
Under review as a conference paper at ICLR 2024

APPENDIX

A RELATED WORK

In this section, we draw parallels of our work to various approaches that have been proposed to
tackle the problem of either providing a good initialization for different tasks, performing implicit
optimization to model predictive distributions for new tasks, or estimating the posterior through a
different objective.

A.1 VARIATIONAL AUTOENCODERS

VAEs (Kingma & Welling, 2013; Rezende et al., 2014; Rezende & Mohamed, 2015; Kingma et al.,
2019) are latent variable models which model observations x conditioned on latent variables z
through the joint distribution pθ(x, z) = pθ(x|z)p(z) where p(z) is generally chosen as N (0, I).
Training the model is done through VI where qφ(z) is obtained by explicit amortization over the
data point, that is, qφ(z|x) = N (µφ(x),Σφ(x)). Training this system on a dataset D is done by
similarly optimizing the Evidence Lower-Bound, which boils down to the following optimization
problem

argmax
θ,φ

Ex∼DEz∼q(·|x)

[
log

pθ(x, z)

qφ(z|x)

]
(10)

This objective can easily be optimized using gradient-based learning and the reparameterization trick.
While typically, a diagonal Gaussian distribution is considered for qφ, more complex distributions
utilizing normalizing flows can also be used.

A.2 HYPERNETWORKS

Hypernetworks are neural networks that generate weights for another neural network, used in tasks
such as uncertainty quantification, zero-shot learning, etc. We refer for a comprehensive overview
to Chauhan et al. (2023). Based on experiments on predicting the weights of a compact MLP (section
4), our work shows similarities with studies in this area but also has significant differences. Regarding
uncertainty quantification, hypernetworks are instrumental in creating an ensemble of models by
generating multiple weight vectors for the primary network. Each model within this ensemble
possesses distinct parameter configurations, enabling robust estimation of uncertainty in model
predictions. This feature is precious in safety-critical domains like healthcare, where confidence in
predictions is essential. Multiple weight sets can be generated through techniques like dropout within
hypernetworks or sampling from a noise distribution. The latter (Krueger et al., 2017) is based on
a Bayesian framework where weights can be sampled using invertible network architecture, such
as normalizing flows. However, while we amortize posterior inference, the weights sampled from
the hypernetwork are not conditioned on information from the currently observed input data during
inference time but indirectly solely on the dataset available during training, and retraining would
need to be done given a new dataset. Departing from the Bayesian framework, Sun et al. (2017) have
shown data-specific discriminative weight prediction, which aligns well with their specific objective
of defending a convolutional neural network against adversarial attacks. Combining the ability to
sample a new set of weights dataset-specifically but also handling dataset exchangeability, even in
the more realistic case of missing information, our work has a distinctly different focus but also can
be seen as an extension to hypernetwork research.

A.3 IN-CONTEXT LEARNING

Amortized inference has close links to in-context learning (ICL), which has been gaining popularity,
especially in natural language modeling. Various works show how in-context learning can be seen as
performing implicit optimization based on the context examples, with some constructions showing
exact equivalence with gradient descent in linear regression (Von Oswald et al., 2023; von Oswald
et al., 2023). Other works have shown how such systems can be seen as implicitly modeling the
Bayesian posterior predictive distribution (Müller et al., 2021). In a similar vein, there have been
additional works aimed at directly modeling the posterior predictive distribution by providing the
training data as “context” to a Transformer model and training it based on the maximum log-likelihood

14

Under review as a conference paper at ICLR 2024

principle (Hollmann et al., 2022). While such approaches have been seeing tremendous success, they
cannot be directly applied to cases where we care about and want to analyze the solution space as the
solution space is only modeled implicitly, and thus, recovering it is not possible. For example, if our
goal is to learn a linear regression model, an ICL model could end up learning a nonlinear model and
would provide no information about the actual parameters used for prediction. As opposed to this, we
obtain parameters explicitly. We thus can answer questions like the relevance of a particular feature
(which corresponds to its weight in the output, and we know the weight vector explicitly). Even
further, many systems grounded in physics and economics only admit a constrained solution space;
for example, the movement of a human arm lies on a particular manifold, or the configuration of
molecules and proteins cannot be arbitrary. Thus, performing predictions through an implicit solution
space, which may violate several constraints, is not ideal. Furthermore, explicitly modeling the
solution space and encoding the constraints present can be done through the prior and the parametric
distribution used for modeling.

A.4 META LEARNING

Meta-learning (Hospedales et al., 2022) aims to equip models with the ability to quickly learn from
different tasks or data sets to generalize to new tasks in resource-constrained domains. This attribute
is precious in practical scenarios where obtaining large amounts of task-specific data is impractical
or costly. A simple way of obtaining this is through nonparametric or similarity-based models like
k-Nearest Neighbours, where no training is involved. Thus, new tasks can be solved quickly based on
a few examples by computing a similarity metric with these examples (Koch et al., 2015; Vinyals et al.,
2016; Sung et al., 2018). Another way of achieving this is through optimization-based setups, which
use a nested optimization procedure. An inner step learns individual tasks from a shared initialization,
whereas the outer loop computes the gradient of the whole inner process and moves the initialization
in a way that allows for better generalization. Here, by relying on only a few iterations in the inner
loop, the outer loop has the incentive to move the initialization to a point from which solutions to
multiple tasks are reachable (Finn et al., 2017). Given the similarities between meta-learning and
hierarchical Bayesian inference (Grant et al., 2018), our approach can be considered as a kind of
meta-learning framework; however, the line between meta-learning and Bayesian posterior inference
is quite blurry as any amortized approach for the latter can be seen as a case of the former.

A.5 NEURAL PROCESSES

A notable approach in meta-learning related to our research is neural processes (NP), which excel
in learning scenarios with few examples. NPs (Garnelo et al., 2018a;b; Kim et al., 2019; Pakman
et al., 2020; Gordon et al., 2019) can be seen as a more flexible and powerful extension of Gaussian
processes that leverage a neural network-based encoder-decoder architecture for learning to model a
distribution over functions that approximate a stochastic process. However, while we are interested
in approximating the posterior distribution over the parameters, NPs are used to approximate the
posterior predictive distribution to make predictions based on observed data. Similar to our setup,
NPs rely on amortized VI for obtaining the predictive posterior. Still, instead of working with a
known probabilistic model, they train the probabilistic model primarily for prediction-based tasks
through approaches analogous to variational expectation maximization. Thus, they cannot provide an
explicit posterior over the parameters, but they are suitable for tasks where only predictive posteriors
are essential, such as those in supervised learning. NPs, in their most basic form, accomplish this by
training for the objective:

argmax
θ,φ

ED∼χEz∼qφ(·|D)

[
log

pθ(D, z)

qφ(z|D)

]
(11)

where z ∈ Rp is an arbitrary latent variable often uninterpretable, and the parameters of the
probabilistic model θ do not get a Bayesian treatment. In particular, NPs are more suited to modeling
datasets of the form D = {xi,yi}ni=1, where all probabilities in Equation 11 are conditioned on the
input x’s, and only the predictive over y’s is modeled, and pθ is modeled as a Neural Network.

These approaches can be seen as quite related to ICL, where the exchangeable architecture backbone
is switched from DeepSets to Transformers. Similar to ICL, they do not provide control over the
solution space as they aim to model either the posterior predictive or an arbitrary latent space. While
this leads to good predictive performance on various tasks, they cannot be freely applied to problems

15

Under review as a conference paper at ICLR 2024

that pose certain constraints on the underlying probabilistic model. In such cases, estimating the actual
parameters is important to enforce constraints in the parameter space as well as for interpretability,
which we already discussed in the ICL section.

A.6 SIMULATION-BASED INFERENCE

In the case of simulation-based inference (Cranmer et al., 2020), when the likelihood p(x|θ) is
intractable, BayesFlow (Radev et al., 2020) and similar methods (Lorch et al., 2022) provide a
solution framework to amortize Bayesian inference of parameters in complex models. Starting from
the forward KL divergence between the true and approximate posteriors, the resulting objective is
to optimize for parameters of the approximate posterior distribution that maximize the posterior
probability of data-generating parameters θ given observed data D for all θ and D. Density estimation
of the approximate posterior can then be done using the change-of-variables formula and a conditional
invertible neural network that parameterizes the approximate posterior distribution.

argmin
φ

KL[p(θ|D)||qφ(θ|D)] = argmin
φ={ν,ψ}

E(θ,D)∼p(θ,D) [− log pz(fν(θ;hψ(D)))− log |det Jfν |]

(12)
Since their goal is to learn a global estimator for the probabilistic mapping from D to data generating
θ, the information about the observed dataset is encoded in the output of a summary network hψ.
It is used as conditional input to the normalizing flow fν . Although the likelihood function does
not need to be known, the method requires access to paired observations (x,θ) for training, which
is sometimes unavailable. This approach is equivalent to the Forward KL setup in our experiments
when trained with DeepSets and Normalizing Flows. Current research has also leveraged score-based
generative models for SBI which can condition on a dataset by learning a score model conditional
only on single observations (Geffner et al., 2023).

A.7 AMORTIZATION IN GAUSSIAN PROCESSES

Gaussian Processes (GPs) define a class of probabilistic models that do enjoy tractable likelihood.
However, inference in such systems is slow and sensitive to the choice of kernel function that defines
the covariance matrix. Similar to meta learning and neural processes, current research also focuses
on estimating the kernel function in GPs by leveraging permutation invariant architectures like
transformers (Liu et al., 2020; Simpson et al., 2021; Bitzer et al., 2023). Additionally, often these
approaches amortize based on point estimates and are leveraged when considering GPs for regression
problems, and it is not straightforward to extend them to classification or unsupervised learning. In
contrast, our approach is more general and can work for all problems that define a differentiable
likelihood function. Additionally, our approach also approximates the Bayesian posterior distribution
over the parameters of interest, as opposed to point estimates.

A.8 MODE COLLAPSE IN VARIATIONAL INFERENCE

Reverse KL based methods have been widely known to suffer from mode collapse due to the nature
of the optimization objective (Bishop & Nasrabadi, 2006), which implies that even if the approximate
distribution possesses the ability to represent multiple modes, optimization is often sub-optimal and
the distribution ends up covering only a small handful of them. Improving normalizing flow based
methods with repulsive terms or through the lens of natural gradient optimization procedure for
a mixture approximate distribution (Arenz et al., 2022; Lin et al., 2020) is an important topic of
research, and we believe it would be quite an important future work to experimentally validate if they
help in learning multi-modality in amortized posterior inference problems that are studied in this
work.

