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A Graphical model

The constrained generative model equivalent to standard dot-product attention (Section 3.3) can be
expressed as a Bayesian probabilistic graphical model shown in Fig 1. In order to generate a query qi
(observed) and a value vi (observed) at unit i, a memory unit ui (unobserved) is first sampled from
a prior πij over units j in the the memory bank. This is done independently for each unit across
the memory bank comprising of n total units. The per-unit queries and values are then sampled
independently from isotropic Gaussians as described in Section 3.3.
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Figure 1: Probabilistic generative model for queries and values. Graphical representation of the
generative model for a query (qi) and a value (vi) through a corresponding hidden latent variable (ui)
that indexes over units of a probabilistic memory bank. n denotes the #units in the memory bank as
well as the number of generated query/value pairs.

B Proofs

B.1 Relationship to standard attention

We provide a detailed proof of Eq. (12). With the assumptions of Section 3.3, Eq. (4) is given by
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where wti,j , including the precision parameter βj , is
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Taking the derivative w.r.t. vt+1 and setting it to zero,

∇vt+1Qi(v
t, vt+1) =

∑
j

wti,jβj(µj − vt+1) = 0, (B.3)

the EM update equation reduces to

vt+1 =
∑
j

wti,j µj . (B.4)

The prior of Eq. (10) makes wti,j independent of i (permutation equivariant) and simplifies the optimal
value inference equation to
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wti,jµj (B.5)
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It is easy to see that as β → 0 we obtain the standard dot product attention update as in Eq. (12).

B.2 Online key adaptation

At any EM iteration t, the auxiliary function Q(ξt1:n, ξ
t+1
1:n ) for key update is given by
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t+1
1:n ) = log p(ξt+1

1:n ) +
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where

wti,j = pi(uj | qi, ξt1:n) =
πi,j p(qi | uj , ξtj)∑n
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. (B.8)

Taking the derivative w.r.t. the key vector ξt+1
k of unit k
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Setting the derivative to zero and solving for ξt+1
k leads to the online key adaptation update of Eq.(18).

B.3 Online adaptation of αj precision parameters

The precision parameters αj in the per-unit query likelihoods can be adapted online based on the
observed queries, similar to keys in Eq. (18). In order to avoid overfitting to the observed queries, we
use a Gamma prior with parameters θα,1, θα,2, which leads to the following update for the precisions
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B.4 Updates of value likelihood parameters based on fixed values

In addition to value propagation (Eq. (23)), the probabilistic attention model allows updating the
per-unit value likelihood component parameters based on the information provided by the fixed
pre-selected values. Specifically, the EM updates for the unit k likelihood parameters βk and πi,k are
given by
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πt+1
i,k =

wti,k + θπ,i,k − 1∑
k w

t
i,k + θπ,i,k − 1

, (B.12)

where θβ,1, θβ,2 are the parameters for a Gamma prior distribution over βk, and θπ,i,k are Dirichlet
prior parameters over πi,k. The weights wti,k above are the same as in Eq. (24).
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B.5 Position embedding formulations

Here we provide details on how we arrive at the form of the per-unit query likelihood of Eq. (25). By
choosing to include the position embeddings rqj−i through an extra normal likelihood function, the
per-unit query likelihood is given by

pi(q | ξj , rqj−i, uj) ∝ N (q | ξj ,
1

αj
Id)N (q | rqj−i,

1

αj
Id),

where N (a | b, c) is the Gaussian likelihood function over a with mean b and covariance matrix c. Id
is a d× d identity matrix. Making use of the fact that the product of two normal likelihood functions
is also a normal and completing the square
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we arrive at the form in Eq. (25). Note that there is effectively no direct interaction between ξj and
rqj−i terms in the above. The choice of this form of position embedding is to make our formulation
equivalent to how it is encoded in contemporary works [13, 10] under the assumptions of Section 3.3.
There may be other ways to encode position embeddings within our framework such as directly
influencing the prior based on some distance measure d(i, j) between the locations of units i and j,
as given by

πi,j ∝ exp (−d(i, j)). (B.14)

C Models, training and evaluation

Details of the interactive segmentation models used in the experiments and their training and evalua-
tion procedures are provided below.

C.1 Interactive segmentation model

We use a single model to both predict an initial mask and correct it subsequently given an input
image and annotator corrections. It takes a 3 channel input RGB image and 3 additional channels,
one each to encode the object bounding box, positive and negative annotator corrections respectively.
The object bounding box is specified using 2 clicks to roughly correspond to the box corners (top-
left+bottom-right or bottom-left+top-right). These along with the positive and negative corrective
clicks provided by the annotator are encoded as binary disks of radius 8 pixels following the findings
in previous works [1, 8, 7]. We experiment using different architectures: HRNetV2+OCR [14] and
DeepLabV3+ [2], backbones: ResNet-50 and ResNet-101 [5], and training datasets: SBD [4] and
LVIS [3]) for specific experiments.

