
Under review as a conference paper at ICLR 2022

A MODEL DETAILS

A.1 BP-GNN

In this section, we write down the equations of the BP-GNN model in its full form. Given the bipartite
graph G = (Y,U , E) defined in Section 4, where Y is a set of N nodes corresponding to the N time
series and U is a set of K auxiliary nodes. Nodes Y have associated the time series embeddings
z = {z1, . . . zN} and auxiliary nodes U have associated the embeddings u = {u1, . . .uK} which
are free learnable parameters.

Then, the total amount of nodes V = Y [U in the graph is N +K. And nodes in V have associated
the node embeddings h = {h1, . . . ,hN+K}, which at layer l = 0 are initialized as h0

= z||u. Then,
equations of the Bipartite Graph Neural Network can be defined as:

Step 1 Step 2
Y ! U U ! Y

i 2 U & j 2 Y i 2 Y & j 2 U

mij = �e1(h
l
i,h

l
j , aij)

mi =
X

j2Y

�↵1(mij)mij

hl+1
i = �h1(h

l
i,mi)

mij = �e2(h
l
i,h

l
j , aij)

mi =
X

j2U

�↵2(mij)mij

hl+1
i = �h2(h

l
i,mi)

Table 7: BP-GNN formulation.
Where Step 1 propagates messages from nodes Y (time series) to nodes U (auxiliary nodes) and Step
2 propagates messages the other way around.

A.2 ARCHITECTURE CHOICES �e, �↵ , �h , fenc AND fdec

In this section we will use the shortcut MLPres for a one layer MLP with a residual connection which
we define as:

Input �! {LinearLayer(nf, nf) �! Swish() �! LinearLayer(nf, nf) �! Addition(Input) } �! Output

Where "nf" represents the number of features.

Decoder fdec

Given the above MLPres definition, the decoder consists of one residual MLP followed by a linear
layer:

ẑi �! { MLPres �! LinearLayer(nf, out_dim)} �! x̂i,t+1:T

Encoder fenc

The encoder for METR-LA and PEMS-BAY consists of a linear layer and two consecutive MLPres.
Notice the overall structure can be considered an MLP with residual connections among some of its
layers.

xi,t0:t �! { LinearLayer(in_dim, nf) �! MLPres �! MLPres �! concatenate(ci)} �! zi

In the other datasets (Solar-Energy, Traffic, Electricity and Exchange-Rate) we used the following
Convolutional Neural Network as an encoder:

xi,t0:t �! {conv1d(in_dim, nf, kernel_size, stride) �! CNNres(nf)

�! conv1d(nf, 2nf, kernel_size, stride) �! CNNres(2nf)

�! conv1d(2nf, 4nf, kernel_size, stride) �! CNNres(4nf)

�! conv1d(4nf, out_dim, 1, 1) �! concatenate(ci) } �! zi

Where CNNres follows the same architecture than MLPres but replacing the Linear Layers by Conv1d
layers with stride=1 and kernel_size=1. In other words, both architectures are equivalent since a CNN

14

Under review as a conference paper at ICLR 2022

with kernel size and stride 1 is equivalent to an MLP that broadcasts over the batch size and sequence
length. Formally, we write CNNres as:

Input �! {conv1d(nf, nf/2, 1, 1) �! Swish() �! conv1d(nf/2, nf, 1, 1) �! Addition(Input) } �! Output

Edge update �e

Consists of two layers MLP. We divide the number of features by two in the intermediate layer for
efficiency

[hi,hj] �! {LinearLayer(2·nf, nf/2) �! Swish() �! LinearLayer(nf/2, nf) �! Swish() } �! mij .

