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Preprocessing

▹ 3D → 2d using max GTV area
▹ Isotropic resampling to 1×1 mm
▹ Resizing to 128×128
▹ Normalizing PET to SUV

Data Augmentation (x20)

▹ Flip 50% probability
▹ Shift up to 40%
▹ Rotate up to 20 degrees
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3 Proposed model
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Training and Evaluation4
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Test
101 samples

Characteristics
▹ SeLU activation as regularizer/normalization
▹ Residual connections to improve convergence rate
▹ Aggregated convolutions for model capacity regularization
▹ FCN as an target-oriented image-to-image domain 

translation or image normalizer

Implementation
▹ PyTorch using GeForce RTX 2080 TI
▹ Categorical cross-entropy loss
▹ 1:8 resampling to combat data imbalance
▹ Adam optimizer: 0.0006 lr
▹ Batch size: 8
▹ Dataset augmented 20 times
▹ Total epochs: 100 (1 hour)
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Survival binary classification 
prediction results5

AUC
(Spec, Sens)

PET CT Masked CT PET-CT

CNN¹ 59%
(90%, 29%)

57%
(37%, 77%)

67%
(82%, 52%)

65%
(99%, 30%) 930,146 parameters

FCN+CNN 59%
(41%, 77%)

65%
(51%, 79%)

63%
(35%, 90%)

70%
(69%, 71%) 1,321,682 parameters

AggResCNN 50%
(100%, 0%)

65%
(54%, 76%)

69%
(51%, 87%)

74%
(66%, 82%) 291,874 parameters

FCN+AggResCNN
(ours)

57%
(21%, 94%)

70%
(46%, 94%)

67%
(52%, 82%)

76%
(61%, 91%) 683,650 parameters

[1] Diamant, A., Chatterjee, A., Vallières, M., Shenouda, G. & Seuntjens, J.
Deep learning in head & neck cancer outcome prediction. Sci. reports 9, 1–10 (2019).



Conclusion

1. Our proposed CNN model improves over the state-of-the-art for head and 
neck cancer survival outcome prediction (76% > 65%).

2. Incorporating PET imaging information improves model performance.

3. Our proposed architectural change (FCN, aggregated residual connections) 
benefit model performance without incurring a larger model complexity cost.

4. The addition of the FCN improves performance when coupled with more 
complex input features (CT, PET-CT).
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