

(e) 117M variance max (f) 1.5B variance max (g) Var norm correlation (h) Var max correlation Figure 7: Training loss, Adam variance norm/max element, and correlations between loss spikes and variance norm/max during GPT-2 pre-training (without the proposed method) under different model sizes, batch sizes (and LR), and sequence lengths.

A Appendix

A.1 Zoom in of Figure 1

Figure 7 zoom in the first 30B token in main paper Figure 1, where the training is the most unstable.

A.2 Learning rate decay for proposed approach

As discussed in main paper Section 5.1 GPT-2 experiments, proposed approach needs more training steps than baseline in order to reach the same 157B training tokens. This makes it necessary to modify the learning rate decay schedule for proposed approach. We first tried to increase the number of learning rate decay steps by half of the proposed approach's pacing function duration T (since the proposed approach roughly needs T/2 additional steps to reach 157B tokens). However, we find that simply increasing decay steps still leads to faster learning rate decay than baseline. At last we change the learning rate decay to token-wise (same cosine decay over the 157B tokens) instead of step-wise. This is because for the proposed approach there are fewer tokens per step at the beginning. So even if we increase the LR decay steps, it still cannot avoid decaying faster token-wise at the beginning compared to baseline. As shown in Figure 8, the proposed approach with step-wise LR decay (with T/2 extra decay steps) has faster LR decay token-wise compared to baseline, which leads to a worse validation perplexity curve. On the other hand, the same proposed approach case with token-wise LR decay schedule as baseline, which leads to better convergence.

A.3 Additional analysis about training hyperparameters

In main paper Section 4 we demonstrate that proposed approach's two hyperparameters can be tuned with very low cost only running the very beginning of the training (the third hyperparameter, ending sequence length, does not require tuning since it will always be the full length). To understand more about how proposed approach affects the choice and tuning of normal training hyperparameters, this section provides additional analysis about learning rates and gradient clipping. Results demonstrate that (a) Compared to baseline, proposed approach requires less tuning effort on these hyperparameters to provide a stable training; (b) By enabling stable training on larger learning rates, proposed approach could provide better training efficiency and convergence (as demonstrated in main paper Section 5); (c) Tuning gradient clipping for baseline could not provide the same training stability as proposed approach.

A.3.1 Learning rate

In Section 5.1 we demonstrate that proposed approach can provide stable and more efficient training at larger batch size and learning rate, where baseline suffers from training instability. We increased both batch size and learning rate at the same time because (a) Large-batch training is more efficient

Figure 8: Validation perplexity and learning rate during GPT-2 1.5B seqlen 1K pre-training with batch size 512, comparing the baseline and proposed approach under different learning rate decay schedules. "SLW 270K" means proposed approach with T=270K steps.

Figure 9: Step-wise training loss during GPT-2 1.5B seqlen 1K pre-training (first 3K steps only) with batch size 2K, seed 1236, and different learning rates for baseline and proposed approach ("SLW 8K" means proposed approach with T=8K steps).

for large-scale distributed training, so larger batch was necessary in our study (b) In order to maintain the same convergence speed, it is necessary to simultaneously increase the learning rate under larger batch size. A well-known rule of thumb is that the learning rate should at least increase by the square root of the batch size's increase ratio.

As a controlled experiment, here we perform additional studies about what if we keep the batch size the same and only tune learning rate for baseline and proposed approach. We do not consider the case of "same learning rate, different batch sizes" due to the reason (b) above. Table 5 presents the number of steps with training loss ratios (defined in main paper Section 3 as an indicative measurement of training instability) larger than 1.5 during GPT-2 1.5B seqlen 1K pre-training (first 3K steps only) with batch size $2K^{11}$, 5 different seeds, and different learning rates for baseline and proposed approach. And Figure 9 illustrates some of the cases with seed 1236 to show how the loss spikes look

¹¹Batch size 2K is used here because this analysis was performed at an early stage of this work, and we do not have enough resource to rerun the same analysis with batch size 4K.

Table 5: Number of steps with training loss ratios (defined in Section 3) larger than 1.5 during GPT-2 1.5B seqlen 1K pre-training (first 3K steps only) with batch size 2K, 5 different seeds, and different learning rates for baseline and proposed approach (SLW). Left/right number in each cell is for baseline/SLW, respectively.

