019) and in Appendix C, the kernels Kneigh(θ) and
Kself mapping from irrep ρn to irrep ρm can be written as a linear combination of the basis kernels
listed in Table 1. The table shows that equivariance requires the self-interaction to only map from

one irrep to the same irrep. Hence, we have Kself =

(
0 K11 K11

0 0 0

)
∈ R4×3.

5

Published as a conference paper at ICLR 2021

All basis-kernels of all pairs of input irreps and output irreps can be linearly combined to form
an arbitrary equivariant kernel from feature of type ρin to ρout. In the above example, we have
2 × 2 + 4 × 4 = 20 basis kernels for Kneigh and 4 basis kernels for Kself. The layer thus has 24
parameters. As proven in (Weiler & Cesa, 2019) and (Lang & Weiler, 2020), this parameterization of
the equivariant kernel space is complete, that is, more general equivariant kernels do not exist.

3.2 GEOMETRY AND PARALLEL TRANSPORT

In order to implement gauge equivariant mesh CNNs, we need to make the abstract notion of tangent
spaces, gauges and transporters concrete.

As the mesh is embedded in R3, a natural definition of the tangent spaces TpM is as two dimensional
subspaces that are orthogonal to the normal vector at p. We follow the common definition of
normal vectors at mesh vertices as the area weighted average of the adjacent faces’ normals. The
Riemannian logarithm map logp : Np → TpM represents the one-ring neighborhood of each point
p on their tangent spaces as visualized in figure 1. Specifically, neighbors q ∈ Np are mapped to
logp(q) ∈ TpM by first projecting them to TpM and then rescaling the projection such that the
norm is preserved, i.e. | logp(q)| = |q − p|; see Eq. 6. A choice of reference neighbor qp ∈ N
uniquely determines a right handed, orthonormal reference frame (ep,1, ep,2) of TpM by setting
ep,1 := logp(q0)/| logp(q0)| and ep,2 := n × ep,1. The polar angle θpq of any neighbor q ∈ N
relative to the first frame axis is then given by θpq := atan2

(
e>p,2 logp(q), e

>
p,1 logp(q))

)
.

Given the reference frame (ep,1, ep,2), a 2-tuple of coefficients (v1, v2) ∈ R2 specifies an (embedded)
tangent vector v1ep,1 + v2ep,2 ∈ TpM ⊂ R3. This assignment is formally given by the gauge map
Ep : R2 → TpM ⊂ R3 which is a vector space isomorphism. In our case, it can be identified with
the matrix

Ep =

[
ep,1 ep,2

]
∈ R3×2. (5)

Feature vectors fp and fq at neighboring (or any other) vertices p ∈ M and q ∈ Np ⊆ M live in
different vector spaces and are expressed relative to independent gauges, which makes it invalid to
sum them directly. Instead, they have to be parallel transported along the mesh edge that connects
the two vertices. As explained above, this transport is given by group elements gq→p ∈ [0, 2π),
which determine the transformation of tangent vector coefficients as vq 7→ R(gq→p)vq ∈ R2 and,
analogously, for feature vector coefficients as fq 7→ ρ(gq→p)fq . Figure 4 in the appendix visualizes
the definition of edge transporters for flat spaces and meshes. On a flat space, tangent vectors are
transported by keeping them parallel in the usual sense on Euclidean spaces. However, if the source
and target frame orientations disagree, the vector coefficients relative to the source frame need to be
transformed to the target frame. This coordinate transformation from polar angles ϕq of v to ϕp of
R(gq→p)v defines the transporter gq→p = ϕp − ϕq . On meshes, the source and target tangent spaces
TqM and TpM are not longer parallel. It is therefore additionally necessary to rotate the source
tangent space and its vectors parallel to the target space, before transforming between the frames.
Since transporters effectively make up for differences in the source and target frames, the parallel
transporters transform under gauge transformations gp and gq according to gq→p 7→ gp + gq→p − gq .
Note that this transformation law cancels with the transformation law of the coefficients at q and lets
the transported coefficients transform according to gauge transformations at p. It is therefore valid to
sum vectors and features that are parallel transported into the same gauge at p.

A more detailed discussion of the concepts presented in this section can be found in Appendix A.

4 NON-LINEARITY

Besides convolutional layers, the GEM-CNN contains non-linear layers, which also need to be
gauge equivariant, for the entire network to be gauge equivariant. The coefficients of features built
out of irreducible representaions, as described in section 3, do not commute with point-wise non-
linearities (Worrall et al., 2017; Thomas et al., 2018; Weiler et al., 2018a; Kondor et al., 2018).
Norm non-linearities and gated non-linearities (Weiler & Cesa, 2019) can be used with such features,
but generally perform worse in practice compared to point-wise non-linearities (Weiler & Cesa,

6

Published as a conference paper at ICLR 2021

2019). Hence, we propose the RegularNonlinearity, which uses point-wise non-linearities and is
approximately gauge equivariant.

This non-linearity is built on Fourier transformations. Consider a continuous periodic signal, on
which we perform a band-limited Fourier transform with band limit b, obtaining 2b + 1 Fourier
coefficients. If this continuous signal is shifted by an arbitrary angle g, then the corresponding Fourier
components transform with linear transformation ρ0:b(−g), for 2b+ 1 dimensional representation
ρ0:b := ρ0 ⊕ ρ1 ⊕ ...⊕ ρb.
It would be exactly equivariant to take a feature of type ρ0:b, take a continuous inverse Fourier
transform to a continuous periodic signal, then apply a point-wise non-linearity to that signal, and
take the continuous Fourier transform, to recover a feature of type ρ0:b. However, for implementation,
we use N intermediate samples and the discrete Fourier transform. This is exactly gauge equivariant
for gauge transformation of angles multiple of 2π/N , but only approximately equivariant for other
angles. In App. G we prove that as N →∞, the non-linearity is exactly gauge equivariant.

The run-time cost per vertex of the (inverse) Fourier transform implemented as a simple linear
transformation is O(bN), which is what we use in our experiments. The pointwise non-linearity
scales linearly with N , so the complexity of the RegularNonLineariy is also O(bN). However, one
can also use a fast Fourier transform, achieving a complexity of O(N logN). Concrete memory and
run-time cost of varying N are shown in appendix F.1.

5 RELATED WORK

The irregular structure of meshes leads to a variety of approaches to define convolutions. Closely
related to our method are graph based methods which are often based on variations of graph con-
volutional networks (Kipf & Welling, 2017; Defferrard et al., 2016). GCNs have been applied on
spherical meshes (Perraudin et al., 2019) and cortical surfaces (Cucurull et al., 2018; Zhao et al.,
2019a). Verma et al. (2018) augment GCNs with anisotropic kernels which are dynamically computed
via an attention mechanism over graph neighbours.