B ARCHITECTURES RESPECTING EXCHANGEABILITY

In this section, we highlight how DeepSets and Transformer models satisfy the dataset exchange-
ability criteria, which is essential in modeling the posterior distribution over the parameters of any
probabilistic model relying on iid data.

16

Under review as a conference paper at ICLR 2024

B.1 DEEPSETS

DeepSets (Zaheer et al., 2017) operate on arbitrary sets X = {x1, ...xN} ⊂ Rd of fixed dimension-
ality d by first mapping each individual element xi ∈ X to some high-dimensional space using a
nonlinear transform, which is parameterized as a multi-layered neural network with parameters φ1

zi = fφ1
(xi) (13)

After having obtained this high-dimensional embedding of each element of the set, it applies an
aggregation function a(·), which is a permutation invariant function that maps a set of elements
Z = {z1, ...,zN} ∈ Rz to an element h ∈ Rz ,

h = a(Z) (14)

Thus, the outcome does not change under permutations of Z . Finally, another nonlinear transform,
parameterized by a multi-layered neural network with parameters φ2, is applied to the outcome h to
provide the final output.

o = gφ2(h) (15)

For our experiments, we then use the vector o to predict the parameters of a parametric family of
distributions (e.g., Gaussian or Flows) using an additional nonlinear neural network. As an example,
for the Gaussian case, we consider the distribution N (·|µ,Σ), where

µ := µφ3
(o) and Σ := Σφ4

(o) (16)

which makes µ implicitly a function of the original input set X . To understand why the posterior
distribution modeled in this fashion does not change when the inputs are permuted, let us assume
that Π is a permutation over the elements of X . If we look at one of the parameters of the posterior
distribution, e.g., µ, we can see that

µ(ΠX) = µφ3

(
gφ2

(
a
(
{fφ1(xΠ(i))}Ni=1

)))
(17)

= µφ3

(
gφ2

(
a
(
{fφ1

(xi)}Ni=1

)))
(18)

= µ(X) (19)

which simply follows from the fact that a(·) is a permutation invariant operation, e.g., sum or
mean. We can also provide similar reasoning for the other parameters (e.g., Σ). This shows that
DeepSets can be used to model the posterior distribution over parameters of interest as it respects the
exchangeability criteria (iid observations) assumptions in the data through its permutation invariant
structure.

B.2 TRANSFORMERS

Similarly, we can look at Transformers (Vaswani et al., 2017) as candidates for respecting the
exchangeability conditions in the data. In particular, we consider transformer systems without
positional encodings and consider an additional [CLS] token, denoted by c ∈ Rd, to drive the
prediction. If we look at the application of a layer of transformer model, it can be broken down into
two components.

Multi-Head Attention. Given a query vector obtained from c and keys and values coming from our
input set X ⊂ Rd, we can model the update of the context c as

ĉ(X) = Softmax
(
cTWQW

T
KXT

)
XWV (20)

where WQ ∈ Rd×k,WK ∈ Rd×k,WV ∈ Rd×k and X ∈ RN×d denotes a certain ordering of the
elements in X . Further, ĉ is the updated vector after attention, and Softmax is over the rows of X .
Here, we see that if we were to apply a permutation to the elements in X , the outcome would remain
the same. In particular

ĉ(ΠX) = Softmax
(
cTWQW

T
KXTΠT

)
ΠXWV (21)

= Softmax
(
cTWQW

T
KXT

)
ΠTΠXWV (22)

= Softmax
(
cTWQW

T
KXT

)
XWV (23)

= ĉ(X) (24)

17

Under review as a conference paper at ICLR 2024

which follows because Softmax is an equivariant function, i.e., applying Softmax on a permutation of
columns is equivalent to applying Softmax first and then permuting the columns correspondingly.
Thus, we see that the update to the [CLS] token c is permutation invariant. This output is then used
independently as input to a multi-layered neural network with residual connections, and the entire
process is repeated multiple times without weight sharing to simulate multiple layers. Since all the
individual parts are permutation invariant w.r.t permutations on X , the entire setup ends up being
permutation invariant. Obtaining the parameters of a parametric family of distribution for posterior
estimation then follows the same recipe as DeepSets, with o replaced by c.

C PROBABILISTIC MODELS

This section details the various candidate probabilistic models used in our experiments for amortized
computation of Bayesian posteriors over the parameters. Here, we explain the parameters associated
with the probabilistic model over which we want to estimate the posterior and the likelihood and
prior that we use for experimentation.

Mean of Gaussian (GM): As a proof of concept, we consider the simple setup of estimating the
posterior distribution over the mean of a Gaussian distribution p(µ|D) given some observed data. In
this case, prior and likelihood defining the probabilistic model p(x,θ) (with θ being the mean µ) are
given by:

p(µ) = N (µ|0, I) (25)
p(x|µ) = N (x|µ,Σ) (26)

and Σ is known beforehand and defined as a unit variance matrix.

Linear Regression (LR): We then look at the problem of estimating the posterior over the weight
vector for Bayesian linear regression given a dataset p(w, b|D), where the underlying model p(D,θ)
is given by:

p(w) = N (w|0, I) (27)
p(b) = N (b|0, 1) (28)

p(y|x,w, b) = N
(
y|wTx+ b, σ2

)
, (29)

and with σ2 = 0.25 known beforehand. Inputs x are generated from p(x) = U(−1,1).

Linear Classification (LC): We now consider a setting where the true posterior cannot be obtained
analytically as the likelihood and prior are not conjugate. In this case, we consider the underlying
probabilistic model by:

p(W) = N (W |0, I) (30)

p(y|x,W) = Categorical

(
y

1

τ
Wx

)
, (31)

where τ is the known temperature term which is kept as 0.1 to ensure peaky distributions, and x is
being generated from p(x) = U(−1,1).

Nonlinear Regression (NLR): Next, we tackle the more complex problem where the posterior
distribution is multi-modal and obtaining multiple modes or even a single good one is challenging.
For this, we consider the model as a Bayesian Neural Network (BNN) for regression with fixed
hyper-parameters like the number of layers, dimensionality of the hidden layer, etc. Let the BNN
denote the function fθ where θ are the network parameters such that the estimation problem is to
approximate p(θ|D). Then, for regression, we specify the probabilistic model using:

p(θ) = N (θ|0, I) (32)

p(y|x,θ) = N
(
y|fθ(x), σ2

)
, (33)

where σ2 = 0.25 is a known quantity and x being generated from p(x) = U(−1,1).

Nonlinear Classification (NLC): Like in Nonlinear Regression, we consider BNNs with fixed
hyper-parameters for classification problems with the same estimation task of approximating p(θ|D).

18

Under review as a conference paper at ICLR 2024

In this formulation, we consider the probabilistic model as:

p(θ) = N (θ|0, I) (34)

p(y|x,θ) = Categorical

(
y

1

τ
fθ(x)

)
(35)

where τ is the known temperature term which is kept as 0.1 to ensure peaky distributions, and x is
being generated from p(x) = U(−1,1).

Gaussian Mixture Model (GMM): While we have mostly looked at predictive problems, where the
task is to model some predictive variable y conditioned on some input x, we now look at a well-known
probabilistic model for unsupervised learning, Gaussian Mixture Model (GMM), primarily used to
cluster data. Consider a K-cluster GMM with:

p(µk) = N (µk|0, I) (36)

p(x|µ1:K) =

K∑
k=1

πkN (x|µk,Σk) . (37)

We assume Σk and πk to be known and set Σk to be an identity matrix and the mixing coefficients to
be equal, πk = 1/K, for all clusters k in our experiments.

D METRICS

In this section, we provide details about the metrics considered for the different tasks. We generally
look at two main metrics for benchmarking performance: L2 loss and Accuracy. For estimating the
mean of a Gaussian distribution, the L2 loss is defined as

GML2
= ED∼χEµ∼qφ(·|D)

[
ND∑
i=1

(xi − µ)2

]
(38)

where D = {xi}ND
i=1. Intuitively, this captures the quality of the estimation of the mean parameter by

measuring how far the observations are from it. Lower value implies better estimation of the mean
parameter. Similarly, for estimating the means of a Gaussian Mixture Model, we rely on a similar
metric but we also find the cluster closest to the observation, which can be defined as

GMML2 = ED∼χEµk∼qφ(·|D)

[
ND∑
i=1

(xi − µMatch(xi,{µ1,...µK}))
2

]
(39)

Match(x, {µ1, ...,µK} = argmin
k

(x− µk)
2 (40)

which intuitively captures the distance of observations from the cluster closest to them. Next, we
define the metric for evaluating (non-)linear regression models as

(N−)LRL2
= ED∼χEθ∼qφ(·|D)

[
ND∑
i=1

(yi − Mode [p(yi|xi,θ)])2
]

(41)

Finally, for the (non-)linear classification setups, we define the accuracy metric as

(N−)LCAccuracy = ED∼χEθ∼qφ(·|D)

[
100

ND
×

ND∑
i=1

δ(yi,Mode [p(yi|xi,θ)])

]
(42)

where δ(a, b) = 1 if and only if a = b. Thus this metric captures the accuracy of the posterior
predictive distribution. Another metric that we use to test the quality of the posterior is the symmetric
KL divergence, defined as

Symmetric KL(p(θ||D), qφ(θ|D)) =
1

2
KL(p(θ||D)||qφ(θ|D)) +

1

2
KL(qφ(θ|D)||p(θ||D)) (43)

Additionally, another metric in the predictive space that we use is the expected negative conditional
log likelihood (CNLL), which is defined as

CNLL = −Eqφ(·|D) [log p(D|θ)] (44)

19

Under review as a conference paper at ICLR 2024

E ARCHITECTURE DETAILS

In this section, we outline the two candidate architectures that we consider for the backbone of
our amortized variational inference model. We discuss the specifics of the architectures and the
hyperparameters used for our experiments.

E.1 TRANSFORMER

We use a transformer model (Vaswani et al., 2017) as a permutation invariant architecture by removing
positional encodings from the setup and using multiple layers of the encoder model. We append the
set of observations with a [CLS] token before passing it to the model and use its output embedding to
predict the parameters of the variational distribution. Since no positional encodings or causal masking
is used in the whole setup, the final embedding of the [CLS] token becomes invariant to permutations
in the set of observations, thereby leading to permutation invariance in the parameters of qφ.

We use 4 encoder layers with a 256 dimensional attention block and 1024 feed-forward dimensions,
with 4 heads in each attention block for our Transformer models to make the number of parameters
comparative to the one of the DeepSets model.