Node update �h

[hl
i, mi] �! {LinearLayer(2· nf, nf) �! Swish() �! LinearLayer(nf, nf) �! Addition(hl

i) } �! hl+1
i

Edge inference �↵

[mij] �! {LinearLayer(nf, 1) �! Sigmoid() } �! ↵ij

B METR-LA AND PEMS-BAY

METR-LA is a traffic dataset collected from the highway of Los Angeles. It contains 207 nodes, a
sampling resolution of 5 minutes and 34,272 samples per node (i.e. length of each time series).

PEMS-BAY is also a traffic dataset with 325 nodes located in Bay Area. The sampling resolution is
also 5 minutes and it contains 52,116 samples per time series / node.

Both datasets METR-LA and PEMS-BAY can be download from the following link: https:
//github.com/liyaguang/DCRNN

(N) #Nodes # Samples Resolution Context length Pred. length

METR-LA 207 34,272 5 min 12 12
PEMS-BAY 325 52,116 5 min 12 12

Table 8: METR-LA and PEMS-BAY specifications.

B.1 IMPLEMENTATION DETAILS

In this experiment (METR-LA and PEMS-BAY datasets) we used the exact same training config-
uration as (Shang et al., 2021). Given the whole training time series panel of dimensionality (N ⇥
Length), where Length is the number of samples of the training partition, we construct the input to
the network by uniformly slicing windows xt0:t 2 RN⇥12 of length 12. The ground truth labels
are obtained in the same way, by slicing the next 12 time steps xt:t+12 2 RN⇥12. The same slicing
process is done in validaton and test with their respective partitions. The sliced windows are uniformly
distributed through the whole time series panel.

All our models (FC-GNN, BP-GNN, NE-GNN) have been trained with Adam optimizer, batch size
16 and 2 layers in the GNN module. The number of features "nf" in the hidden layers is 64, The
learning rates and number of epochs are provided in the following Table 9.

Learning Rate Decay at epochs Decay factor Epochs

METR-LA
NE-GNN 2 · 10�3 [20, 30, 40] 10 200
FC-GNN 5 · 10�3 [20, 30, 40] 10 200
BP-GNN 2 · 10�3 [20, 30, 40] 10 200

PEMS-BAY
NE-GNN 2 · 10�4 [50] 10 300
FC-GNN 2 · 10�4 [50] 10 300
BP-GNN 2 · 10�4 [50] 10 300

Table 9: Learning rates for METR-LA and PEMS-BAY datasets

15

https://github.com/liyaguang/DCRNN
https://github.com/liyaguang/DCRNN

Under review as a conference paper at ICLR 2022

Time results have been run for batch size 16 in a Tesla V100-SXM GPU. All hyperparameters have
been tuned in the validation partition using the following search spaces. The learning rate search
space was lr 2 {1 · 10�4

, 2 · 10�4
, 5 · 10�4

, 1 · 10�3
, 2 · 10�3

, 5 · 10�3}. The number of features
per layer "nf" was chosen among nf 2 {32, 64, 128}. The number of layers was chosen among
{1, 2, 3, 4}. The learning rate decay and the decay factor was not modified and left the same as in the
original code from (Shang et al., 2021). The number of epochs was chosen large enough to do early
stopping in the validation partition when the validation loss stops decreasing.

B.2 BASELINES

Regarding the baselines reported in this experiment, LDS (Franceschi et al., 2019) and STGCN (Yu
et al., 2017) are not evaluated on METR-LA and PEMS-BAY in their original papers, therefore,
for STGCN we used the results provided in the WaveNet paper (Wu et al., 2019) which were
computed by the same WaveNet authors and for LDS we used the results provided in the GTS work
(Shang et al., 2021). For the DCRNN timing results we used the unofficial Pytorch implementation
https://github.com/chnsh/DCRNN_PyTorch.

B.3 METR-LA AND PEMS-BAY RESULTS WITH STANDARD DEVITATION

In this subsection we report the standard deviations for METR-LA and PEMS-BAY results.