Instead of operating on the graph underlying a mesh, several approaches leverage its geometry
by treating it as a discrete manifold. Convolution kernels can then be defined in geodesic polar
coordinates which corresponds to a projection of kernels from the tangent space to the mesh via the
exponential map. This allows for kernels that are larger than the immediate graph neighbourhood
and message passing over faces but does not resolve the issue of ambiguous kernel orientation.
Masci et al. (2015); Monti et al. (2016) and Sun et al. (2018) address this issue by restricting the
network to orientation invariant features which are computed by applying anisotropic kernels in
several orientations and pooling over the resulting responses. The models proposed in (Boscaini
et al., 2016) and (Schonsheck et al., 2018) are explicitly gauge dependent with preferred orientations
chosen via the principal curvature direction and the parallel transport of kernels, respectively. Poule-
nard & Ovsjanikov (2018) proposed a non-trivially gauge equivariant network based on geodesic
convolutions, however, the model parallel transports only partial information of the feature vectors,
corresponding to certain kernel orientations. In concurrent work, Wiersma et al. (2020) also define
convolutions on surfaces equivariantly to the orientation of the kernel, but differ in that they use norm
non-linearities instead of regular ones and that they apply the convolution along longer geodesics,
which adds complexity to the geometric pre-computation - as partial differential equations need to be
solved, but may result in less susceptibility to the particular discretisation of the manifold.

Another class of approaches defines spectral convolutions on meshes. However, as argued in
(Bronstein et al., 2017), the Fourier spectrum of a mesh depends heavily on its geometry, which
makes such methods instable under deformations and impedes the generalization between different
meshes. Spectral convolutions further correspond to isotropic kernels. Kostrikov et al. (2018)
overcomes isotropy of the Laplacian by decomposing it into two applications of the first-order Dirac
operator.

A construction based on toric covering maps of topologically spherical meshes was presented in
(Maron et al., 2017). An entirely different approach to mesh convolutions is to apply a linear map to
a spiral of neighbours (Bouritsas et al., 2019; Gong et al., 2019), which works well only for meshes
with a similar graph structure.

7

Published as a conference paper at ICLR 2021

The above-mentioned methods operate on the intrinsic, 2-dimensional geometry of the mesh. A pop-
ular alternative for embedded meshes is to define convolutions in the embedding space R3. This
can for instance be done by voxelizing space and representing the mesh in terms of an occupancy
grid (Wu et al., 2015; Tchapmi et al., 2017; Hanocka et al., 2018). A downside of this approach
are the high memory and compute requirements of voxel representations. If the grid occupancy
is low, this can partly be addressed by resorting to an inhomogeneous grid density (Riegler et al.,
2017). Instead of voxelizing space, one may interpret the set of mesh vertices as a point cloud and
run a convolution on those (Qi et al., 2017a;b). Point cloud based methods can be made equivariant
w.r.t. the isometries of R3 (Zhao et al., 2019b; Thomas et al., 2018), which implies in particular the
isometry equivariance on the embedded mesh. In general, geodesic distances within the manifold
differ usually substantially from the distances in the embedding space. Which approach is more
suitable depends on the particular application.

On flat Euclidean spaces our method corresponds to Steerable CNNs (Cohen & Welling, 2017; Weiler
et al., 2018a; Weiler & Cesa, 2019; Cohen et al., 2019a; Lang & Weiler, 2020). As our model, these
networks process geometric feature fields of types ρ and are equivariant under gauge transformations,
however, due to the flat geometry, the parallel transporters become trivial. Regular nonlinearities are
on flat spaces used in group convolutional networks (Cohen & Welling, 2016; Weiler et al., 2018b;
Hoogeboom et al., 2018; Bekkers et al., 2018; Winkels & Cohen, 2018; Worrall & Brostow, 2018;
Worrall & Welling, 2019; Sosnovik et al., 2020).

6 EXPERIMENTS

6.1 EMBEDDED MNIST

We first investigate how Gauge Equivariant Mesh CNNs perform on, and generalize between, different
mesh geometries. For this purpose we conduct simple MNIST digit classification experiments on
embedded rectangular meshes of 28×28 vertices. As a baseline geometry we consider a flat mesh as
visualized in figure 5(a). A second type of geometry is defined as different isometric embeddings of
the flat mesh, see figure 5(b). Note that this implies that the intrinsic geometry of these isometrically
embedded meshes is indistinguishable from that of the flat mesh. To generate geometries which are
intrinsically curved, we add random normal displacements to the flat mesh. We control the amount of
curvature by smoothing the resulting displacement fields with Gaussian kernels of different widths
σ and define the roughness of the resulting mesh as 3 − σ. Figures 5(c)-5(h) show the results for
roughnesses of 0.5, 1, 1.5, 2, 2.25 and 2.5. For each of the considered settings we generate 32
different train and 32 test geometries.

To test the performance on, and generalization between, different geometries, we train equivalent
GEM-CNN models on a flat mesh and meshes with a roughness of 1, 1.5, 2, 2.25 and 2.5. Each
model is tested individually on each of the considered test geometries, which are the flat mesh,
isometric embeddings and curved embeddings with a roughness of 0.5, 1, 1.25, 1.5, 1.75, 2, 2.25
and 2.5. Figure 3 shows the test errors of the GEM-CNNs on the different train geometries (different
curves) for all test geometries (shown on the x-axis). Since our model is purely defined in terms
of the intrinsic geometry of a mesh, it is expected to be insensitive to isometric changes in the
embeddings. This is empirically confirmed by the fact that the test performances on flat and isometric
embeddings are exactly equal. As expected, the test error increases for most models with the surface
roughness. Models trained on more rough surfaces are hereby more robust to deformations. The
models generalize well from a rough training to smooth test geometry up to a training roughness of
1.5. Beyond that point, the test performances on smooth meshes degrades up to the point of random
guessing at a training roughness of 2.5.

As a baseline, we build an isotropic graph CNN with the same network topology and number of
parameters (≈ 163k). This model is insensitive to the mesh geometry and therefore performs exactly
equal on all surfaces. While this enhances its robustness on very rough meshes, its test error of
19.80 ± 3.43% is an extremely bad result on MNIST. In contrast, the use of anisotropic filters of
GEM-CNN allows it to reach a test error of only 0.60± 0.05% on the flat geometry. It is therefore
competitive with conventional CNNs on pixel grids, which apply anisotropic kernels as well. More
details on the datasets, models and further experimental setup are given in appendix E.1.

8

Published as a conference paper at ICLR 2021

Figure 3: Test errors for MNIST digit classifica-
tion on embedded meshes. Different lines denote
train geometries, x-axis shows test geometries. Re-
gions are standard errors of the means over 6 runs.

Model Features Accuracy (%)

ACNN (Boscaini et al., 2016) SHOT 62.4
Geodesic CNN (Masci et al., 2015) SHOT 65.4
MoNet (Monti et al., 2016) SHOT 73.8
FeaStNet (Verma et al., 2018) XYZ 98.7
ZerNet (Sun et al., 2018) XYZ 96.9
SpiralNet++ (Gong et al., 2019) XYZ 99.8

Graph CNN XYZ 1.40±0.5
Graph CNN SHOT 23.80±8
Non-equiv. CNN (SHOT frames) XYZ 73.00±4.0
Non-equiv. CNN (SHOT frames) SHOT 75.11±2.4

GEM-CNN XYZ 99.73±0.04
GEM-CNN (broken symmetry) XYZ 99.89±0.02

Table 2: Results of FAUST shape correspondence.
Statistics are means and standard errors of the mean of
over three runs. All cited results are from their respective
papers.

6.2 SHAPE CORRESPONDENCE

As a second experiment, we perform non-rigid shape correspondence on the FAUST dataset (Bogo
et al., 2014), following Masci et al. (2015) 3 . The data consists of 100 meshes of human bodies in
various positions, split into 80 train and 20 test meshes. The vertices are registered, such that vertices
on the same position on the body, such as the tip of the left thumb, have the same identifier on all
meshes. All meshes have 6890 vertices, making this a 6890-class segmentation problem.