E.2 DEEPSETS

Another framework that can process set-based input is Deep Sets (Zaheer et al., 2017). In our
experiments, we used an embedding network that encodes the input into representation space, a
mean aggregation operation, which ensures that the representation learned is invariant concerning the
set ordering, and a regression network. The latter’s output is either used to directly parameterize a
diagonal Gaussian or as conditional input to a normalizing flow, representing a summary statistics of
the set input.

For DeepSets, we use 4 layers each in the embedding network and the regression network, with
a mean aggregation function, ReLU activation functions, and 627 hidden dimensions to make the
number of parameters comparable to those in the Transformer model.

E.3 NORMALIZING FLOWS

Assuming a Gaussian posterior distribution as the approximate often leads to poor results as
the true posterior distribution can be far from the Gaussian shape. To allow for more flexible
posterior distributions, we use normalizing flows (Kingma & Dhariwal, 2018; Kobyzev et al.,
2020; Papamakarios et al., 2021; Rezende & Mohamed, 2015) for approximating qφ(θ|D) con-
ditioned on the output of the summary network hψ. Specifically, let gν : z 7→ θ be a dif-
feomorphism parameterized by a conditional invertible neural network (cINN) with network pa-
rameters ν such that θ = gν(z;hψ(D)). With the change-of-variables formula it follows that
p(θ) = p(z)

∣∣det ∂
∂z gν(z;hψ(D))

∣∣−1
= p(z)|det Jν(z;hψ(D))|−1, where Jν is the Jacobian ma-

trix of gν . Further, integration by substitution gives us dθ = |det Jν(z;hψ(D)|dz to rewrite the
objective from eq. 7 as:

argmin
φ

KL[qφ(θ|D)||p(θ|D)] (45)

= argmin
φ

ED∼χEθ∼qφ(θ|D) [log qφ(θ|D)− log p(θ,D)] (46)

= argmin
φ={ψ,ν}

ED∼χEz∼p(z)

[
log

qν(z|hψ(D))

|det Jν(z;hψ(D))|
− log p(gν(z;hψ(D)),D)

]
(47)

As shown in BayesFlow (Radev et al., 2020), the normalizing flow gν and the summary network hψ
can be trained simultaneously. The AllInOneBlock coupling block architecture of the FrEIA Python
package (Ardizzone et al., 2018), which is very similar to the RNVP style coupling block (Dinh et al.,
2017), is used as the basis for the cINN. AllInOneBlock combines the most common architectural
components, such as ActNorm, permutation, and affine coupling operations.

For our experiments, 6 coupling blocks define the normalizing flow network, each with a 1 hidden-
layered non-linear feed-forward subnetwork with ReLU non-linearity and 128 hidden dimensions.

20

Under review as a conference paper at ICLR 2024

F EXPERIMENTAL DETAILS

Unless specified, we obtain a stream of datasets for all our experiments by simply sampling from the
assumed probabilistic model, where the number of observations n is sampled uniformly in the range
[64, 128]. For efficient mini-batching over datasets with different cardinalities, we sample datasets
with maximum cardinality (128) and implement different cardinalities by masking out different
numbers of observations for different datasets whenever required.

To evaluate both our proposed approach and the baselines, we compute an average of the predictive
performances across 25 different posterior samples for each of the 100 fixed test datasets for all
our experiments. That means for our proposed approach, we sample 25 different parameter vectors
from the approximate posterior that we obtain. For MCMC, we rely on 25 MCMC samples, and
for optimization, we train 25 different parameter vectors where the randomness comes from initial-
ization. For the optimization baseline, we perform a quick hyperparameter search over the space
{0.01, 003, 0.001, 0.0003, 0.0001, 0.00003} to pick the best learning rate that works for all of the
test datasets and then use it to train for 1000 iterations using the Adam optimizer (Kingma & Ba,
2014). For the MCMC baseline, we use the open-sourced implementation of Langevin-based MCMC
sampling2 where we leave a chunk of the starting samples as burn-in and then start accepting samples
after a regular interval (to not make them correlated). The details about the burn-in time and the
regular interval for acceptance are provided in the corresponding experiments’ sections below.

For our proposed approach of amortized inference, we do not consider explicit hyperparameter
optimization and simply use a learning rate of 1e-4 with the Adam optimizer. For all experiments, we
used linear scaling of the KL term in the training objectives as described in (Higgins et al., 2017),
which we refer to as warmup. Furthermore, training details for each experiment can be found below.

F.1 FIXED-DIM

In this section, we provide the experimental details relevant to reproducing the results of Section 4.1.
All the models are trained with streaming data from the underlying probabilistic model, such that
every iteration of training sees a new set of datasets. Training is done with a batch size of 128,
representing the number of datasets seen during one optimization step. Evaluations are done with 25
samples and we ensure that the test datasets used for each probabilistic model are the same across all
the compared methods, i.e., baselines, forward KL, and reverse KL. We train the amortized inference
model and the forward KL baselines for the following different probabilistic models:

Mean of Gaussian (GM): We train the amortization models over 20, 000 iterations for both the
2-dimensional as well as the 100-dimensional setup. We use a linear warmup with 5000 iterations
over which the weight of the KL term in our proposed approach scales linearly from 0 to 1. We use
an identity covariance matrix for the data-generating process, but it can be easily extended to the case
of correlated or diagonal covariance-based Gaussian distributions.

Gaussian Mixture Model (GMM): We train the mixture model setup for 200, 000 iterations with
50, 000 iterations of warmup. We mainly experiment with 2-dimensional and 5-dimensional mixture
models, with 2 and 5 mixture components for each setup. While we do use an identity covariance
matrix for the data-generating process, again, it can be easily extended to other cases.

Linear Regression (LR): The amortization models for this setup are trained for 50, 000 iterations
with 12, 500 iterations of warmup. The feature dimensions considered for this task are 1 and 100
dimensions, and the predictive variance σ2 is assumed to be known and set as 0.25.

Nonlinear Regression (NLR): We train the setup for 100, 000 iterations with 25, 000 iterations
consisting of warmup. The feature dimensionalities considered are 1-dimensional and 25-dimensional,
and training is done with a known predictive variance similar to the LR setup. For the probabilistic
model, we consider both a 1-layered and a 2-layered multi-layer perceptron (MLP) network with 32
hidden units in each, and either a RELU or TANH activation function.

Linear Classification (LC): We experiment with 2-dimensional and 100-dimensional setups with
training done for 50, 000 iterations, out of which 12, 500 are used for warmup. Further, we train for
both binary classification as well as a 5-class classification setup.

2https://github.com/alisiahkoohi/Langevin-dynamics

21

https://github.com/alisiahkoohi/Langevin-dynamics

Under review as a conference paper at ICLR 2024

Nonlinear Classification (NLC): We experiment with 2-dimensional and 25-dimensional setups
with training done for 100, 000 iterations, out of which 2, 5000 are used for warmup. Further, we
train for both binary classification as well as a 5-class classification setup. For the probabilistic model,
we consider both a 1-layered and a 2-layered multi-layer perceptron (MLP) network with 32 hidden
units in each, and either a RELU or TANH activation function.

F.2 VARIABLE-DIM

In this section, we provide the experimental details relevant to reproducing the results of Section 4.2.
All the models are trained with streaming data from the underlying probabilistic model, such that
every iteration of training sees a new set of datasets. Training is done with a batch size of 128,
representing the number of datasets seen during one optimization step. Further, we ensure that
the datasets sampled resemble a uniform distribution over the feature dimensions, ranging from
1-dimensional to the maximal dimensional setup. Evaluations are done with 25 samples and we
ensure that the test datasets used for each probabilistic model are the same across all the compared
methods, i.e., baselines, forward KL, and reverse KL. We train the amortized inference model and
the forward KL baselines for the following different probabilistic models:

Mean of Gaussian (GM): We train the amortization models over 50, 000 iterations using a linear
warmup with 12, 5000 iterations over which the weight of the KL term in our proposed approach
scales linearly from 0 to 1. We use an identity covariance matrix for the data-generating process, but
it can be easily extended to the case of correlated or diagonal covariance-based Gaussian distributions.
In this setup, we consider a maximum of 100 feature dimensions.

Gaussian Mixture Model (GMM): We train the mixture model setup for 500, 000 iterations with
125, 000 iterations of warmup. We set the maximal feature dimensions as 5 and experiment with 2
and 5 mixture components. While we do use an identity covariance matrix for the data-generating
process, again, it can be easily extended to other cases.

Linear Regression (LR): The amortization models for this setup are trained for 100, 000 iterations
with 25, 000 iterations of warmup. The maximal feature dimension considered for this task is
100-dimensional, and the predictive variance σ2 is assumed to be known and set as 0.25.

Nonlinear Regression (NLR): We train the setup for 250, 000 iterations with 62, 500 iterations
consisting of warmup. The maximal feature dimension considered is 100-dimensional, and training
is done with a known predictive variance similar to the LR setup. For the probabilistic model, we
consider both a 1-layered and a 2-layered multi-layer perceptron (MLP) network with 32 hidden units
in each, and either a RELU or TANH activation function.

Linear Classification (LC): We experiment with a maximal 100-dimensional setup with training
done for 100, 000 iterations, out of which 25, 000 are used for warmup. Further, we train for both
binary classification as well as a 5-class classification setup.

Nonlinear Classification (NLC): We experiment with a maximal 100-dimensional setup with
training done for 250, 000 iterations, out of which 62, 500 are used for warmup. Further, we train
for both binary classification as well as a 5-class classification setup. For the probabilistic model,
we consider both a 1-layered and a 2-layered multi-layer perceptron (MLP) network with 32 hidden
units in each, and either a RELU or TANH activation function.

F.3 MODEL MISSPECIFICATION

In this section, we provide the experimental details relevant to reproducing the results of Section 4.3.
All models during this experiment are trained with streaming data from the currently used dataset-
generating function χ, such that every iteration of training sees a new batch of datasets. Training is
done with a batch size of 128, representing the number of datasets seen during one optimization step.
Evaluation for all models is done with 10 samples from each dataset-generator used in the respective
experimental subsection and we ensure that the test datasets are the same across all compared methods,
i.e., baselines, forward KL, and reverse KL.