METR-LA
15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Ablation study

NE-GNN (w/o id) 2.80 ± .01 5.73 ± .02 7.50% ± .03 3.40 ± .00 7.15 ± .02 9.74% ± .12 4.22 ± .01 8.79 ± .04 13.06% ± .26
FC-GNN (w/o id) 2.77 ± .00 5.65 ± .01 7.39% ± .06 3.36 ± .00 7.02 ± .02 9.59% ± .06 4.14 ± .01 8.64 ± .06 12.70% ± .11
NE-GNN 2.69 ± .01 5.57 ± .04 7.21% ± .01 3.14 ± .01 6.74 ± .05 9.01% ± .09 3.62 ± .01 7.88 ± .05 10.94% ± .07

Our models

FC-GNN 2.60 ± .02 5.19 ± .06 6.78% ± .12 2.95 ± .02 6.15 ± .08 8.14% ± .16 3.35 ± .03 7.14 ± .09 9.73% ± .27
BP-GNN (K=4) 2.64 ± .01 5.37 ± .03 7.07% ± .08 3.02 ± .02 6.42 ± .05 8.46% ± .08 3.40 ± .02 7.32 ± .05 9.91% ± .19

Table 10: METR-LA results including standard deviations.

PEMS-BAY
15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Ablation study

NE-GNN (w/o id) 1.40 ± .00 3.03 ± .01 2.92% ± .02 1.85 ± .00 4.25 ± .02 4.21% ± .04 2.39 ± .01 5.50 ± .03 5.93% ± .07
FC-GNN (w/o id) 1.39 ± .00 3.00 ± .01 2.88% ± .01 1.82 ± .00 4.18 ± .01 4.11% ± .01 2.32 ± .01 5.35 ± .03 5.71% ± .02
NE-GNN 1.36 ± .00 2.88 ± .01 2.86% ± .02 1.72 ± .01 3.91 ± .03 3.93 % ± .05 2.07 ± .01 4.79 ± .04 5.04% ± .06

Our models

FC-GNN 1.33 ± .00 2.82 ± .01 2.79% ± .03 1.65 ± .00 3.75 ± .01 3.72% ± .06 1.93 ± .01 4.46 ± .02 4.53% ± .06
BP-GNN (K=4) 1.33 ± .00 2.82 ± .01 2.80% ± .02 1.66 ± .01 3.78 ± .01 3.75% ± .03 1.94 ± .01 4.46 ± .02 4.57% ± .04

Table 11: PEMS-BAY results including standard deviations.

C SINGLE STEP FORECASTING

Electricity, Solar-Energy, Electricity and Exchange Rate datasets can be downloaded from the follow-
ing link: https://github.com/laiguokun/multivariate-time-series-data

#Nodes # Samples Resolution Context length Pred. length

Solar-Energy 137 52,560 10 min 168 1
Traffic 862 17,544 1 hour 168 1
Electricity 321 26,304 1 hour 168 1
Exchange-Rate 8 7,588 1 day 168 1

Table 12: Dataset specifications.

16

https://github.com/chnsh/DCRNN_PyTorch
https://github.com/laiguokun/multivariate-time-series-data

Under review as a conference paper at ICLR 2022

C.1 IMPLEMENTATION DETAILS

In this experiment we used the exact same training process as (Wu et al., 2020). Similarly to METR-
LA and PEMS-BAY, the sample construction process, consists of windows uniformly sliced from the
time series panel and inputted to the network. Specifically, in this experiment, given the training time
series panel of dimensionality (N ⇥ Length), where Length is the number of samples of the training
partition, we slice windows xt0:t 2 RN⇥168 of length 168 which are the input to our network. In this
experiment, we only forecast one time step into the future such that the length of the forecasts and
ground truth labels is 1.

All our models (FC-GNN, BP-GNN, NE-GNN) have been trained with Adam optimizer. The number
of features "nf" in the hidden layers is 128, the number of layers in the GNN is 2. The encoder
network in this experiment is a Convolutional Neural Networks previously described in Appendix A.
Following, we provide a table with the the different learning rates, number of epochs and batch sizes
for all datasets. All models NE-GNN, FC-GNN and BP-GNN were trained with the same training
parameters.