The architecture transforms the vertices’ XY Z coordinates (of type 3ρ0), via 6 convolutional layers
to features 64ρ0, with intermediate features 16(ρ0 ⊕ ρ1 ⊕ ρ2), with residual connections and the
RegularNonlinearity with N = 5 samples. Afterwards, we use two 1×1 convolutions with ReLU to
map first to 256 and then 6980 channels, after which a softmax predicts the registration probabilities.
The 1×1 convolutions use a dropout of 50% and 1E-4 weight decay. The network is trained with a
cross entropy loss with an initial learning rate of 0.01, which is halved when training loss reaches a
plateau.

As all meshes in the FAUST dataset share the same topology, breaking the gauge equivariance in
higher layers can actually be beneficial. As shown in (Weiler & Cesa, 2019), symmetry can be broken
by treating non-invariant features as invariant features as input to the final 1×1 convolution.

As baselines, we compare to various models, some of which use more complicated pipelines, such as
(1) the computation of geodesics over the mesh, which requires solving partial differential equations,
(2) pooling, which requires finding a uniform sub-selection of vertices, (3) the pre-computation of
SHOT features which locally describe the geometry (Tombari et al., 2010), or (4) post-processing
refinement of the predictions. The GEM-CNN requires none of these additional steps. In addition,
we compare to SpiralNet++ (Gong et al., 2019), which requires all inputs to be similarly meshed.
Finally, we compare to an isotropic version of the GEM-CNN, which reduces to a conventional graph
CNN, as well as a non-gauge-equivariant CNN based on SHOT frames. The results in table 2 show
that the GEM-CNN outperforms prior works and a non-gauge-equivariant CNN, that isotropic graph
CNNs are unable to solve the task and that for this data set breaking gauge symmetry in the final
layers of the network is beneficial. More experimental details are given in appendix E.2.

7 CONCLUSIONS

Convolutions on meshes are commonly performed as a convolution on their underlying graph, by
forgetting geometry, such as orientation of neighbouring vertices. In this paper we propose Gauge
Equivariant Mesh CNNs, which endow Graph Convolutional Networks on meshes with anisotropic
kernels and parallel transport. Hence, they are sensitive to the mesh geometry, and result in equivalent
outputs regardless of the arbitrary choice of kernel orientation.

We demonstrate that the inference of GEM-CNNs is invariant under isometric deformations of
meshes and generalizes well over a range of non-isometric deformations. On the FAUST shape
correspondence task, we show that Gauge equivariance, combined with symmetry breaking in the
final layer, leads to state of the art performance.

3These experiments were executed on QUVA machines.

9

Published as a conference paper at ICLR 2021

REFERENCES

Bekkers, E. J., Lafarge, M. W., Veta, M., Eppenhof, K. A., Pluim, J. P., and Duits, R. Roto-translation
covariant convolutional networks for medical image analysis. In International Conference on
Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2018.

Bogo, F., Romero, J., Loper, M., and Black, M. J. Faust: Dataset and evaluation for 3d mesh
registration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3794–3801, 2014.

Boscaini, D., Masci, J., Rodolà, E., and Bronstein, M. M. Learning shape correspondence with
anisotropic convolutional neural networks. In NIPS, 2016.

Bouritsas, G., Bokhnyak, S., Ploumpis, S., Bronstein, M., and Zafeiriou, S. Neural 3d morphable
models: Spiral convolutional networks for 3d shape representation learning and generation. In
Proceedings of the IEEE International Conference on Computer Vision, pp. 7213–7222, 2019.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. Geometric deep learning:
Going beyond Euclidean data. IEEE Signal Processing Magazine, 2017.

Cohen, T. and Welling, M. Group equivariant convolutional networks. In ICML, 2016.

Cohen, T. S. and Welling, M. Steerable CNNs. In ICLR, 2017.

Cohen, T. S., Geiger, M., and Weiler, M. A general theory of equivariant CNNs on homogeneous
spaces. In Conference on Neural Information Processing Systems (NeurIPS), 2019a.

Cohen, T. S., Weiler, M., Kicanaoglu, B., and Welling, M. Gauge equivariant convolutional networks
and the Icosahedral CNN. 2019b.

Crane, K., Desbrun, M., and Schröder, P. Trivial connections on discrete surfaces. Computer Graphics
Forum (SGP), 29(5):1525–1533, 2010.

Crane, K., de Goes, F., Desbrun, M., and Schröder, P. Digital geometry processing with discrete
exterior calculus. In ACM SIGGRAPH 2013 courses, SIGGRAPH ’13, New York, NY, USA, 2013.
ACM.

Cucurull, G., Wagstyl, K., Casanova, A., Veličković, P., Jakobsen, E., Drozdzal, M., Romero, A.,
Evans, A., and Bengio, Y. Convolutional neural networks for mesh-based parcellation of the
cerebral cortex. 2018.

Defferrard, M., Bresson, X., and Vandergheynst, P. Convolutional neural networks on graphs with fast
localized spectral filtering. In Advances in neural information processing systems, pp. 3844–3852,
2016.

Gallier, J. and Quaintance, J. Differential Geometry and Lie Groups: A Computational Perspective,
volume 12. Springer Nature, 2020.

Gong, S., Chen, L., Bronstein, M., and Zafeiriou, S. Spiralnet++: A fast and highly efficient mesh
convolution operator. In Proceedings of the IEEE International Conference on Computer Vision
Workshops, pp. 0–0, 2019.

Hanocka, R., Fish, N., Wang, Z., Giryes, R., Fleishman, S., and Cohen-Or, D. Alignet: Partial-shape
agnostic alignment via unsupervised learning. ACM Transactions on Graphics (TOG), 38(1):1–14,
2018.

Hoogeboom, E., Peters, J. W. T., Cohen, T. S., and Welling, M. HexaConv. In International
Conference on Learning Representations (ICLR), 2018.

Kipf, T. N. and Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In
ICLR, 2017.

Kondor, R., Lin, Z., and Trivedi, S. Clebsch-gordan nets: a fully fourier space spherical convolutional
neural network. In NIPS, 2018.

10

Published as a conference paper at ICLR 2021

Kostrikov, I., Jiang, Z., Panozzo, D., Zorin, D., and Bruna, J. Surface networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2540–2548, 2018.

Lai, Y.-K., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S.-M., and Gu, X. Metric-driven rosy
field design and remeshing. IEEE Transactions on Visualization and Computer Graphics, 16(1):
95–108, 2009.

Lang, L. and Weiler, M. A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels.
arXiv preprint arXiv:2010.10952, 2020.

Maron, H., Galun, M., Aigerman, N., Trope, M., Dym, N., Yumer, E., Kim, V. G., and Lipman, Y.
Convolutional neural networks on surfaces via seamless toric covers. ACM Trans. Graph., 36(4):
71–1, 2017.

Masci, J., Boscaini, D., Bronstein, M. M., and Vandergheynst, P. Geodesic convolutional neural
networks on riemannian manifolds. ICCVW, 2015.

Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., and Bronstein, M. M. Geometric deep
learning on graphs and manifolds using mixture model cnns. CoRR, abs/1611.08402, 2016. URL
http://arxiv.org/abs/1611.08402.