Linear Regression Model: The linear regression amortization models are trained following the
training setting for linear regression fixed dimensionality, that is, 50, 000 training iterations with
12, 500 iterations of warmup. The feature dimension considered for this task is 1-dimension. The

22

Under review as a conference paper at ICLR 2024

model is trained separately on datasets from three different generators χ: linear regression, nonlinear
regression, and Gaussian processes, and evaluated after training on test datasets from all of them. For
training with datasets from the linear regression probabilistic model, the predictive variance σ2 is
assumed to be known and set as 0.25. The same variance is used for generating datasets from the
nonlinear regression dataset generator with 1 layer, 32 hidden units, and TANH activation function.
Lastly, datasets from the Gaussian process-based generator are sampled similarly, using the GPytorch
library Gardner et al. (2018), where datasets are sampled of varying cardinality, ranging from 64
to 128. We use a zero-mean Gaussian Process (GP) with a unit lengthscale radial-basis function
(RBF) kernel serving as the covariance matrix. Further, we use a very small noise of σ2 = 1e−6 in
the likelihood term of the GP. Forward KL training in this experiment can only be done when the
amortization model and the dataset-generating function are the same: when we train on datasets from
the linear regression-based χ. Table 13 provides a detailed overview of the results.

Nonlinear Regression Models: The nonlinear regression amortization models are trained following
the training setting for nonlinear regression fixed dimensionality, that is, 100, 000 training iterations
with 25, 000 iterations of warmup. Here, we consider two single-layer perceptions with 32 hidden
units and either a RELU or TANH activation function. The feature dimensionality considered is
1 dimension. We consider the same three dataset-generating functions as in the misspecification
experiment for a linear regression model above. However, the activation function used in the nonlinear
regression dataset generator matches the activation function of the currently trained amortization
model. In this case, forward KL training is possible in the two instances when trained on datasets
from the corresponding nonlinear regression probabilistic model. A more detailed overview of the
results can be found in Table 14 for the TANH and in Table 15 for the RELU activation function-based
probabilistic models respectively.

F.4 TABULAR EXPERIMENTS

For the tabular experiments, we train the amortized inference models for (non-)linear regression
(NLR/LR) as well as (non-)linear classification (NLC/LC) with x ∼ N (0, I) as opposed to x ∼
U(−1,1) in the dataset generating process χ, with the rest of the settings the same as MAXIMUM-DIM
experiments. For the nonlinear setups, we only consider the RELU case as it has seen predominant
success in deep learning. Further, we only consider a 1-hidden layer neural network with 32 hidden
dimensions in the probabilistic model.

After having trained the amortized inference models, both for forward and reverse KL setups, we
evaluate them on real-world tabular datasets. We first collect a subset of tabular datasets from the
OpenML platform as outlined in Appendix G. Then, for each dataset, we perform a 5-fold cross-
validation evaluation where the dataset is chunked into 5 bins, of which, at any time, 4 are used for
training and one for evaluation. This procedure is repeated five times so that every chunk is used for
evaluation once.

For each dataset, we normalize the observations and the targets so that they have zero mean and
unit standard deviation. For the classification setups, we only normalize the inputs as the targets are
categorical. For both forward KL and reverse KL amortization models, we initialize the probabilistic
model from samples from the amortized model and then further finetune it via dataset-specific
maximum a posteriori optimization. We repeat this setup over 25 different samples from the inference
model. In contrast, for the optimization baseline, we initialize the probabilistic models’ parameters
from N (0, I), which is the prior that we consider, and then train 25 such models with maximum a
posteriori objective using Adam optimizer.

While we see that the amortization models, particularly the reverse KL model, lead to much better
initialization and convergence, it is important to note that the benefits vanish if we initialize using the
Xavier-init initialization scheme. However, we believe that this is not a fair comparison as it means
that we are considering a different prior now, while the amortized models were trained with N (0, I)
prior. We defer the readers to the section below for additional discussion and experimental results.

G OPENML DATASETS

For the tabular regression problems, we consider the suite of tasks outlined in OpenML-CTR23 - A
curated tabular regression benchmarking suite (Fischer et al., 2023), from which we further filter

23

Under review as a conference paper at ICLR 2024

out datasets that have more than 2000 examples and 100 features. We also remove datasets with
missing information and NaNs. Similarly, we consider the OpenML-CC18 Curated Classification
benchmark (Bischl et al., 2019) suite of tasks for classification and perform a similar filtering
algorithm. We remove datasets with missing information and NaNs, as well as datasets with more
than 2000 examples and 100 features. In addition, we also exclude datasets that are not made for
binary classification. At the end of this filtering mechanism, we end up with 9 regression and 13
classification problems, and our dataset filtration pipeline is heavily inspired by Hollmann et al.
(2022). We provide the datasets considered for both regression and classification below:

Regression: AIRFOIL SELF NOISE, CONCRETE COMPRESSIVE STRENGTH, ENERGY EFFICIENCY,
SOLAR FLARE, STUDENT PERFORMANCE POR, QSAR FISH TOXICITY, RED WINE, SOCMOB and
CARS.

Classification: CREDIT-G, DIABETES, TIC-TAC-TOE, PC4, PC3, KC2, PC1, BANKNOTE-
AUTHENTICATION, BLOOD-TRANSFUSION-SERVICE-CENTER, ILPD, QSAR-BIODEG, WDBC and
CLIMATE-MODEL-SIMULATION-CRASHES.

H ADDITIONAL EXPERIMENTS

In this section, we outline the additional experiments we conducted in obtaining Bayesian posteriors
for the different probabilistic models for different hyperparameters and their downstream uses. We
provide a comprehensive account of the results in the relevant sections below.

H.1 FIXED-DIM

While we highlighted the results with the Gaussian mixture model and classification settings with
only 2 clusters/classes, we also conducted experiments with an increased number of clusters and
classes, making the problem even more challenging. Table 7 shows that both forward and reverse KL
methods perform reasonably, with forward KL struggling more in challenging scenarios.

Next, we also consider harder tasks based on the Bayesian Neural Network (BNN) paradigm, where
we consider nonlinear regression and classification setups with different activation functions: TANH
and RELU for a 1-layered and 2-layered BNN. We provide the results of our experiments in Tables 8
and 9 respectively. The results indicate that forward KL approaches struggle a lot in such scenarios,
often achieving performance comparable to random chance. On the contrary, we see that reverse
KL-based amortization leads to performances often similar to dataset-specific optimization, thereby
showing the superiority of our proposed method.

H.2 VARIABLE-DIM

Our experiments on variable dimensional datasets can be evaluated for arbitrary feature cardinality,
of which we show a few examples in Section 4.2. In this section, we provide results for additional
dimensionality setups. In particular, we refer the readers to Table 10, which contains experimental
results w.r.t different dimensionalities (e.g. 50D setup), as well as different number of clusters and
classes, respectively, for the GMM and LC setup. Throughout, we see that amortization leads to
reasonable performance, and in particular, we see forward KL-based amortization starting to struggle
in high-dimensional setups.

Again, to make the setup more challenging, we consider the Bayesian Neural Network (BNN) setup
where we consider nonlinear regression and classification with different activation functions: TANH
and RELU for a 1-layered and 2-layered BNN, but which can now be tested for an arbitrary number
of input features. Our experiments are highlighted in Tables 11 and 12, for 1- and 2-layered BNN,
respectively. In such complex multi-modal and complicated setups, forward KL often performs
comparable to random chance and thus does not lead to any good approximation of the true posterior
distribution. On the other hand, our proposed method indeed leads to good predictive performance,
often comparable to dataset-specific optimization routines.

24

Under review as a conference paper at ICLR 2024

H.3 MODEL MISSPECIFICATION

As a representative of the results on model misspecification (Section 4.3), we highlighted training and
evaluation of the amortization models with Transformer backbone on a subset of in-distribution and
OoD data-generating functions (Table 3) to show superiority in generalization of reverse KL trained
system vs. forward KL based ones on OoD data but also to highlight that training a misspecified
amortization model on OoD datasets directly with our approach results in even better posterior
predictive performance.

In addition to those experiments, we also conducted a broader range of experiments utilizing DeepSets
as the backbone, various OoD data-generating functions for training and evaluation of the reverse
KL system, and an additional nonlinear regression model with RELU activation function. For a
comprehensive description of these experiments and the complete setup, please refer to Section F.3.
We considered three probabilistic models, including a linear regression model and two nonlinear
regression models utilizing the TANH or RELU activation function. The detailed results for each
model can be found in Tables 13, 14, and 15, respectively.

In all experiments, reverse KL outperforms forward KL trained amortization models in in-distribution
performance and excels in posterior prediction on OoD datasets. Although the significant difference
in posterior prediction performance of forward vs. reverse KL in cases where the underlying model is
nonlinear was already mentioned in previous experiments, here, reverse KL-trained models also excel
in evaluations of posterior prediction for the linear regression model. Although only by a margin, in
the case of approximating the posterior of the simpler linear regression model, a diagonal Gaussian-
shaped posterior shows the best posterior prediction results when evaluated on OoD datasets from
the nonlinear regression dataset generating function. In almost all other experiments, the posterior
prediction performance could be enhanced when we used the normalizing flow based posterior. A
definitive conclusion cannot be drawn regarding the superiority of one backbone over the other, i.e.
between DeepSets or Transformer. However, amortization models with DeepSets as the backbone
tend towards better generalization regarding OoD datasets.

H.4 TABULAR EXPERIMENTS

As a case of extreme OoD generalization, we test our amortized models trained to handle variable
feature dimensions on the suite of regression and classification problems that we filtered out from the
OpenML platform, as outlined in Appendix G. We consider both linear and nonlinear probabilistic
models to tackle the regression and binary classification setups, which lead to predicting the parame-
ters of a linear regression/classification model and a small nonlinear neural network based on RELU
activation function. Further, we also perform the analysis with a diagonal Gaussian assumption and a
normalizing flow-based amortization model trained with both a forward and reverse KL objective. We
provide the results on the regression problems in (a) linear model with diagonal Gaussian assumption
(Figure 8), (b) linear model with normalizing flow (Figure 9), (c) nonlinear model with diagonal
Gaussian assumption (Figure 10), and (d) nonlinear model with normalizing flow (Figure 11). The
results of the classification problems are shown in (a) linear model with diagonal Gaussian assumption
(Figure 12), (b) linear model with normalizing flow (Figure 13), (c) nonlinear model with diagonal
Gaussian assumption (Figure 14), and (d) nonlinear model with normalizing flow (Figure 15). Our
experiments indicate that initializing with amortized models leads to better performance and training
than models trained via maximum a-posteriori approach and initialized with the prior, i.e., N (0, I).