Learning Rate Batch Size Epochs

Solar-Energy 5 · 10�4 4 30
Traffic 2 · 10�4 2 50
Electricity 2 · 10�4 4 80
Exchange-Rate 1 · 10�4 4 100

Table 13: Table of hyperparameters for Solar-Energy, Traffic, Electricity and Exchange-Rate.

All hyperparameters have been tuned in the validation partition using the following search spaces.
The learning rate search space was lr 2 {5 · 10�5

, 1 · 10�4
, 2 · 10�4

, 5 · 10�4
, 1 · 10�3

, 2 · 10�3}.
The number of features nf was chosen among {32, 64, 128}, the number of layers chosen among {1,
2, 3, 4, 8} by choosing between a trade-off of accuracy and efficiency. The number of epochs was
chosen large enough such that the validation loss would stop decreasing. The batch size was set to 4,
except for Traffic where it was reduced to 2 in order to fit in memory the more expensive explored
configurations.

C.2 EVALUATION METRICS

The evaluation metrics for this experiments are exactly the same as for Lai et al. (2018); Shih et al.
(2019); Wu et al. (2020). The following equations are extracted from Lai et al. (2018). The Root
Relative Squared Error (RSE) is defined as:

RSE =

qP
(i,t)2⌦Test(xit�x̂it)

2

qP
(i,t)2⌦Test(xit�mean(x))2

The Empirical Correlation Coefficient (CORR) is defined as:

CORR =
1

N

NX

i=1

P
t (xit �mean (xi)) (x̂it �mean (x̂i))qP
t (xit �mean (xi))

2
(x̂it �mean (x̂i))

2

Where x, x̂ 2 RN⇥T .

C.3 SINGLE STEP RESULTS WITH STANDARD DEVITATION

In this subsection we report the standard deviations for Solar-Energy, Traffic, Electricity and
Exchange-Rate results.

17

Under review as a conference paper at ICLR 2022

Dataset Solar-Energy Traffic

Horizon Horizon
Methods Metrics 3 6 12 24 3 6 12 24

NE-GNN RSE .1898 ± .0018 .2580 ± .0013 .3472 ± .0059 .4441 ± .0083 .4212 ± .0007 .4586 ± .0017 .4679 ± .0031 .4743 ± .0036
CORR .9829 ± .0003 .9663 ± .0003 .9367 ± .0025 .8905 ± .0052 .8951 ± .0005 .8748 ± .0007 .8700 ± .0015 .8670 ± .0013

FC-GNN RSE .1651 ± .0006 .2202 ± .0020 .2981 ± .0035 .3997 ± .0047 .4057 ± .0012 .4395 ± .0049 .4624 ± .0021 .4620 ± .0033
CORR .9876 ± .0002 .9765 ±.0003 .9551 ± .0011 .9148 ± .0024 .9024 ± .0006 .8850 ± .0004 .8764 ± .0015 .8751 ± .0007

BP-GNN
(K=4)

RSE .1704 ± .0017 .2257 ± .0020 .3072 ± .0095 .4050 ± .0082 .4095 ± .0012 .4470 ± .0062 .4640 ± .0033 .4641 ± .0024
CORR .9865 ± .0002 .9751 ± .0005 .9522 ± .0033 .9138 ± .0024 .8999 ± .0005 .8820 ± .0007 .8744 ± .0015 .8723 ± .0013

Table 14: Solar-Energy and Traffic results including standard deviations.