Perraudin, N., Defferrard, M., Kacprzak, T., and Sgier, R. Deepsphere: Efficient spherical convo-
lutional neural network with healpix sampling for cosmological applications. Astronomy and
Computing, 27:130–146, 2019.

Poulenard, A. and Ovsjanikov, M. Multi-directional geodesic neural networks via equivariant
convolution. ACM Transactions on Graphics, 2018.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 652–660, 2017a.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. Pointnet++: Deep hierarchical feature learning on point
sets in a metric space. In Advances in neural information processing systems, pp. 5099–5108,
2017b.

Riegler, G., Osman Ulusoy, A., and Geiger, A. Octnet: Learning deep 3d representations at high
resolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3577–3586, 2017.

Schonsheck, S. C., Dong, B., and Lai, R. Parallel Transport Convolution: A New Tool for Convolu-
tional Neural Networks on Manifolds. arXiv:1805.07857 [cs, math, stat], May 2018.

Serre, J.-P. Linear representations of finite groups. 1977.

Sosnovik, I., Szmaja, M., and Smeulders, A. Scale-equivariant steerable networks. In International
Conference on Learning Representations (ICLR), 2020.

Sun, Z., Rooke, E., Charton, J., He, Y., Lu, J., and Baek, S. Zernet: Convolutional neural networks
on arbitrary surfaces via zernike local tangent space estimation. arXiv preprint arXiv:1812.01082,
2018.

Tchapmi, L., Choy, C., Armeni, I., Gwak, J., and Savarese, S. Segcloud: Semantic segmentation of
3d point clouds. In 2017 international conference on 3D vision (3DV), pp. 537–547. IEEE, 2017.

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L., Kohlhoff, K., and Riley, P. Tensor Field
Networks: Rotation- and Translation-Equivariant Neural Networks for 3D Point Clouds. 2018.

Tombari, F., Salti, S., and Di Stefano, L. Unique signatures of histograms for local surface description.
In European conference on computer vision, pp. 356–369. Springer, 2010.

Tu, L. W. Differential geometry: connections, curvature, and characteristic classes, volume 275.
Springer, 2017.

11

http://arxiv.org/abs/1611.08402

Published as a conference paper at ICLR 2021

Verma, N., Boyer, E., and Verbeek, J. Feastnet: Feature-steered graph convolutions for 3d shape
analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
2598–2606, 2018.

Weiler, M. and Cesa, G. General E(2)-equivariant steerable CNNs. In Conference on Neural
Information Processing Systems (NeurIPS), 2019. URL https://arxiv.org/abs/1911.
08251.

Weiler, M., Geiger, M., Welling, M., Boomsma, W., and Cohen, T. 3D Steerable CNNs: Learning
Rotationally Equivariant Features in Volumetric Data. In NeurIPS, 2018a.

Weiler, M., Hamprecht, F. A., and Storath, M. Learning steerable filters for rotation equivariant
CNNs. In Conference on Computer Vision and Pattern Recognition (CVPR), 2018b.

Wiersma, R., Eisemann, E., and Hildebrandt, K. CNNs on Surfaces using Rotation-Equivariant
Features. Transactions on Graphics, 39(4), July 2020. doi: 10.1145/3386569.3392437.

Winkels, M. and Cohen, T. S. 3D G-CNNs for pulmonary nodule detection. In Conference on
Medical Imaging with Deep Learning (MIDL), 2018.

Worrall, D. and Welling, M. Deep scale-spaces: Equivariance over scale. In Conference on Neural
Information Processing Systems (NeurIPS), 2019.

Worrall, D. E. and Brostow, G. J. Cubenet: Equivariance to 3D rotation and translation. In European
Conference on Computer Vision (ECCV), 2018.

Worrall, D. E., Garbin, S. J., Turmukhambetov, D., and Brostow, G. J. Harmonic Networks: Deep
Translation and Rotation Equivariance. In CVPR, 2017.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., and Xiao, J. 3d shapenets: A deep
representation for volumetric shapes. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1912–1920, 2015.

Zhao, F., Xia, S., Wu, Z., Duan, D., Wang, L., Lin, W., Gilmore, J. H., Shen, D., and Li, G. Spherical
u-net on cortical surfaces: Methods and applications. CoRR, abs/1904.00906, 2019a. URL
http://arxiv.org/abs/1904.00906.

Zhao, Y., Birdal, T., Lenssen, J. E., Menegatti, E., Guibas, L., and Tombari, F. Quaternion equivariant
capsule networks for 3d point clouds. arXiv preprint arXiv:1912.12098, 2019b.

12

https://arxiv.org/abs/1911.08251
https://arxiv.org/abs/1911.08251
http://arxiv.org/abs/1904.00906

Published as a conference paper at ICLR 2021

A GEOMETRY & PARALLEL TRANSPORT

A gauge, or choice of reference neighbor at each vertex, fully determines the neighbor orientations
θpq and the parallel transporters gq→p along edges. The following two subsections give details on
how to compute these quantities.

A.1 LOCAL NEIGHBORHOOD GEOMETRY

Neighbours q of vertex p can be mapped uniquely to the tangent plane at p using a map called the
Riemannnian logarithmic map, visualized in figure 1. A choice of reference neighbor then determines
a reference frame in the tangent space which assigns polar coordinates to all other neighbors. The
neighbour orientations θpq are the angular components of each neighbor in this polar coordinate
system.

We define the tangent space TpM at vertex p as that two dimensional subspace of R3, which is
determined by a normal vector n given by the area weighted average of the normal vectors of the
adjacent mesh faces. While the tangent spaces are two dimensional, we implement them as being
embedded in the ambient space R3 and therefore represent their elements as three dimensional
vectors. The reference frame corresponding to the chosen gauge, defined below, allows to identify
these 3-vectors by their coefficient 2-vectors.

Each neighbor q is represented in the tangent space by the vector logp(q) ∈ TpM which is computed
via the discrete analog of the Riemannian logarithm map. We define this map logp : Np → TpM for
neighbouring nodes as the projection of the edge vector q − p on the tangent plane, followed by a
rescaling such that the norm | logp(q)| = |q − p| is preserved. Writing the projection operator on the
tangent plane as (1− nn>), the logarithmic map is thus given by:

logp(q) := |q − p| (1− nn>)(q − p)
|(1− nn>)(q − p)|

(6)

Geometrically, this map can be seen as “folding” each edge up to the tangent plane, and therefore
encodes the orientation of edges and preserves their lengths.

The normalized reference edge vector logp(q0) uniquely determines a right handed, orthonormal
reference frame (ep,1, ep,2) of TpM by setting ep,1 := logp(q0)/| logp(q0)| and ep,2 := n × ep,1.
The angle θpq is then defined as the angle of logp(q) in polar coordinates corresponding to this
reference frame. Numerically, it can be computed by

θpq := atan2
(
e>p,2 logp(q), e

>
p,1 logp(q))

)
.