We do provide an additional baseline of initializing with XAVIER-INIT initialization, which often
leads to faster convergence; however, as we consider the prior to be a unit normal, this is an unfair
baseline as we assume the weights to be initialized from a different prior. We leave the work of
computing Bayesian posteriors with different priors and testing an amortized Bayesian model with
XAVIER-INIT prior for the future.

25

Under review as a conference paper at ICLR 2024

CNLL (↓)
qφ Model GM GMM LR NLR LC NLC

2D 100D 5D 2 cl 1D 100D 1D 25D 2D 100D 2D 25D

Baseline
- Random 437.7 22581.2 3572.8 566.6 12967.8 7759.1 53006.3 78.5 311.7 172.9 600.4

- Optimization 264.5 13295.9 193.7 69.1 1433.9 75.5 5604.2 15.0 128.5 10.0 81.3

- MCMC 267.4 13543.3 266.7 73.3 1990.6 N/A 7277.8 20.1 382.6 18.5 1094.2

Fwd-KL

G
au

ss
ia

n DeepSets 265.7 13403.9 1574.8 70.3 9749.5 6119.1 45516.3 42.6 313.4 140.6 510.3

Transformer 265.6 13387.3 1576.6 70.2 3669.1 6281.3 43716.3 43.1 212.8 138.2 510.5

Rev-KL
DeepSets 265.6 13372.5 239.7 70.1 4826.8 86.6 7976.5 20.3 186.8 24.4 95.4

Transformer 265.6 13357.9 250.4 70.4 2126.5 86.6 5808.7 20.3 174.4 24.8 126.3

Fwd-KL

Fl
ow

DeepSets 265.7 13409.9 1113.4 70.3 9894.3 2154.9 35493.8 37.3 311.6 115.5 423.0

Transformer 265.6 13386.6 615.6 70.4 3806.0 2331.2 34746.5 36.8 182.6 85.7 419.0

Rev-KL
DeepSets 265.5 13368.6 256.5 70.2 5478.9 83.2 13995.1 19.6 146.7 22.5 75.4

Transformer 265.8 13364.1 223.4 70.3 2030.2 82.7 5804.6 20.0 145.3 21.3 91.8

Table 5: Fixed-Dimension Posterior Prediction: Experimental results for posterior inference on
fixed dimensional datasets evaluated on estimating the (a) mean of a Gaussian (GM), (b) means
of Gaussian mixture model (GMM), (c) parameters for (non-)linear regression (NLR/LR), and (d)
parameters for (non-)linear classification (NLC/LC). We consider different backbone architectures
and parametric distributions qφ, and use dataset-specific Bayesian and point estimates as baselines.
CNLL refers to the negative of the expected conditional log likelihood.

26

Under review as a conference paper at ICLR 2024

CNLL (↓)
qφ Model GM GMM LR NLR LC NLC

100D 5D 2 cl 1D 100D 1D 50D 2D 100D 2D 50D

Baseline
- Random 23118.9 3462.5 581.8 13407.0 7553.7 103462.2 77.6 321.6 178.6 865.7

- Optimization 13630.0 200.4 69.5 1350.3 79.9 18012.8 17.7 125.2 12.3 77.6

- MCMC 14019.9 402.7 91.0 2267.1 N/A 19443.9 29.9 298.2 41.3 2533.6

Fwd-KL

G
au

ss
ia

n DeepSets 15641.7 1550.4 71.8 10806.3 5471.5 88819.0 43.6 315.5 137.2 709.7

Transformer 14105.9 1580.8 73.1 4373.6 5642.0 86694.0 47.1 216.1 134.2 707.5

Rev-KL
DeepSets 13839.4 224.6 72.0 4707.8 129.3 28394.0 24.3 187.7 25.1 96.4

Transformer 13819.6 221.2 71.3 2233.0 124.5 15669.6 23.2 173.5 25.7 215.1

Fwd-KL

Fl
ow

DeepSets 15495.9 822.8 71.5 11447.5 4607.5 72458.0 39.8 314.2 123.6 603.0

Transformer 14064.6 226.8 71.8 4649.2 3960.3 70083.0 40.4 192.9 122.3 596.3

Rev-KL
DeepSets 14048.4 253.3 71.5 5563.3 128.3 28703.6 22.6 145.4 28.6 77.4

Transformer 13829.4 217.8 71.0 2378.3 110.2 16439.6 22.8 143.2 24.7 126.7

Table 6: Variable-Dimension Posterior Prediction: Experimental results for posterior inference on
variable dimensional datasets evaluated on estimating the (a) mean of a Gaussian (GM), (b) means
of Gaussian mixture model (GMM), (c) parameters for (non-)linear regression (NLR/LR), and (d)
parameters for (non-)linear classification (NLC/LC). We consider different backbone architectures
and parametric distributions qφ, and use dataset-specific Bayesian and point estimates as baselines.
CNLL refers to the negative of the expected conditional log likelihood.

27

Under review as a conference paper at ICLR 2024

0 20 40 60 80 100
Dimensionality

5
0
5

10
15
20
25
30
35
40
45

Lo
ss

Linear Regression

0 20 40 60 80 100
Dimensionality

55

60

65

70

75

80

85

90

95

Ac
cu

ra
cy

Linear Classification

Forward-KL Reverse-KL
Figure 5: Trends of Performance over different Dimensions in Variable Dimensionality Setup:
We see that our proposed reverse KL methodology outperforms the forward KL one.

0 20 40 60 80 100
Dimensionality

10

0

10

20

30

40

50

Lo
ss

Linear Regression

0 20 40 60 80 100
Dimensionality

50

55

60

65

70

75

80

85

90

Ac
cu

ra
cy

Linear Classification

DeepSets Transformer
Figure 6: Trends of Performance over different Dimensions in Variable Dimensionality Setup:
We see that transformer models generalize better to different dimensional inputs than DeepSets.

28

Under review as a conference paper at ICLR 2024

0 20 40 60 80 100
Dimensionality

5

0

5

10

15

20

25

30

35

Lo
ss

Linear Regression

0 20 40 60 80 100
Dimensionality

55

60

65

70

75

80

85

90

95
Ac

cu
ra

cy
Linear Classification

Gaussian Normalizing Flow
Figure 7: Trends of Performance over different Dimensions in Variable Dimensionality Setup:
We see that normalizing flows leads to similar performances than Gaussian based variational approxi-
mation.

29

Under review as a conference paper at ICLR 2024

L2 Loss (↓) Accuracy (↑)
qφ Model GMM LC

2D-2cl 2D-5cl 5D-5cl 2D-5cl 100D-5cl

Baseline
- Prior 1.92 0.72 5.14 20.52 19.97

- Optimization 0.17 0.12 0.43 84.75 41.55

- MCMC 0.18 0.13 0.58 76.50 29.95

Fwd-KL

G
au

ss
ia

n DeepSets 0.91 0.54 2.44 66.57 19.92

Transformer 0.93 0.54 2.46 68.22 26.12

Rev-KL
DeepSets 0.18 0.13 0.47 80.91 23.94

Transformer 0.20 0.13 0.46 80.96 29.95

Fwd-KL

Fl
ow

DeepSets 0.19 0.23 0.61 81.72 20.12

Transformer 0.20 0.26 0.68 82.11 26.58

Rev-KL
DeepSets 0.18 0.13 0.51 81.48 20.39

Transformer 0.18 0.13 0.52 81.46 30.63

Table 7: Fixed-Dim Posterior Prediction: Experimental results for posterior inference on fixed
dimensional datasets evaluated on estimating the (a) means of Gaussian mixture model (GMM), and
(b) parameters for linear classification (LC) for additional probabilistic model setups (eg. multi-class).
We consider different backbone architectures and parametric distributions qφ, and use dataset-specific
Bayesian and point estimates as baselines. L2 Loss and Accuracy refer to the expected posterior-
predictive L2 loss and accuracy respectively. Here, cl refers to the number of clusters for GMM and
number of classes for LC.

30

Under review as a conference paper at ICLR 2024

L2 Loss (↓) Accuracy (↑)
Setup qφ Model NLR NLC

1D 25D 2D-2cl 2D-5cl 25D-2cl 25D-5cl

TA
N

H

Baseline
- Prior 31.47 47.37 50.31 19.88 49.72 20.08

- Optimization 0.27 8.64 97.77 94.03 78.21 54.05

- MCMC 0.28 12.08 96.98 90.84 66.87 37.25

Fwd-KL

G
au

ss
ia

n DeepSets 30.22 47.17 49.99 19.22 49.89 19.71

Transformer 30.32 47.15 49.98 19.45 49.89 19.85

Rev-KL
DeepSets 0.38 9.87 92.39 78.09 49.86 19.70

Transformer 0.38 8.81 92.82 78.61 73.27 19.71

Fwd-KL

Fl
ow

DeepSets 31.18 45.87 49.91 19.96 49.95 19.96

Transformer 13.29 46.37 49.93 19.95 49.95 20.06

Rev-KL
DeepSets 0.37 21.52 93.04 82.00 49.99 19.98

Transformer 0.36 8.54 93.06 81.96 50.03 20.03

R
E

L
U

Baseline
- Prior 42.65 289.83 49.89 19.93 49.80 19.62

- Optimization 0.29 30.52 96.56 94.51 79.05 60.01

- MCMC N/A 39.57 95.81 92.18 72.05 46.62

Fwd-KL

G
au

ss
ia

n DeepSets 31.24 243.62 59.22 32.08 57.71 30.48

Transformer 32.06 233.75 60.09 32.73 57.57 30.81

Rev-KL
DeepSets 0.35 43.37 90.52 82.92 60.41 34.28

Transformer 0.35 31.42 90.34 84.13 74.86 45.57

Fwd-KL

Fl
ow

DeepSets 11.46 186.95 61.57 35.17 58.52 31.91

Transformer 12.61 182.98 69.53 35.68 58.43 32.08

Rev-KL
DeepSets 0.33 74.97 90.87 84.46 61.05 34.74

Transformer 0.33 31.30 91.51 84.72 75.11 45.23

Table 8: Fixed-Dim Posterior Prediction: Experimental results for posterior inference on fixed
dimensional datasets evaluated on estimating the parameters of nonlinear regression (NLR) and
classification (NLC) setups, with 1 layered MLP with different activation functions in the proba-
bilistic model. We also consider a multi-class classification setup. We consider different backbone
architectures and parametric distributions qφ, and use dataset-specific Bayesian and point estimates
as baselines. L2 Loss and Accuracy refer to the expected posterior-predictive L2 loss and accuracy
respectively. Here, cl refers to the number classes.