Dataset Electricity Exchange-Rate

Horizon Horizon
Methods Metrics 3 6 12 24 3 6 12 24

NE-GNN RSE .0762 ± .0007 .0917 ± .0029 .0966 ± .0018 .0994 ± .0019 .0175 ± .0002 .0244 ± .0002 .0338 ± .0006 .0447 ± .0008
CORR .9494 ± .0006 .9362 ± .0009 .9308 ± .0006 .9262 ± .0006 .9769 ± .0001 .9686 ± .0005 .9535 ± .0003 .9352 ± .0003

FC-GNN RSE .0732 ± .0007 .0907 ± .0041 .0915 ± .0026 .0979 ± .0030 .0174 ± .0001 .0245 ± .0002 .0344 ± .0010 .0450 ± .0013
CORR .9521 ± .0008 .9404 ± .0008 .9351 ± .0007 .9294 ± .0006 .9772 ± .0001 .9685 ± .0004 .9538 ± .0008 .9349 ± .0007

BP-GNN
(K=4)

RSE .0740 ± .0010 .0898 ± .0041 .0940 ± .0025 .0980 ± .0019 .0175 ± .0001 .0244 ± .0003 .0339 ± .0004 .0442 ± .0005
CORR .9519 ± .0004 .9396 ± .0007 .9345 ± .0007 .9288 ± .0001 .9769 ± .0003 .9684 ± .0002 .9530 ± .0007 .9360 ± .0011

Table 15: Electricity and Exchange-Rate results including standard deviations.

D INFERRED GRAPH ANALYSIS

D.1 DATASETS

In the Inferred graph analysis experiment we presented two synthetic datasets, "Cycle Graph Gaus-
sian" and "Noisy Sinusoids". Next, we provide a more detailed explanation on how these datasets
have been generated:

• Cycle Graph Gaussians: This dataset consists of a panel of N=10 time series of length
T=10.000, where each time series i at time step t has been sampled from the past t� 5 of
another time series i � 1 mod N from the same panel. The resulting multivariate time
series adjacency matrix is a Cyclic Directed Graph where each variable in the panel depends
on the previously indexed one. Formally the generation process is written as

xi,t ⇠ N (�x(i�1 mod N),t�5;�
2
) (8)

Where � = 0.9 and � = 0.5.

• Noisy Sinusoids: Motivated by the Discrete Sine Transformation. This dataset consists
of N = 10 time series of length T = 10.000 generated as the weighted sum of different
sinusoids with different frequencies and amplitudes. More formally we define a time series
xi as:

xi =

MX

k=1

Bi,m sin(2⇡wi,mt) + ✏i,t (9)

Where Bi,k is sampled from a Uniform distribution B̃i,m ⇠ U(0, 1) and further normalized
Bi,m =

B̃i,mP
k B̃i,m

. wi,m is also sampled from a uniform distribution wi,m ⇠ U(0, 0.2) and

✏i,t is sampled from a Gaussian distribution ✏i,t ⇠ N (0, 0.2
2
). Finally, Bi,m and wi,m

are shared among the first half signals 1 i 5 of the panel and among the second half
6 i 10. We choose M = 3.

The time series in both datasets have been splitted in train/val/test as 6K/2K2K. In figures 4 and 5 we
plot the first 200 timesteps of the training set of Cycle Graph Gaussians and Noisy Sinusoids datasets
respectively.

18

Under review as a conference paper at ICLR 2022

Figure 4: First 200 timesteps of the Cycle Graph Gaussian dataset.

Figure 5: First 200 timesteps of Noisy Sinusoids dataset.

D.2 IMPLEMENTATION DETAILS

In the Inferred Graph Analysis, all models have been trained for 100 epochs, learning rate of 2 · 10�3,
weight decay 10

�14. The context length (input length of the sequence) is 6, the prediction length
(output length of the sequence) is 1. The Mean Absolute Error between prediction and ground

19

Under review as a conference paper at ICLR 2022

truth has been minimized for training. We also added a small regularization value to the loss
R =

10�6

#edges

P
i,j abs(Ai,j) that pushes unnecessary edges closer to 0 for sharper visualizations.