Given the reference frame (ep,1, ep,2), a 2-tuple of coefficients (v1, v2) ∈ R2 specifies an (embedded)
tangent vector v1ep,1 + v2ep,2 ∈ TpM ⊂ R3. This assignment is formally given by the gauge map
Ep : R2 → TpM ⊂ R3 which is a vector space isomorphism. In our case, it can be identified with
the matrix

Ep =

[
ep,1 ep,2

]
∈ R3×2. (7)

A.2 PARALLEL EDGE TRANSPORTERS

On curved meshes, feature vectors fq and fp at different locations q and p are expressed in different
gauges, which makes it geometrically invalid to accumulate their information directly. Instead, when
computing a new feature at p, the neighboring feature vectors at q ∈ Np first have to be parallel
transported into the feature space at p before they can be processed. The parallel transport along the
edges of a mesh is determined by the (discrete) Levi-Civita connection corresponding to the metric
induced by the ambient space R3. This connection is given by parallel transporters gq→p ∈ [0, 2π) on
the mesh edges which map tangent vectors vq ∈ TqM at q to tangent vectors R(gq→p)vq ∈ TpM at
p. Feature vectors fq of type ρ are similarly transported to ρ(gq→p)fq by applying the corresponding
feature vector transporter ρ(gq→p).

In order to build some intuition, it is illustrative to first consider transporters on a planar mesh. In this
case the parallel transport can be thought of as moving a vector along an edge without rotating it. The

13

Published as a conference paper at ICLR 2021

pick gauge pick gauge

(a) Parallel transport on a flat mesh. (b) Parallel transport along an edge
of a general mesh.

Figure 4: Parallel transport of tangent vectors v ∈ TqM at q to R(gq→p)v ∈ TpM at p on meshes. On a flat
mesh, visualized in figure 4(a), parallel transport moves a vector such that it stays parallel in the usual sense on
flat spaces. The parallel transporter gq→p = ϕp − ϕq corrects the transported vector coefficients for differing
gauges at q and p. When transporting along the edge of a general mesh, the tangent spaces at q and p might not
be aligned, see figure 4(b). Before correcting for the relative frame orientation via gq→p, the tangent space TqM ,
and thus v ∈ TqM , is rotated by an angle α around nq×np such that its normal nq coincides with that of np.

resulting abstract vector is then parallel to the original vector in the usual sense on flat spaces, see
figure 4(a). However, if the (transported) source frame at q disagrees with the target frame at p, the
coefficients of the transported vector have to be transformed to the target coordinates. This coordinate
transformation from polar angles ϕq of v to ϕp of R(gq→p)v defines the transporter gq→p = ϕp−ϕq .

On general meshes one additionally has to account for the fact that the tangent spaces TqM ⊂ R3 and
TpM ⊂ R3 are usually not parallel in the ambient space R3. The parallel transport therefore includes
the additional step of first aligning the tangent space at q to be parallel to that at p, before translating
a vector between them, see figure 4(b). In particular, given the normals nq and np of the source and
target tangent spaces TqM and TpM , the source space is being aligned by rotating it via Rα ∈ SO(3)
by an angle α = arccos(n>q np) around the axis nq×np in the ambient space. Denote the rotated
source frame by (Rαeq,1, Rαeq,2) and the target frame by (ep,1, ep,2). The angle to account for the
parallel transport between the two frames, defining the discrete Levi-Civita connection on mesh
edges, is then found by computing

gq→p = atan2
(
(Rαeq,2)>ep,1, (Rαeq,1)>ep,1

)
. (8)

In practice we precompute these connections before training a model.

Under gauge transformations by angles gp at p and gq at q the parallel transporters transform according
to

gq→p 7→ gp + gq→p − gq . (9)

Intuitively, this transformation states that a transporter in a transformed gauge is given by a gauge
transformation back to the original gauge via −gq followed by the original transport by gq→p and a
transformation back to the new gauge via gp.

For more details on discrete connections and transporters, extending to arbitrary paths e.g. over faces,
we refer to (Lai et al., 2009; Crane et al., 2010; 2013).

B DERIVING THE KERNEL CONSTRAINT

Given an input type ρin, corresponding to vector space Vin of dimension Cin and output type ρout,
corresponding to vector space Vout of dimension Cout, we have kernels Kself ∈ RCout×Cin and Kneigh :
[0, 2π) → RCout×Cin . Following Cohen et al. (2019b), we can derive a constraint on these kernels
such that the convolution is invariant.

First, note that for vertex p ∈M and neighbour q ∈ Np, the coefficients of a feature vector fp at p of
type ρ transforms under gauge transformation fp 7→ ρ(−g)fp. The angle θpq gauge transforms to
θpq − g.

14

Published as a conference paper at ICLR 2021

Next, note that f̂q := ρin(gq→p)fq is the input feature at q parallel transported to p. Hence, it
transforms as a vector at p. The output of the convolution f ′p is also a feature at p, transforming as
ρout(−g)f ′p.

The convolution then simply becomes:

f ′p = Kselffp +
∑
q

Kneigh(θpq)f̂q

Gauge transforming the left and right hand side, and substituting the equation in the left hand side,
we obtain:

ρout(−g)f ′p =

ρout(−g)

(
Kselffp +

∑
q

Kneigh(θpq)f̂q

)
=

Kselfρin(−g)fp +
∑
q

Kneigh(θpq − g)ρin(−g)f̂q

Which is true for any features, if ∀g ∈ [0, 2π), θ ∈ [0, 2π):

Kneigh(θ − g) = ρout(−g) Kneigh(θ) ρin(g), (10)
Kself = ρout(−g) Kself ρin(g). (11)

where we used the orthogonality of the representations ρ(−g) = ρ(g)−1.

C SOLVING THE KERNEL CONSTRAINT

As also derived in (Weiler & Cesa, 2019; Lang & Weiler, 2020), we find all angle-parametrized linear
maps between Cin dimensional feature vector of type ρin to a Cout dimensional feature vector of type
ρout, that is, K : S1 → RCout×Cin , such that the above equivariance constraint holds. We will solve
for Kneigh(θ) and discuss Kself afterwards.

The irreducible real representations (irreps) of SO(2) are the one dimensional trivial representation
ρ0(g) = 1 of order zero and ∀n ∈ N the two dimensional representations of order n:

ρn : SO(2)→ GL(2,R) : g 7→
(

cosng − sinng
sinng cosng

)
.

Any representation ρ of SO(2) of D dimensions can be written as a direct sum of irreducible
representations

ρ ∼= ρl1 ⊕ ρl2 ⊕ ...
ρ(g) = A(ρl1 ⊕ ρl2 ⊕ ...)(g)A−1.

where li denotes the order of the irrep, A ∈ RD×D is some invertible matrix and the direct sum ⊕ is
the block diagonal concatenations of the one or two dimensional irreps. Hence, if we solve the kernel
constraint for all irrep pairs for the in and out representations, the solution for arbitrary representations,
can be constructed. We let the input representation be irrep ρn and the output representation be irrep
ρm. Note that K(g−1θ) = (ρreg(g)[K])(θ) for the infinite dimensional regular representation of
SO(2), which by the Peter-Weyl theorem is equal to the infinite direct sum ρ0 ⊕ ρ1 ⊕
Using the fact that all SO(2) irreps are orthogonal, and using that we can solve for θ = 0 and from
the kernel constraints we can obtain K(θ), we see that Eq. 10 is equivalent to

ρ̂(g)K := (ρreg ⊗ ρn ⊗ ρm)(g)K = K

where ⊗ denotes the tensor product, we write K := K(θ) and filled in ρout = ρm, ρin = ρn. This
constraint implies that the space of equivariant kernels is exactly the trivial subrepresentation of

15

Published as a conference paper at ICLR 2021

ρ̂. The representation ρ̂ is infinite dimensional, though, and the subspace can not be immediately
computed.

