
CoMIX: A Multi-agent Reinforcement Learning Training
Architecture for Efficient Decentralized Coordination and
Independent Decision-Making
Supplementary Material

A Detailed Setup

The experiments in this study are conducted using consumer hardware, including a single NVIDIA RTX
3090 (GPU), an AMD Ryzen 9 5900X 12-Core Processor working at 3.70 GHz, and 32 GB of RAM. We
use the PyTorch 2.0 framework. The environments used for the evaluation are partially adapted from the
ma-gym library with the OpenAI Gym interface and PyGame as the rendering library.

B Hyperparameter Tuning

To ensure full reproducibility of the experiments in addition to releasing the code publicly, we describe
here the procedure we employ for tuning the hyperparameters. The environment parameters used in the
evaluation of our approach can be found in Table 1. We select ranges of optimality guided by the task
requirements and explore the different combinations using Bayesian search methods. A comprehensive list
of the tuned hyperparameters can be found in Table 2. For baseline execution, ATOC is configured with
the same hyperparameters as those used in our solution for target network update and storage sizes, as
ATOC is also an off-policy algorithm. With respect to IC3Net, an on-policy algorithm, we use the default
hyperparameters without further tuning. The architectures of the networks of individual agents implementing
the baseline algorithms are the same as in the corresponding original papers. On the other hand, IPPO
agents were implemented using the same recurrent network architecture as our agents and suggested tuned
hyperparameters for multi-agent setting. We tested both shared-weight and independent critic network
implementations for it, without noticing a significant difference in terms of resulting performance.

Table 1: Environments parameters. (*) To enable a fair comparison between different experimental settings,
we adopt the same map size with agents positioned strategically along four axes relative to the goal position.
This prevents the sharing of useful information beyond predefined pairs of agents while allowing us to test
our method at scale.

Switch Cooperative Load Transportation Predator-Prey

Obs space type Discrete Discrete Discrete
Obs space size 4 30 77
Action space type Discrete Discrete Discrete
Action space size 5 5 5
Map size 7x3 16x10 (*) 12x12 14x14 16x16
No agents 4 2 4 8 4 8 16
No other entities - 1 (load) 2 (loads) 4 (loads) 16 (prey)
Step reward 0 0 0
Intermediary reward - 0.5 0.1
Goal reward 5 5 5

1



Table 2: Network training hyperparameters.

Sw CLT PP

Optimizer RMSprop
Q-net lr 0.0001
Coordinator lr 0.00005
Weight decay 0.00001
Beta1 0.9
Beta2 0.99
Gamma 0.99
Batch size 512
Recurrent steps 2 2 10
Q update interval 50
Coord update interval 50
Target net update interval 20000
Min buffer size 1000 5000 5000
Max buffer size 20000 20000 20000

C Architecture of the Neural Networks

Each agent network consists of a Feature Extractor module, a Q-network module, and Coordinator module:

• The Feature Extractor module comprises a MLP with two linear layers and ReLU activations. The
layers map the input data to a latent representation of dimension 128.

• The Q-network module plays a key role in two phases of our architecture. In the first phase, we
use a single layer GRU with hidden size 128 followed by a normalization layer and a linear layer to
generate Q-values for the agent’s action space based on the extracted features. In the second phase,
we use a MLP network to map agent messages to an agent-specific representation space and another
one to compute weights for the state-action values from the first phase. Each network consists of two
128-unit linear layers with ReLU, but with the second network having a Sigmoid activation function
as the final activation.

• The Coordinator structure consists of a recurrent submodule that includes a BiGRU of size 128,
which is responsible for processing concatenated messages. Next, a normalization layer is applied,
followed by a two-layer MLP with ReLU nonlinearity. The forward and backward output at each
step of the sequence is processed in this way, resulting in two logits used to generate the coordination
mask for each agent.

D Additional Details about Data Processing

To compute the “smoothed” time series shown in the plot of Figure 3 relative to the Switch environment, we
apply a rolling window of size 200 to smooth the mean reward data of 5 executions collected, and estimate
the mean reward over time. The confidence interval bounds are computed by means of a rolling mean
over the min and max values. For the results of the Cooperative Load Transportation and Predator-Prey
environments, we consider the mean performance value at the end of the training with confidence intervals
computed using an exponential moving average with smoothing value of 0.95.

E CoMIX Training Loop

The pseudocode of the CoMIX training loop is presented in Algorithm 1.

2



Algorithm 1 CoMIX Training Loop
1: Initialize weights for Q network and target Q network
2: Initialize weights for Coordinator
3: Initialize replay buffer
4: for episode← 1 to numEpisodes do
5: Initialize episode
6: while not done do
7: Receive observation
8: Qself ← Qpolicy_1(observation)
9: Receive messages from communication channel

10: ci = Coord(messages)
11: Optimization for Coordinator weights
12: Filter the messages with coordination mask ci

13: Qcoord ← Qpolicy_2(filtered messages)
14: Qi ← Qself Qcoord

15: Choose an action based on Qi values
16: Execute the chosen action, and observe reward and if episode terminates
17: Store transition data in replay buffer
18: Sample a batch of transitions from replay buffer
19: DDQN optimization for Q network weights
20: if step count % target_update = 0 then
21: Update target Q network weights with Q network weights
22: end if
23: end while
24: end for

3


	Detailed Setup
	Hyperparameter Tuning
	Architecture of the Neural Networks
	Additional Details about Data Processing
	CoMIX Training Loop