In both BP-GNN and FC-GNN we used the same MLP encoder than the one used METR-LA and
PEMS-BAY experiments defined in the Appendix section A.2. The Graph Convolutional layer
consists of only 1 layer. Since the edge inference is dynamic we obtained the reported Adjacency
matrices by averaging over 10 different t.

D.3 FURTHER RESULTS

In this section we report further inferred adjacency matrices as in Experiment 5.4 when modifying the
random seed. As mentioned in 5.4, different random seeds can produce different adjacency matrices.

20

Under review as a conference paper at ICLR 2022

Figure 6: Inferred adjacency matrices and MAE losses in the proposed synthetic datasets for seeds
{0, 1, 2, 3}.

In the previous Figure 6 we presented the inferred adjacency matrices for FC-GNN and BP-GNN
in a synthetic dataset. In Experiment 5.4 we mentioned that we constructed the BP-GNN matrices
Ã = A2A1 as the product of two bipartite graph matrices A2 and A1. Following we provide the
visualization of the BP-GNN A2 and A1.

21

Under review as a conference paper at ICLR 2022

Figure 7: Inferred adjacency matrices in BP-GNN.

D.4 INFERRED GRAPH FOR METR-LA

In this section we analyze the adjacency matrices inferred by our FC-GNN method in METR-LA.
Notice that in BP-GNN, matrices Ã = A2A1 are constrained to be very dense for K << N values
when nodes communicate. This is because N nodes have to share the same K auxiliary nodes to
communicate. METR-LA contains 207 nodes, and we chose BP-GNN to be K = 4. This resulted in
very competitive performance and very cheap computation time, but the obtained adjacencies are
very dense and not as meaningful as the ones obtained from FC-GNN. Therefore, in the following
plots, we only report the matrices A inferred by the FC-GNN method. As in the previous synthetic
experiment, we build the adjacency matrices in the FC-GNN case from the inferred values Aij = ↵ij .
We used the exact same training settings as in the main experiment section 5.2, but this time we only
used one graph layer in the FC-GNN module from which we obtained the ↵ij values. The provided
adjacency has been averaged over 10 different t values.

22

Under review as a conference paper at ICLR 2022

In METR-LA, sensors are spatially located around a city. Therefore, just for comparison, we
also report a matrix built from the distance between each pair of sensors. We call it Asim, where
each input Asim[i, j] is proportional to the negative distance between the two sensors Asim[i, j] =

bias � dist(i, j). We can expect to see some correlations between this matrix and the inferred one,
but this does not have to be the case. Close sensors can be correlated, but also far away sensors can
be correlated (e.g. we can expect far away residential areas to have a simultaneous increase in traffic
right before working hours). Matrices are presented in the following figure, Asim and the inferred
adjacency A.

Figure 8: Asim ! matrix obtained from the negative distance among sensors and A ! Inferred
adjacency matrix by FC-GNN.

Additionally, our model infers matrices dynamically for each t. This means that the inferred adjacency
matrix can change depending on the input xt0:t for different t values. Following, we plot three
different matrices for different t values and we see that despite the overall adjacencies share similarities
for different t, some components differ as we change t.

Figure 9: Ajacency matrices for different time steps t.

23

	Introduction
	Background
	Time Series Forecasting
	Graph Neural Networks

	Related Work
	Method
	Experiments
	Datasets and Baselines
	Main results
	Single step forecasting
	Inferred graph analysis
	Choosing the number of auxiliary nodes K

	Conclusions
	Model details
	BP-GNN
	Architecture choices e, , h, fenc and fdec

	METR-LA and PEMS-BAY
	Implementation details
	Baselines
	METR-LA and PEMS-BAY results with standard devitation

	Single step forecasting
	Implementation details
	Evaluation metrics
	Single step results with standard devitation

	Inferred Graph Analysis
	Datasets
	Implementation details
	Further results
	Inferred graph for METR-LA