For SO(2), we have that for n ≥ 0, ρn ⊗ ρ0 = ρn, and for n,m > 0, ρn ⊗ ρm ∼= ρn+m ⊕ ρ|n−m|.
Hence, the trivial subrepresentation of ρ̂ is a subrepresentation of the finite representation ρ̃ :=
(ρn+m ⊕ ρ|n−m|)⊗ ρn ⊗ ρm, itself a subrepresentation of ρ̂.

As SO(2) is a connected Lie group, any g ∈ SO(2) can be written as g = exp tX for t ∈ R,
X ∈ so(2), the Lie algebra of SO(2), and exp : so(2)→ SO(2) the Lie exponential map. We can
now find the trivial subrepresentation of ρ̃ looking infinitesimally, finding

ρ̃(exp tX)K = K

⇐⇒ dρ̃(X)K :=
∂

∂t
ρ̃(exp tX)|t=0K = 0

where we denote dρ̃ the Lie algebra representation corresponding to Lie group representation ρ̃.
SO(2) is one dimensional, so for any single X ∈ so(2), K is an equivariant map from ρm to ρn, if it
is in the null space of matrix dρ̃(X). The null space can be easily found using a computer algebra
system or numerically, leading to the results in table 1.

D EQUIVARIANCE

The GEM-CNN is by construction equivariant to gauge transformations, but additionally satisfies two
important properties. Firstly, it only depends on the intrinsic shape of the 2D mesh, not how the mesh
vertices are embedded in R3, since the geometric quantities like angles θpq and parallel transporters
depend solely on the intrinsic properties of the mesh. This means that a simultaneous rotation or
translation of all vertex coordinates, with the input signal moving along with the vertices, will leave
the convolution output at the vertices unaffected.

The second property is that if a mesh has an orientation-preserving mesh isometry, meaning that we
can map between the vertices preserving the mesh structure, orientations and all distances between
vertices, the GEM-CNN is equivariant with respect to moving the signal along such a transformation.
An (infinite) 2D grid graph is an example of a mesh with orientation-preserving isometries, which are
the translations and rotations by 90 degrees. Thus a GEM-CNN applied to such a grid has the same
equivariance properties a G-CNN (Cohen & Welling, 2016) applied to the grid.

D.1 PROOF OF MESH ISOMETRY EQUIVARIANCE

Throughout this section, we denote p′ = φ(p), q′ = φ(q). An orientation-preserving mesh isometry
is a bijection of mesh vertices φ : V → V , such that:

• Mesh faces are one-to-one mapped to mesh faces. As an implication, edges are one-to-one
mapped to edges and neighbourhoods to neighbourhoods.
• For each point p, the differential dφp : TpM → Tp′M is orthogonal and orientation

preserving, meaning that for two vectors v1, v2 ∈ TpM , the tuple (v1, v2) forms a right-
handed basis of TpM , then (dφp(v1), dφp(v2)) forms a right-handed basis of Tp′M .

Lemma D.1. Given a orientation-preserving isometry φ on mesh M , with on each vertex a chosen
reference neighbour qp0 , defining a frame on the tangent plane, so that the log-map logp q has polar

angle θpq in that frame. For each vertex p, let gp = θp
′

φ(qp0)
. Then for each neighbour q ∈ Np, we have

θp
′

q′ = θpq + gp. Furthermore, we have for parallel transporters that gq′→p′ = gq→p − gp + gq .

Proof. For any v ∈ TpM , we have that φ(expp(v)) = expp′(dφp(v)) (Tu, 2017, Theorem 15.2).
Thus φ(expp(logp q)) = q′ = expp′(dφp(logp q)). Taking the log-map at p′ on the second and third

expression and expressing in polar coordinates in the gauges, we get (rp
′

q′ , θ
p′

q′) = dφp(r
p
q , θ

p
q). As φ is

an orientation-preserving isometry, dφp is a special orthogonal linear map R2 → R2 when expressed
in the gauges. Hence dφp(r, θ) = (r, θ + zp) for some angle zp. Filling in θp

qp0
= 0, we find zp = gp,

16

Published as a conference paper at ICLR 2021

proving the first statement. The second statement follows directly from the fact that parallel transport
q → p, then push-forward along φ to p′ yields the same first pushing forward from q to q′ along φ,
then parallel transporting q′ → p′ (Gallier & Quaintance, 2020, Theorem 18.3 (2)).

For any feature f of type ρ, we can define a push-forward along φ as φ∗(f)p′ = ρ(−gp)fp.

Theorem D.1. Given GEM-CNN convolution K ? · from a feature of type ρin to a feature of type ρout,
we have that K ? φ∗(f) = φ∗(K ? f).

Proof.

φ∗(K ? f)p′ = ρout(−gp)
(
Kselffp +

∑
q∈Np

Kneigh(θpq)ρin(gq→p)fq

)
= ρout(−gp)

(
Kselffp +

∑
q′∈Np′

Kneigh(θp′q′ − gp)ρin(gq′→p′ + gp − gq)fq
)

= ρout(−gp)
(
Kselffp +

∑
q′∈Np′

Kneigh(θp′q′ − gp)ρin(gp)ρin(gq′→p′)ρin(−gq)fq
)

= Kselfρin(−gp)fp +
∑

q′∈Np′
Kneigh(θp′q′)ρin(gq′→p′)ρin(−gq)fq

= (K ? φ∗(f))p′

where in the second line we apply lemma D.1 and the fact that φ gives a bijection of neighbourhoods
of p, in the third line we use the functoriality of ρ and in the fourth line we apply the kernel constraints
on Kself and Kneigh.

E ADDITIONAL DETAILS ON THE EXPERIMENTS

E.1 EMBEDDED MNIST

To create the intrinsically curved grids we start off with the flat, rectangular grid, shown in figure 5(a),
which is embedded in the XY -plane. An independent displacement for each vertex in Z-direction is
drawn from a uniform distribution. A subsequent smoothing step of the normal displacements with a
Gaussian kernel of width σ yields geometries with different levels of curvature. Figures 5(c)-5(h)
show the results for standard deviations of 2.5, 2, 1.5, 1, 0.75 and 0.5 pixels, which are denoted by
their roughness 3− σ as 0.5, 1, 1.5, 2, 2.25 and 2.5. In order to facilitate the generalization between
different geometries we normalize the resulting average edge lengths.

The same GEM-CNN is used on all geometries. It consists of seven convolution blocks, each of
which applies a convolution, followed by a RegularNonlinearity with N = 7 orientations, batch
normalization and dropout of 0.1. This depth is chosen since GEM-CNNs propagate information only
between direct neighbors in each layer, such that the field of view after 7 layers is 2×7+1 = 15 pixel.
The input and output types of the network are scalar fields of multiplicity 1 and 64, respectively, which
transform under the trivial representation and ensure a gauge invariant prediction. All intermediate
layers use feature spaces of types Mρ0 ⊕Mρ1 ⊕Mρ2 ⊕Mρ3) with M = 4, 8, 12, 16, 24, 32.
After a spatial max pooling, a final linear layer maps the 64 resulting features to 10 neurons, on
which a softmax function is applied. The model has 163k parameters. A baseline GCN, applying
by isotropic kernels, is defined by replacing the irreps ρi of orders i ≥ 1 with trivial irreps ρ0 and
rescaling the width of the model such that the number of parameters is preserved. All models are
trained for 20 epochs with a weight decay of 1E-5 and an initial learning rate of 1E-2. The learning
rate is automatically decayed by a factor of 2 when the validation loss did not improve for 3 epochs.