C.2 Training

All of our models are trained following a curriculum over three tasks. The first task is to predict
a mask given an input image and object bounding box but empty corrective channels. The second
task is to predict a mask given the image, bounding box and the corrective channels populated with
randomly sampled clicks on the object foreground (positive) and background (negative). The third
task is the corrective task, which is similar to the second task but with corrective channels containing
corrective clicks randomly sampled from the false positive and negative error regions of the model’s
prediction. For both the second and third tasks, we randomly sample 1-3 clicks and 0-3 clicks for the
positive and negative channels respectively. All our models are trained using RAdam optimizer [6]
on a polynomial decay learning rate schedule (power=0.9) with a base learning rate of 10−4 decaying
to 10−5 in 70 epochs and constant thereafter for a total of 150 epochs. The first and second tasks of
our curriculum use 20 epochs each in a sequence and the remaining epochs are used for the third task.
We use a batch size of 16 and train our models over 4 NVidia Volta 2-GPU nodes with 32GB of GPU
memory each using Distributed Data Parallel framework in PyTorch.

C.3 Evaluation

The trained models are evaluated on the GrabCut [11] and Berkeley [9] datasets. Specifically, we
plot the improvement in mask accuracy, i.e. mean IOU relative to ground truth, as a function of
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the number of clicks [1], starting with the initial 2 clicks to specify a bounding box. For all the
experiments, we simulate annotators by sampling the next corrective click from the largest error
areas (positive and negative) obtained by comparing the ground truth mask with the model’s current
prediction. Note that for both training and evaluation, we crop the object bounding boxes with a
finite padding around them without resizing the input image, as network input. We also add noise to
the bounding box corners which introduces some variance into the evaluation metrics. In order to
account for the variances in the crops, we repeat simulations over multiple trials (5 or 10) and report
both the mean and the standard error across trials. We would like to point out that a better performing
model reaches a certain mIoU faster, i.e. with fewer clicks.

C.4 Other hyperparameters

Apart from the training hyperparameters described above, we set the value of the query/key Gaussian
precisions αj to a constant value equal to 1√

d
, where d is the query/key embedding dimension. This is

similar to standard scaled dot-product attention. We use non-zero precisions βj only to train models
with value propagation (Eq. (23)). In that case they are all set equal to 0.1.

Also, key adaptation and value propagation iterations use additional hyperparameters, specifically
the priors θξ and θµ. We set θξ to 0 (ML update) unless otherwise specified. In order to choose an
optimum value for θµ, we do a grid search over a set of 4 values: [0.1, 1, 10, 100] and choose the one
that results in the least average number of clicks to reach a certain IOU (90%) over all the images
of a held-out set. It is possible that tuning these parameters specifically for each image might yield
better results but we did not do this for simplicity and leave it as an exploration for future work.

D Additional results using key adaptation

We provide additional results here (Fig. 2) using key adaptation within the probabilistic attention
BoTNet50 architecture employing full position embedding: ProbBoTNet50-FullPE (Section 4.1).
See Section 4.2 for a discussion of the results.
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Figure 2: Unsupervised key adaptation. Mean IoU vs #clicks with and without key adaptation
(KA) on the GrabCut and Berkeley datasets. Probabilistic BoTNets with full position encodings
are evaluated without using KA or using 1 iteration of KA with two different prior precision (Prec.)
values of 0.001 or 0.

E Additional results using value propagation

We conduct a small scale experiment to demonstrate the effect of value propagation using full
attention instead of axial attention. For this experiment, we use a full self attention layer at the output
of the network in place of the 1x1 conv classifier and feed in images at a resolution of 64 pixels. The
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corrective clicks are appended as additional inputs to this layer as described in Section 4.3. The small
input resolution allows us to work within the memory limits of current GPUs while being able to use
full attention at the output layer [12]. We use the Imagenet classification pre-trained HRNetV2+OCR
[14] architecture and fine-tune it on SBD dataset [4] on the interactive segmentation task. Following
the same protocol as in Section 4.4, the results are shown in Fig. 3.
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Figure 3: Effect of value propagation using full attention. Mean IoU vs #clicks with and without
value propagation. We use 1 (BP1) and 5 (BP5) iterations of value propagation at the output self
attention based classification layer of a network and test on the GrabCut (left) and Berkeley (right)
datasets.

F Code

A PyTorch layer implementing our approach is publicly available 1. It can be imported as any other
PyTorch layer as it is subclassed from torch.nn.Module. It implements only the attention update and
can be plugged into attention based architectures at the value update operation (e.g. in place of dot-
product attention update). Our implementation is parameter free, i.e., it implements only the update
and the user is free to define parameters for query, key and value mappings and position embeddings,
in any way they choose for their architecture(s). In order to use it for interactive segmentation (e.g.
to reproduce results in the paper), one can choose to use any of the publicly available repositories
for interactive segmentation, axial attention, etc. and replace the attention updates (with suitable
modifications to their architectures) with our attention update.
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