31

Under review as a conference paper at ICLR 2024

L2 Loss (↓) Accuracy (↑)
Setup qφ Model NLR NLC

1D 25D 2D-2cl 2D-5cl 25D-2cl 25D-5cl

TA
N

H

Baseline
- Prior 53.78 54.84 49.76 19.48 50.00 20.07

- Optimization 0.48 26.95 97.25 91.81 69.63 42.20

- MCMC 0.34 29.80 95.09 84.68 52.27 24.28

Fwd-KL

G
au

ss
ia

n DeepSets 54.58 55.63 50.03 19.75 50.11 20.09

Transformer 54.36 55.95 50.03 19.97 50.11 20.24

Rev-KL
DeepSets 0.70 26.82 84.48 66.21 50.12 20.06

Transformer 0.71 16.73 84.04 66.54 50.10 20.10

Fwd-KL

Fl
ow

DeepSets 52.97 51.39 49.77 19.89 49.82 19.96

Transformer 52.58 51.78 49.81 20.06 49.92 20.38

Rev-KL
DeepSets 0.66 24.19 86.46 42.63 49.42 19.90

Transformer 0.64 15.98 86.03 68.84 49.46 20.16

R
E

L
U

Prior 752.06 4846.76 49.12 19.91 50.10 19.79

Optimization 1.39 609.99 98.08 96.91 80.72 60.15

MCMC N/A N/A 84.43 48.73 64.77 32.29

Fwd-KL

G
au

ss
ia

n DeepSets 564.45 3995.57 57.51 31.73 58.79 30.07

Transformer 569.48 4087.63 58.04 32.37 58.53 29.94

Rev-KL
DeepSets 0.87 765.99 89.49 72.16 66.97 43.43

Transformer 0.80 611.34 91.18 78.09 67.19 44.39

Fwd-KL

Fl
ow

DeepSets 528.56 2584.34 57.66 32.93 66.60 30.60

Transformer 529.59 2605.93 58.76 33.36 66.92 30.75

Rev-KL
DeepSets 0.87 732.04 89.95 72.49 77.29 45.59

Transformer 0.68 484.93 90.71 81.36 77.01 45.14

Table 9: Fixed-Dim Posterior Prediction: Experimental results for posterior inference on fixed
dimensional datasets evaluated on estimating the parameters of nonlinear regression (NLR) and
classification (NLC) setups, with 2 layered MLP with different activation functions in the proba-
bilistic model. We also consider a multi-class classification setup. We consider different backbone
architectures and parametric distributions qφ, and use dataset-specific Bayesian and point estimates
as baselines. L2 Loss and Accuracy refer to the expected posterior-predictive L2 loss and accuracy
respectively. Here, cl refers to the number classes.

32

Under review as a conference paper at ICLR 2024

L2 Loss (↓) Accuracy (↑)
qφ Model GM GMM LR LC

50D 2D-2cl 2D-5cl 5D-5cl 50D 2D-5cl 50D-2cl 50D-5cl 100D-5cl

Baseline
- Prior 153.50 3.33 0.91 1.64 35.93 19.95 49.99 20.06 20.10

- Optimization 50.51 0.21 0.13 0.33 0.63 85.15 79.93 52.32 42.21

Fwd-KL

G
au

ss
ia

n DeepSets 52.16 2.44 0.74 1.22 18.94 20.51 51.53 20.05 20.07

Transformer 51.68 2.42 0.74 1.22 1.53 59.08 69.98 39.54 26.50

Rev-KL
DeepSets 51.28 0.94 0.37 0.39 7.51 79.97 68.20 32.07 25.38

Transformer 51.19 0.21 0.32 0.32 1.42 80.29 73.21 42.14 30.91

Fwd-KL

Fl
ow

DeepSets 52.27 1.51 0.46 0.51 22.71 20.46 51.53 19.93 19.99

Transformer 51.81 1.55 0.52 0.58 1.62 73.40 73.90 40.90 26.32

Rev-KL
DeepSets 51.26 0.32 0.35 0.37 9.10 80.99 62.85 22.90 20.96

Transformer 51.19 0.21 0.34 0.32 1.38 81.31 75.19 42.96 30.80

Table 10: Variable-Dim Posterior Prediction: Experimental results for posterior inference on
variable dimensional datasets evaluated on estimating the (a) mean of a Gaussian distribution,
(b) means of Gaussian mixture model (GMM), (c) parameters for linear regression (LR), and (d)
parameters for linear classification (LC) for additional probabilistic model setups (eg. multi-class).
We consider different backbone architectures and parametric distributions qφ, and use dataset-specific
bayesian and point estimates as baselines. L2 Loss and Accuracy refer to the expected posterior-
predictive L2 loss and accuracy respectively. Here, cl refers to the number of clusters for GMM and
number of classes for LC.

33

Under review as a conference paper at ICLR 2024

L2 Loss (↓) Accuracy (↑)
Setup qφ Model NLR NLC

1D 50D 100D 2D-2cl 2D-5cl 50D-2cl 50D-5cl 100D-2cl 100D-5cl

TA
N

H

Baseline
- Prior 28.54 51.32 54.95 50.71 19.50 49.73 19.93 50.03 20.10

- Optimization 0.27 17.54 33.97 97.86 93.66 69.55 42.35 65.11 35.33

- MCMC 0.28 17.86 28.35 97.18 89.85 57.19 26.21 54.69 23.38

Fwd-KL

G
au

ss
ia

n DeepSets 27.93 51.44 55.01 49.35 20.32 50.06 19.91 49.96 19.91

Transformer 27.43 51.08 55.35 49.34 20.52 50.07 20.04 49.95 20.06

Rev-KL
DeepSets 0.50 15.37 31.96 92.10 77.10 50.09 19.92 49.97 19.95

Transformer 0.43 13.82 24.65 92.31 78.16 66.26 19.93 57.94 19.95

Fwd-KL

Fl
ow

DeepSets 31.23 49.49 56.85 49.15 20.70 50.17 19.78 50.53 20.30

Transformer 30.87 48.49 57.23 - - - 21.16 19.93 20.23

Rev-KL
DeepSets 0.43 20.20 30.61 90.45 71.88 49.94 19.74 50.08 19.85

Transformer 0.43 11.69 32.95 92.31 78.60 63.59 20.37 54.20 20.00

R
E

L
U

Prior 41.39 550.24 1066.89 50.92 19.87 49.86 19.95 50.43 20.01

Optimization 0.32 96.28 261.19 96.90 94.20 74.22 54.10 71.20 48.06

MCMC N/A 104.11 278.48 96.53 90.59 67.11 39.20 65.53 34.95

Fwd-KL

G
au

ss
ia

n DeepSets 29.89 464.79 900.85 59.40 19.75 59.32 19.82 60.76 19.72

Transformer 29.92 453.54 907.33 60.36 30.93 59.38 30.33 60.86 30.52

Rev-KL
DeepSets 0.58 149.36 370.32 89.67 61.72 62.78 34.21 64.45 34.25

Transformer 0.56 83.55 259.64 89.35 74.12 72.59 36.33 69.69 35.33

Fwd-KL

Fl
ow

DeepSets 24.03 379.99 739.44 60.24 32.99 60.59 28.29 60.60 26.02

Transformer 20.87 367.81 734.97 60.93 33.85 60.83 29.25 60.77 27.11

Rev-KL
DeepSets 0.57 150.69 355.97 88.25 58.51 63.55 31.17 63.64 28.07

Transformer 0.48 87.65 295.94 90.02 74.56 71.74 38.43 66.94 31.00

Table 11: Variable-Dim Posterior Prediction: Experimental results for posterior inference on
variable dimensional datasets evaluated on estimating the parameters of nonlinear regression (NLR)
and classification (NLC) setups, with 1 layered MLP with different activation functions in the
probabilistic model. We also consider a multi-class classification setup. We consider different
backbone architectures and parametric distributions qφ, and use dataset-specific Bayesian and point
estimates as baselines. L2 Loss and Accuracy refer to the expected posterior-predictive L2 loss and
accuracy respectively. Here, cl refers to the number of classes.

34

Under review as a conference paper at ICLR 2024

L2 Loss (↓) Accuracy (↑)
Setup qφ Model NLR NLC

1D 50D 100D 2D-2cl 2D-5cl 50D-2cl 50D-5cl 100D-2cl 100D-5cl

TA
N

H

Baseline
- Prior 47.50 53.92 53.77 50.25 20.32 50.03 19.86 50.03 20.10

- Optimization 0.43 38.92 48.70 97.61 92.65 65.67 35.57 60.55 30.07

- MCMC 0.45 39.74 49.78 93.92 68.67 50.53 20.79 50.04 20.66

Fwd-KL

G
au

ss
ia

n DeepSets 47.78 53.72 53.76 49.70 19.98 49.86 20.04 49.62 20.09

Transformer 47.20 53.92 53.86 49.71 20.14 49.85 20.18 49.63 20.16

Rev-KL
DeepSets 6.69 26.27 26.74 49.68 19.99 49.84 20.06 49.65 20.06

Transformer 1.36 21.35 34.09 87.37 19.95 49.82 20.05 49.66 20.12

Fwd-KL

Fl
ow

DeepSets 48.22 52.32 48.74 50.16 18.57 49.97 20.01 49.95 20.16

Transformer 47.90 53.31 49.83 50.04 18.76 50.14 20.12 49.86 20.23

Rev-KL
DeepSets 7.53 25.45 23.90 51.46 19.28 50.03 19.83 49.72 20.10

Transformer 0.97 25.44 28.74 80.55 19.13 49.96 20.10 49.85 20.13

R
E

L
U

Baseline
- Prior 670.13 9152.76 17988.61 49.58 20.50 50.23 19.76 49.95 20.56

- Optimization 2.49 1557.89 4140.41 97.55 96.69 77.68 56.56 77.48 56.86

- MCMC N/A N/A N/A 64.63 25.76 62.28 28.31 62.73 30.82

Fwd-KL

G
au

ss
ia

n DeepSets 507.84 6989.40 13575.78 60.63 20.01 59.46 20.33 60.39 20.14

Transformer 504.99 6921.67 13463.19 60.27 30.95 59.30 30.09 60.18 31.38

Rev-KL
DeepSets 5.93 2093.88 4508.67 76.89 54.92 67.21 45.37 68.75 49.43

Transformer 4.29 1509.15 4128.72 82.55 58.95 67.30 45.11 68.58 48.18

Fwd-KL

Fl
ow

DeepSets 633.54 6280.19 10687.31 50.10 20.68 52.09 19.16 50.87 20.96

Transformer 625.52 5378.48 9447.70 65.99 33.93 62.97 38.40 63.40 35.53

Rev-KL
DeepSets 4.12 2046.27 4151.37 82.87 60.21 70.87 60.04 72.22 51.70

Transformer 1.78 1413.80 3539.80 90.75 64.79 70.88 59.71 73.27 50.00

Table 12: Variable-Dim Posterior Prediction: Experimental results for posterior inference on
variable dimensional datasets evaluated on estimating the parameters of nonlinear regression (NLR)
and classification (NLC) setups, with 2 layered MLP with different activation functions in the
probabilistic model. We also consider a multi-class classification setup. We consider different
backbone architectures and parametric distributions qφ, and use dataset-specific Bayesian and point
estimates as baselines. L2 Loss and Accuracy refer to the expected posterior-predictive L2 loss and
accuracy respectively. Here, cl refers to the number of classes.