The experiments were run on a single TitanX GPU.

E.2 SHAPE CORRESPONDENCE EXPERIMENT

All experiments were ran on single RTX 2080TI GPUs, requiring 3 seconds / epoch.

17

Published as a conference paper at ICLR 2021

(a) Flat embedding (b) Isometric embedding (c) Curved, roughness =
0.5

(d) Curved, roughness = 1

(e) Curved, roughness =
1.5

(f) Curved, roughness = 2 (g) Curved, roughness =
2.25

(h) Curved, roughness =
2.5

Figure 5: Examples of different grid geometries on which the MNIST dataset is evaluated. All grids have 28×28
vertices but are embedded differently in the ambient space. Figure 5(a) shows a flat embedding, corresponding
to the usual pixel grid. The grid in Figure 5(b) is isometric to the flat embedding, its internal geometry is
indistinguishable from that of the flat embedding. Figures 5(c)-5(h) show curved geometries which are not
isometric to the flat grid. They are produced by a random displacement of each vertex in its normal direction,
followed by a smoothing of displacements.

The non-gauge-equivariant CNN uses as gauges the SHOT local reference frames (Tombari et al.,
2010). For one input and output channel, it has features fp ∈ R convolution and weights w ∈ R2B+2,
for B ∈ N. The convolution is:

(K ? f)p = w0fp +
∑
q∈Np

(
w1 +

B∑
n=1

(w2n cos(nθpq) + w2n+1 sin(nθpq)

)
fq. (12)

This convolution kernel is an unconstranied band-limited spherical function. This is then done for
Cin input channels and Cout output channels, giving (2B + 2)CinCout parameters per layer. In our
experiments, we use B = 2 and 7 layers, with ReLU non-linearities and batch-norm, just as for the
gauge equivariant convolution. After hyperparameter search in {16, 32, 64, 128, 256}, we found 128
channels to perform best.

F ADDITIONAL EXPERIMENTS

F.1 REGULARNONLINEARITY COMPUTATIONAL COST

Number of samples Time / epoch (s) Memory (GB)

none 21.2 1.22
1 21.9 1.22
5 21.6 1.23
10 21.5 1.24
20 22.0 1.27
50 21.7 1.35

Table 3: Run-time of one epoch training and validation and max memory usage of FAUST model
without RegularNonLinearity of with varying number of samples used in the non-linearity. The
hyperparameters are modified to have batch size 1.

18

Published as a conference paper at ICLR 2021

In table 3, we show the computational cost of the RegularNonLinearity, computed by training and
computing validation errors for 10 epochs. The run-time is not significantly affected, but memory
usage is.

F.2 EQUIVARIANCE ERRORS

In this experiment, we evaluate empirically equivariance to three kinds of transformations: gauge
transformations, transformations of the vertex coordinates and transformations under isometries
of the mesh, as introduced above in appenndix D. We do this on two data sets: the icosahedron,
a platonic solid of 12 vertices, referred to in the plots as ’Ico’; and the deformed icosahedron, in
which the vertices have been moved away from the origin by a factor of sampled from N (1, 0.01),
referred to in the plots as ’Def. Ico’. We evaluate this on the GEM-CNN (7 layers, 101 regular
samples, unless otherwise noted in the plots) and the Non-Equivariance CNN based on SHOT frames
introduced above in Eq. 12 (7 layers unless otherwise noted in the plots). Both models have 16
channels input and 16 channels output. The equivariance model has scalar features as input and
output and intermediate activations with band limit 2 with multiplicity 16. The non-equivariant model
has hidden activations of 16 dimensions. If not for the finite samples of the RegularNonLinearity, the
equivariant model should be exactly gauge invariant and invariant to isometries. Both models use
batchnorm, in order to evaluate deeper models.

F.2.1 GAUGE EQUIVARIANCE

2 3 4 5 6 7 8 9 10
Number of layers

10 4

10 3

10 2

10 1

100

Eq
ui

va
ria

nc
e

Er
ro

r

Gauge Transformation Equivariance

Ico; Equivariant
Def. Ico; Equivariant
Ico; Non-Equivariant
Def. Ico; Non-Equivariant

0 200 400 600 800 1000
Number of Regular NonLinearity samples

10 5

10 4

10 3

10 2

10 1

Eq
ui

va
ria

nc
e

Er
ro

r

Gauge Transformation Equivariance
Ico; Equivariant
Def. Ico; Equivariant

Figure 6: Equivariance error to gauge transformation.

We evaluate gauge equivariance by randomly initialising a model, randomly sampling input features.
We also sample 16 random gauge transformations at each point. We compare the outputs of the model
based on the different gauges. As the input and output features of the equivariant model are scalars,
the outputs should coincide. This process is repeated 10 times. For the non-equivariant model, we
compute frames based on SHOT and then randomly rotate these.

The equivariance error is quantified by as:√
EΦ,fEp,cVarg(Φg(f)p,c)

VarΦ,f,p,c(Φg0(f)p,c)
(13)

where Φg(f)c denotes the model Φ with gauge transformed by g applied to input f then taken the c-th
channel, EΦ,f denotes the expectation over model initialisations and random inputs, for which we
take 10 samples, Ep,c denotes averaging over the 12 vertices and 16 output channels, Varg denotes the
variance over the different gauge transformations, VarΦ,f,c takes the variance over the models, inputs
and channels, and g0 denotes one of the sampled gauge transformations. This quantity indicates how
much the gauge transformation affects the output, normalized by how much the model initialisations
and initial parameters affect the output.

19

Published as a conference paper at ICLR 2021

Results are shown in Figure 6. As expected, the non-equivariant model is not equivariant to gauge
transformations. The equivariant model approaches gauge equivariance as the number of samples of
the Regular NonLinearity increases. As expected, the error to gauge equivariance accumulate as the
number of layers increases. The icosahedron and deformed icosahedron behave the same.

F.2.2 AMBIENT EQUIVARIANCE

2 3 4 5 6 7 8 9 10
Number of layers

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Eq
ui

va
ria

nc
e

Er
ro

r

Ambient Transformation Equivariance

Ico; Equivariant
Def. Ico; Equivariant
Ico; Non-Equivariant
Def. Ico; Non-Equivariant

0 200 400 600 800 1000
Number of Regular NonLinearity samples

10 7

Eq
ui

va
ria

nc
e

Er
ro

r

Ambient Transformation Equivariance

Ico; Equivariant
Def. Ico; Equivariant

Figure 7: Equivariance error to ambient transformations of the vertex coordinates.

In this experiment, we measure whether the output is invariant to when all vertex coordinates are
jointly transformed under rotations and translations. We perform the experiment as above, but sample
as transformations g 300 translations and rotations of the ambient space R3. We evaluate again using
Eq 13, where g now denotes a ambient transformation.

Results are shown in Figure 7. We see that the equivariant GEM-CNN is invariant to these ambient
transformations. Somewhat unexpectedly, we see that the non-equivariant model based on SHOT
frames is not invariant. This is because of an significant failure mode of SHOT frames in particular
and heuristically chosen gauges with a non-gauge-equivariant methods in general. On some meshes,
the heuristic is unable to select a canonical frame, because the mesh is locally symmetric under
(discrete subgroups of) planar rotations. This is the case for the icosahedron. Hence, SHOT can not
disambiguate the X from the Y axis. The reason this happens in the SHOT local reference frame
selection (Tombari et al., 2010) is the first two singular values of the M matrix are equal, making
a choice between the first and second singular vectors ambiguous. This ambiguity breaks ambient
invariance. For the non-symmetric deformed icosahedron, this problem for the non-equivariant
method disappears.