35

Under review as a conference paper at ICLR 2024

LR NLR GP
qφ Model LR NLR GP LR NLR GP LR NLR GP

Baseline
- Random 3.000 18.4 1.955 3.000 18.47 1.955 3.000 18.4 1.955
- Optimization 0.242 0.74 0.053 0.242 0.741 0.053 0.242 0.74 0.053
- MCMC 0.247 3.64 0.062 0.247 3.643 0.062 0.247 3.64 0.062

Fwd-KL

G
au

ss
ia

n DeepSets 0.248 0.70 0.059 - - - - - -
Transformer 0.248 3.79 0.060 - - - - - -

Rev-KL
DeepSets 0.250 0.68 0.059 0.248 0.636 0.061 0.247 0.91 0.060

Transformer 0.249 2.35 0.061 0.246 0.637 0.060 0.250 5.65 0.061

Fwd-KL

Fl
ow

DeepSets 0.247 1.31 0.060 - - - - - -
Transformer 0.247 3.30 0.059 - - - - - -

Rev-KL
DeepSets 0.248 0.81 0.059 0.249 0.637 0.059 0.248 0.99 0.060

Transformer 0.246 1.72 0.058 0.245 0.641 0.058 0.246 4.53 0.059

Table 13: LR Model: Posterior predictive performance with L2 loss metric for the linear regression
model. The top row highlights the data used to train the model (LR: Linear Regression, NLR:
Nonlinear Regression (TANH), GP: Gaussian Process Regression), and the second row highlights the
data used for evaluation. We note that a forward KL method can only be trained on data simulated
from the assumed probabilistic model and thus cannot be trained on nonlinear data if the assumed
probabilistic model is linear.

36

Under review as a conference paper at ICLR 2024

LR NLR GP
Objective qφ Model LR NLR GP LR NLR GP LR NLR GP

Baseline
- Random 16.3 31.2 13.6 16.3 31.2 13.69 16.3 31.2 13.69
- Optimization 0.24 0.28 0.00 0.24 0.28 0.000 0.24 0.28 0.000
- MCMC 0.26 0.30 0.01 0.26 0.30 0.019 0.26 0.30 0.019

Fwd-KL

G
au

ss
ia

n DeepSets - - - 14.7 32.4 14.19 - - -
Transformer - - - 14.3 32.0 13.90 - - -

Rev-KL
DeepSets 0.33 0.76 0.14 0.34 0.40 0.112 0.35 1.05 0.115

Transformer 0.33 1.35 0.13 0.34 0.41 0.128 0.41 2.63 0.099

Fwd-KL

Fl
ow

DeepSets - - - 11.9 29.2 13.50 - - -
Transformer - - - 12.5 13.2 12.38 - - -

Rev-KL
DeepSets 0.31 0.74 0.11 0.31 0.38 0.080 0.32 0.84 0.081

Transformer 0.32 1.13 0.12 0.32 0.37 0.087 0.36 1.16 0.080

Table 14: NLR (TANH) Model: Posterior predictive performance with L2 loss metric for the nonlinear
regression model with tanh activation function. The top row highlights the data used to train the model
(LR: Linear Regression, NLR: Nonlinear Regression (TANH), GP: Gaussian Process Regression),
and the second row highlights the data used for evaluation. We note that a forward KL method can
only be trained on data simulated from the assumed probabilistic model and thus cannot be trained
on linear or GP data if the assumed probabilistic model is a single-layered nonlinear MLP.

37

Under review as a conference paper at ICLR 2024

LR NLR GP
Objective qφ Model LR NLR GP LR NLR GP LR NLR GP

Baseline
- Random 22.7 49.3 21.0 22.72 49.33 21.08 22.72 49.3 21.08
- Optimization 0.25 0.29 0.00 0.256 0.296 0.003 0.25 0.29 0.003
- MCMC N/A N/A N/A N/A N/A N/A N/A N/A N/A

Fwd-KL

G
au

ss
ia

n DeepSets - - - 18.00 34.92 16.00 - - -
Transformer - - - 17.22 34.08 15.30 - - -

Rev-KL
DeepSets 0.28 3.16 0.10 0.310 0.381 0.074 0.302 1.42 0.069

Transformer 0.29 4.29 0.10 0.296 0.361 0.066 0.385 4.57 0.073

Fwd-KL

Fl
ow

DeepSets - - - 7.296 11.47 8.105 - - -
Transformer - - - 9.863 12.53 10.34 - - -

Rev-KL
DeepSets 0.27 0.85 0.09 0.290 0.351 0.059 0.288 3.84 0.059

Transformer 0.28 5.73 0.08 0.296 0.352 0.065 0.397 16.0 0.051

Table 15: NLR (RELU) model: Posterior predictive performance with L2 loss metric for the nonlinear
regression model with ReLU activation function. The top row highlights the data used to train
the model (LR: Linear Regression, NLR: Nonlinear Regression (RELU), GP: Gaussian Process
Regression), and the second row highlights the data used for evaluation. We note that a forward KL
method can only be trained on data simulated from the assumed probabilistic model and thus cannot
be trained on linear or GP data if the assumed probabilistic model is a single-layered nonlinear MLP.

38

Under review as a conference paper at ICLR 2024

0 500 1000 1500 2000 2500
2

4

6

8

10

12

14

Lo
ss

airfoil_self_noise

0 500 1000 1500 2000 2500
2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
concrete_compressive_strength

0 500 1000 1500 2000 2500
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

energy_efficiency

0 500 1000 1500 2000 2500

10

12

14

16

18

20

22

Lo
ss

solar_flare

0 500 1000 1500 2000 2500

30

40

50

60

student_performance_por

0 500 1000 1500 2000 2500

4

6

8

10

12

14

16
QSAR_fish_toxicity

0 500 1000 1500 2000 2500
Iteration

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

Lo
ss

red_wine

0 500 1000 1500 2000 2500
Iteration

2

4

6

8

10

12

14

socmob

0 500 1000 1500 2000 2500
Iteration

0

5

10

15

20

25

30

35

40
cars

Method
xavier-Initialization
Normal Initialization
Forward-KL Initialization
Reverse-KL Initialization

Figure 8: Tabular Experiments | Linear Regression with Diagonal Gaussian: For every regression
dataset from the OpenML platform considered, we initialize the parameters of a linear regression-
based probabilistic model with the amortized inference models which were trained with a diagonal
Gaussian assumption. The parameters are then further trained with maximum-a-posteriori (MAP) es-
timate with gradient descent. Reverse and Forward KL denote initialization with the correspondingly
trained amortized model. Optimization refers to a MAP-based optimization baseline initialized from
the prior N (0, I), whereas Xavier-Optimization refers to initialization from the Xavier initialization
scheme.

39

Under review as a conference paper at ICLR 2024

0 500 1000 1500 2000 2500
2

4

6

8

10

12

14

Lo
ss

airfoil_self_noise

0 500 1000 1500 2000 2500
2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
concrete_compressive_strength

0 500 1000 1500 2000 2500
0

5

10

15

20

25

energy_efficiency

0 500 1000 1500 2000 2500

10

12

14

16

18

20

22

Lo
ss

solar_flare

0 500 1000 1500 2000 2500

30

40

50

60

student_performance_por

0 500 1000 1500 2000 2500

4

6

8

10

12

14

16
QSAR_fish_toxicity

0 500 1000 1500 2000 2500
Iteration

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

Lo
ss

red_wine

0 500 1000 1500 2000 2500
Iteration

2

4

6

8

10

12

14

socmob

0 500 1000 1500 2000 2500
Iteration

0

5

10

15

20

25

30

35

40
cars

Method
xavier-Initialization
Normal Initialization
Forward-KL Initialization
Reverse-KL Initialization

Figure 9: Tabular Experiments | Linear Regression with Normalizing Flow: For every regression
dataset from the OpenML platform considered, we initialize the parameters of a linear regression-
based probabilistic model with the amortized inference models which were trained with a normalizing
flow-based model. The parameters are then further trained with maximum-a-posteriori (MAP) esti-
mate with gradient descent. Reverse and Forward KL denote initialization with the correspondingly
trained amortized model. Optimization refers to a MAP-based optimization baseline initialized from
the prior N (0, I), whereas Xavier-Optimization refers to initialization from the Xavier initialization
scheme.

40

Under review as a conference paper at ICLR 2024

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

160

Lo
ss

airfoil_self_noise

0 500 1000 1500 2000 2500
0

50

100

150

200

concrete_compressive_strength

0 500 1000 1500 2000 2500
0

50

100

150

200

energy_efficiency

0 500 1000 1500 2000 2500
0

50

100

150

200

Lo
ss

solar_flare

0 500 1000 1500 2000 2500
0

100

200

300

400

500

600
student_performance_por

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

QSAR_fish_toxicity

0 500 1000 1500 2000 2500
Iteration

0

50

100

150

200

250

Lo
ss

red_wine

0 500 1000 1500 2000 2500
Iteration

0

20

40

60

80

100

120

140

socmob

0 500 1000 1500 2000 2500
Iteration

0

50

100

150

200

250

300

350

cars

Method
xavier-Initialization
Normal Initialization
Forward-KL Initialization
Reverse-KL Initialization

Figure 10: Tabular Experiments | Nonlinear Regression with Diagonal Gaussian: For every
regression dataset from the OpenML platform considered, we initialize the parameters of a nonlinear
regression-based probabilistic model with the amortized inference models which were trained with a
diagonal Gaussian assumption. The parameters are then further trained with maximum-a-posteriori
(MAP) estimate with gradient descent. Reverse and Forward KL denote initialization with the
correspondingly trained amortized model. Optimization refers to a MAP-based optimization baseline
initialized from the prior N (0, I), whereas Xavier-Optimization refers to initialization from the
Xavier initialization scheme.

41

Under review as a conference paper at ICLR 2024

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

160

Lo
ss

airfoil_self_noise

0 500 1000 1500 2000 2500
0

50

100

150

200

concrete_compressive_strength

0 500 1000 1500 2000 2500
0

50

100

150

200

250

300
energy_efficiency

0 500 1000 1500 2000 2500
0

50

100

150

200

Lo
ss

solar_flare

0 500 1000 1500 2000 2500
0

100

200

300

400

500

600
student_performance_por

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

QSAR_fish_toxicity

0 500 1000 1500 2000 2500
Iteration

0

50

100

150

200

250

Lo
ss

red_wine

0 500 1000 1500 2000 2500
Iteration

0

20

40

60

80

100

120

140

socmob

0 500 1000 1500 2000 2500
Iteration

0

50

100

150

200

250

300

350

cars

Method
xavier-Initialization
Normal Initialization
Forward-KL Initialization
Reverse-KL Initialization

Figure 11: Tabular Experiments | Nonlinear Regression with Normalizing Flow: For every
regression dataset from the OpenML platform considered, we initialize the parameters of a nonlinear
regression-based probabilistic model with the amortized inference models which were trained with a
normalizing flow-based model. The parameters are then further trained with maximum-a-posteriori
(MAP) estimate with gradient descent. Reverse and Forward KL denote initialization with the
correspondingly trained amortized model. Optimization refers to a MAP-based optimization baseline
initialized from the prior N (0, I), whereas Xavier-Optimization refers to initialization from the
Xavier initialization scheme.

42

Under review as a conference paper at ICLR 2024

0 500 1000 1500 2000 2500

50

55

60

65

70

Ac
cu

ra
cy

credit-g

0 500 1000 1500 2000 2500

45

50

55

60

65

70

75
diabetes

0 500 1000 1500 2000 2500

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

tic-tac-toe

0 500 1000 1500 2000 2500
40

50

60

70

80

90

Ac
cu

ra
cy

pc4

0 500 1000 1500 2000 2500

50

60

70

80

90

pc3

0 500 1000 1500 2000 2500

40

50

60

70

80

kc2

0 500 1000 1500 2000 2500

40

50

60

70

80

90

Ac
cu

ra
cy

pc1

0 500 1000 1500 2000 2500
40

50

60

70

80

90

banknote-authentication

0 500 1000 1500 2000 2500
40

45

50

55

60

65

70

75

blood-transfusion-service-center

0 500 1000 1500 2000 2500
45

50

55

60

65

70

Ac
cu

ra
cy

ilpd

0 500 1000 1500 2000 2500
Iteration

45

50

55

60

65

70

75

80
qsar-biodeg

0 500 1000 1500 2000 2500
Iteration

40

50

60

70

80

90

wdbc

0 500 1000 1500 2000 2500
Iteration

50

60

70

80

90

Ac
cu

ra
cy

climate-model-simulation-crashes

Method
xavier-Initialization
Normal Initialization
Forward-KL Initialization
Reverse-KL Initialization

Figure 12: Tabular Experiments | Linear Classification with Diagonal Gaussian: For every
classification dataset from the OpenML platform considered, we initialize the parameters of a linear
classification-based probabilistic model with the amortized inference models which were trained
with a diagonal Gaussian assumption. The parameters are then further trained with maximum-a-
posteriori (MAP) estimate with gradient descent. Reverse and Forward KL denote initialization with
the correspondingly trained amortized model. Optimization refers to a MAP-based optimization
baseline initialized from the prior N (0, I), whereas Xavier-Optimization refers to initialization from
the Xavier initialization scheme.

43

Under review as a conference paper at ICLR 2024

0 500 1000 1500 2000 2500

50

55

60

65

70

Ac
cu

ra
cy

credit-g

0 500 1000 1500 2000 2500

45

50

55

60

65

70

diabetes

0 500 1000 1500 2000 2500

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

tic-tac-toe

0 500 1000 1500 2000 2500
40

50

60

70

80

90

Ac
cu

ra
cy

pc4

0 500 1000 1500 2000 2500

50

60

70

80

90

pc3

0 500 1000 1500 2000 2500

40

50

60

70

80

kc2

0 500 1000 1500 2000 2500

40

50

60

70

80

90

Ac
cu

ra
cy

pc1

0 500 1000 1500 2000 2500
40

50

60

70

80

90
banknote-authentication

0 500 1000 1500 2000 2500
40

45

50

55

60

65

70

75

blood-transfusion-service-center

0 500 1000 1500 2000 2500
45

50

55

60

65

70

Ac
cu

ra
cy

ilpd

0 500 1000 1500 2000 2500
Iteration

45

50

55

60

65

70

75

qsar-biodeg

0 500 1000 1500 2000 2500
Iteration

40

50

60

70

80

90

wdbc

0 500 1000 1500 2000 2500
Iteration

50

60

70

80

90

Ac
cu

ra
cy

climate-model-simulation-crashes

Method
xavier-Initialization
Normal Initialization
Forward-KL Initialization
Reverse-KL Initialization

Figure 13: Tabular Experiments | Linear Classification with Normalizing Flow: For every
classification dataset from the OpenML platform considered, we initialize the parameters of a linear
classification-based probabilistic model with the amortized inference models which were trained
with a normalizing flow-based model. The parameters are then further trained with maximum-a-
posteriori (MAP) estimate with gradient descent. Reverse and Forward KL denote initialization with
the correspondingly trained amortized model. Optimization refers to a MAP-based optimization
baseline initialized from the prior N (0, I), whereas Xavier-Optimization refers to initialization from
the Xavier initialization scheme.

44

Under review as a conference paper at ICLR 2024

0 500 1000 1500 2000 2500

45

50

55

60

65

70

Ac
cu

ra
cy

credit-g

0 500 1000 1500 2000 2500

45

50

55

60

65

diabetes

0 500 1000 1500 2000 2500
45

50

55

60

65

tic-tac-toe

0 500 1000 1500 2000 2500
40

50

60

70

80

90

Ac
cu

ra
cy

pc4

0 500 1000 1500 2000 2500
40

50

60

70

80

90

pc3

0 500 1000 1500 2000 2500

40

50

60

70

80

kc2

0 500 1000 1500 2000 2500

40

50

60

70

80

90

Ac
cu

ra
cy

pc1

0 500 1000 1500 2000 2500

42.5

45.0

47.5

50.0

52.5

55.0

57.5

banknote-authentication

0 500 1000 1500 2000 2500

45

50

55

60

65

70

75

80
blood-transfusion-service-center

0 500 1000 1500 2000 2500

45

50

55

60

65

70

Ac
cu

ra
cy

ilpd

0 500 1000 1500 2000 2500
Iteration

45

50

55

60

65

qsar-biodeg

0 500 1000 1500 2000 2500
Iteration

45

50

55

60

65

70
wdbc

0 500 1000 1500 2000 2500
Iteration

40

50

60

70

80

90

Ac
cu

ra
cy

climate-model-simulation-crashes

Method
xavier-Initialization
Normal Initialization
Forward-KL Initialization
Reverse-KL Initialization

Figure 14: Tabular Experiments | Nonlinear Classification with Diagonal Gaussian: For every
classification dataset from the OpenML platform considered, we initialize the parameters of a
nonlinear classification-based probabilistic model with the amortized inference models which were
trained with a diagonal Gaussian assumption. The parameters are then further trained with maximum-
a-posteriori (MAP) estimate with gradient descent. Reverse and Forward KL denote initialization
with the correspondingly trained amortized model. Optimization refers to a MAP-based optimization
baseline initialized from the prior N (0, I), whereas Xavier-Optimization refers to initialization from
the Xavier initialization scheme.

45

Under review as a conference paper at ICLR 2024

0 500 1000 1500 2000 2500

45

50

55

60

65

70

Ac
cu

ra
cy

credit-g

0 500 1000 1500 2000 2500

45

50

55

60

65

diabetes

0 500 1000 1500 2000 2500
45

50

55

60

65

tic-tac-toe

0 500 1000 1500 2000 2500
40

50

60

70

80

90

Ac
cu

ra
cy

pc4

0 500 1000 1500 2000 2500
40

50

60

70

80

90

pc3

0 500 1000 1500 2000 2500

40

50

60

70

80

kc2

0 500 1000 1500 2000 2500

40

50

60

70

80

90

Ac
cu

ra
cy

pc1

0 500 1000 1500 2000 2500

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0
banknote-authentication

0 500 1000 1500 2000 2500

45

50

55

60

65

70

75

80
blood-transfusion-service-center

0 500 1000 1500 2000 2500

45

50

55

60

65

70

Ac
cu

ra
cy

ilpd

0 500 1000 1500 2000 2500
Iteration

45

50

55

60

65

qsar-biodeg

0 500 1000 1500 2000 2500
Iteration

45

50

55

60

65

70
wdbc

0 500 1000 1500 2000 2500
Iteration

40

50

60

70

80

90

Ac
cu

ra
cy

climate-model-simulation-crashes

Method
xavier-Initialization
Normal Initialization
Forward-KL Initialization
Reverse-KL Initialization

Figure 15: Tabular Experiments | Linear Classification with Normalizing Flow: For every
classification dataset from the OpenML platform considered, we initialize the parameters of a linear
classification-based probabilistic model with the amortized inference models which were trained
with a normalizing flow-based model. The parameters are then further trained with maximum-a-
posteriori (MAP) estimate with gradient descent. Reverse and Forward KL denote initialization with
the correspondingly trained amortized model. Optimization refers to a MAP-based optimization
baseline initialized from the prior N (0, I), whereas Xavier-Optimization refers to initialization from
the Xavier initialization scheme.

46

	Related Work
	Variational Autoencoders
	Hypernetworks
	In-Context Learning
	Meta Learning
	Neural Processes
	Simulation-Based Inference
	Amortization in Gaussian Processes
	Mode Collapse in Variational Inference

	Architectures respecting Exchangeability
	DeepSets
	Transformers

	Probabilistic Models
	Metrics
	Architecture Details
	Transformer
	DeepSets
	Normalizing Flows

	Experimental Details
	Fixed-Dim
	Variable-Dim
	Model Misspecification
	Tabular Experiments

	OpenML Datasets
	Additional Experiments
	Fixed-Dim
	Variable-Dim
	Model Misspecification
	Tabular Experiments