F.2.3 ISOMETRY EQUIVARIANCE

The icosahedron has 60 orientation-preserving isometries. We evaluate equivariance using:√
EΦ,fEp,c(Φ(g(f)p,c − Φ(f)g(p),c)2

VarΦ,f,p,c(Φ(f)p,c)

where g : M →M is an orientation-preserving isometry, sampled uniformly from all 60 and g(f) is
the transformation of a scalar input feature f : M → RCin by pre-composing with g−1.

As expected, the non-equivariant model is not equivariant to isometries. The GEM-CNN is not
equivariant to the icosahedral isometries on the deformed icosahedron, as the deformation removes
the symmetry. As the number of Regular NonLinearity samples increases, the GEM-CNN becomes
more equivariant. Interestingly, the GEM-CNN is equivariant whenever the number of samples is
a multiple of 5. This is because the stabilizer subgroup of the icosahedron at the vertices is the
cyclic group of order 5. Whenever the RegularNonLinearity has a multiple of 5 samples, it is exactly
equivariant to these transformations.

20

Published as a conference paper at ICLR 2021

2 3 4 5 6 7 8 9 10
Number of layers

10 3

10 2

10 1

100

Eq
ui

va
ria

nc
e

Er
ro

r

Isometry Transformation Equivariance

Ico; Equivariant
Def. Ico; Equivariant
Ico; Non-Equivariant
Def. Ico; Non-Equivariant

0 200 400 600 800 1000
Number of Regular NonLinearity samples

10 4

10 3

10 2

10 1

100

Eq
ui

va
ria

nc
e

Er
ro

r

Isometry Transformation Equivariance
Ico; Equivariant
Def. Ico; Equivariant

Figure 8: Equivariance error to isometry transformation.

G EQUIVARIANCE ERROR BOUNDS ON REGULAR NON-LINEARITY

The regular non-linearity acts on each point on the sphere in the following way. For simplicity, we
assume that the representation is U copies of ρ0 ⊕ ρ1 ⊕ ...⊕ ρM . One such copy can be treated as
the discrete Fourier modes of a circular signal with band limit M . We map these Fourier modes to
N spatial samples with an inverse Discrete Fourier Transform (DFT) matrix. Then apply to those
samples a point-wise non-linearity, like ReLU, and map back to the Fourier modes with a Discrete
Fourier Transform Matrix.

This procedure is exactly equivariant for gauge transformation with angles multiple of 2π/N , but
approximately equivariant for small rotations in between.

In equations, we start with Fourier modes x0, (xα(m), xβ(m))Bm=1 at some point on the sphere and
result in Fourier modes z0, (zα(m), zβ(m))Bm=1. We let t = 0, ..., N − 1 index the spatial samples.

x(t) = x0 +
∑
m

xα(m) cos

(
2π

N
mt

)
+ . . .

∑
m

xβ(m) sin

(
2π

N
mt

)
y(t) = f(x(t))

z0 =
1

N

∑
t

y(t)

zα(m) =
2

N

∑
t

cos

(
2π

N
mt

)
y(t)

zβ(m) =
2

N

∑
t

sin

(
2π

N
mt

)
y(t)

(14)

Note that Nyquist’s sampling theorem requires us to pick N ≥ 2B + 1, as otherwise information is
always lost. The normalization is chosen so that zα(m) = xα(m) if f is the identity.

Now we are interested in the equivariance error between the following two terms, for small rotation
δ ∈ [0, 1). Any larger rotation can be expressed in a rotation by a multiple of 2π/N , which is exactly
equivariant, followed by a smaller rotation. We let zFTα (m) be the resulting Fourier mode if first the
input is gauge-transformed and then the regular non-linearity is applied, and let zTFα (m) be the result

21

Published as a conference paper at ICLR 2021

of first applying the regular non-linearity, followed by the gauge transformation.

zFTα (m) =
2

N

∑
t

cos

(
2π

N
mt

)
y(t+ δ)

=
2

N

∑
t

cm(t)y(t+ δ)

zTFα (m) =
2

N

∑
t

cos

(
2π

N
m(t− δ)

)
y(t)

=
2

N

∑
t

cm(t− δ)y(t)

where we defined for convenience cm(t) = cos(2πmt/N). We define norms ||x||1 = |x0| +∑
m(|xα(m)|+ |xβ(m)|) and ||∂x||1 =

∑
mm(|xα(m)|+ |xβ(m)|).

Theorem G.1. If the input x is band limited by B, the output z is band limited by B′, N samples are
used and the non-linearity has Lipschitz constant Lf , then the error to the gauge equivariance of the
regular non-linearity bounded by:

||zFT − zTF ||1 ≤
4πLf
N

(
(2B′ +

1

2
)||∂x||1 +B′(B′ + 1)||x||1

)
which goes to zero as N →∞.

Proof. First, we note, since the Lipschitz constant of the cosine and sine is 1:

|cm(t− δ)− cm(t)| ≤ 2πmδ

N
≤ 2πm

N

|x(t+ δ)− x(t)| ≤ 2π

N

∑
m

m(|xα(m)|+ |xβ(m)|)

≤ 2π

N
||∂x||1

|y(t+ δ)− y(t)| ≤ Lf
2π

N
||∂x||1

|cm(t)| ≤ 1

|x(t)| ≤ |x0|+
∑
m

(|xα(m)|+ |xβ(m)|)

≤ ||x||1
|y(t)| ≤ Lf ||x||1

Then:

|cm(t)y(t+ δ)− cm(t− δ)y(t)|
=|cm(t) [y(t+ δ)− y(t)]− y(t) [cm(t− δ)− cm(t)] |
≤|cm(t)||y(t+ δ)− y(t)|+ |y(t)||cm(t− δ)− cm(t)|

≤Lf
2π

N
||∂x||1 + Lf ||x||1

2πm

N

=
2πLf
N

(||∂x||1 +m||x||1)

22

Published as a conference paper at ICLR 2021

So that finally:

|zFTα (m)− zTFα (m)|

≤ 2

N

∑
t

|cm(t)y(t+ δ)− cm(t− δ)y(t)|

≤4πLf
N

(||∂x||1 +m||x||1)

The sinus component |zFTβ (m)−zTFβ (m)| has the same bound, while |zFT0 −zTF0 | = |y(t+δ)−y(t)|,
which is derived above. So if z is band-limited by B′:

||zFT − zTF ||1 = |zFT0 − zTF0 |+
B′∑
m=1

|zFTα (m)− zTFα (m)|+ |zFTβ (m)− zTFβ (m)|

≤ 4πLf
N

(2B′ +
1

2
)||∂x||1 +

B′∑
m=1

2m||x||1

=

4πLf
N

(
(2B′ +

1

2
)||∂x||1 +B′(B′ + 1)||x||1

)

Since ||∂x||1 = O(B||x||1), we get ||zFT − zTF ||1 = O(BB
′+B′2

N ||x||1), which obviously vanishes
as N →∞.

23