Baseline/SLW	LR =	LR =	LR =	LR =
#loss ratio > 1.5	1.5×10^{-4}	3×10^{-4}	6×10^{-4}	12×10^{-4}
Seed 1234	0/0	296/0	359/0	179/74
Seed 1235	0/0	302/0	408/0	555/459
Seed 1236	0/0	0/0	569/0	626/414
Seed 1237	7/0	0/0	548/0	614/139
Seed 1238	0/0	0/0	121/0	394/29
Total	7/0	598/0	2005/0	2368/1115

like. Results show that proposed approach provides stable training during this first 3K steps for all five seeds at learning rates up to 6×10^{-4} , while baseline with seed 1237 still has 7 large loss ratios at learning rate as low as 1.5×10^{-4} . At learning rate 12×10^{-4} both cases have large loss ratios, but proposed approach reduces the frequency by 2.1x. This demonstrates that (a) Larger learning rates lead to higher training instability risk for both cases. (b) With the same amount of tuning effort, proposed approach has a higher probability of providing a stable training because of the wider range of learning rates it enables; (c) Since proposed approach enables stable training at larger learning rate, it could provide better and faster training convergence as shown in main paper Section 5.

A.3.2 Gradient clipping

In main paper Section 5 we used gradient clipping at 1.0 (global gradient l_2 norm is clipped to 1.0) following the previous work [40]. Here we perform additional studies about what if we apply more gradient clipping to baseline. Figure 10(a) presents the training loss during GPT-2 1.5B seqlen 1K pre-training (first 5K steps only) with batch size 4K (the same hyperparameters as the second set in Section 3), comparing the baseline and proposed approach under different gradient clipping levels¹². Results show that when applying more gradient clipping to baseline, the training has less and smaller loss spikes. And the Adam varaince norm is also reduced as shown in Figure 10(c).

However, more gradient clipping does not fully resolve the training instability issue. Even baseline with the lowest gradient clipping norm cannot avoid all training loss spikes, while proposed approach with default gradient clipping has no loss spike. As described in main paper, we believe that this is a limitation of common gradient clipping technique: Although gradient clipping can avoid too large gradient at every single step, it cannot avoid the gradient variance getting accumulated at certain dimensions (as shown in Figure 10(d)), especially for large batch sizes. Another concern about applying more gradient clipping is that the momentum norm is also reduced due to more clipping (Figure 10(b)). This indicates that when later the training reaches a more stable stage, more gradient clipping could hurt the convergence speed. On the other hand, proposed approach will not affect the convergence speed after the full sequence length is reached. Another thing to note is that proposed approach relies less on gradient clipping: at gradient clipping norm 1.0, baseline has 798 clippings in the first 5K steps while proposed approach has 628 clippings (21% less).

Overall, this analysis demonstrates that proposed approach requires less or no tuning on gradient clipping, while baseline still has training stability issue with more gradient clipping. It is possible that more complex and adaptive gradient/variance/activation clipping techniques could potentially achieve the same level of training stability as proposed approach. However, inventing and applying such techniques would require an effort no lower than the proposed approach, which is both easy to integrate and low-cost to tune.

A.4 GPT-2 117M evaluation results

Figure 11 presents the validation perplexity and Adam variance norm/max element during GPT-2 117M pre-training, comparing the baseline and proposed work (SLW) under different batch sizes/LR and sequence lengths. Table 6 presents the zero-shot evaluation of the trained 117M models on

 $^{^{12}}$ We also tried less than 0.25 gradient clipping, which triggered a silent crash without error messages after around 100 steps. We did not have enough time to find the root cause, but it could be caused by the too extreme gradient clipping.

Figure 10: Training loss, Adam momentum l_1 norm, and Adam variance l_1 norm/max element during GPT-2 1.5B seqlen 1K pre-training (first 5K steps only) with batch size 4K, comparing the baseline and proposed approach under different gradient clipping levels. Grad clip 1.0 indicates that the global gradient l_2 norm is clipped to 1.0. 'SLW 45K' means proposed approach with T=45K steps.

(f) Time-wise validation (g) Step-wise Adam variperplexity ance norm

(h) Step-wise Adam variance max element

Figure 11: Validation perplexity and Adam variance norm/max element during GPT-2 117M pretraining, comparing the baseline and proposed work (SLW) under different batch sizes/LR and sequence lengths. "SLW 60K" means proposed work with T=60K steps.

the WikiText-103 and LAMBADA datasets for baseline and proposed work with different pacing function duration.

A.5 GPT-3 125M evaluation results

(e) Token-wise valida-

tion perplexity

Table 7 presents the zero-shot evaluation of the trained GPT-3 125M models on the 11 tasks used by the original GPT-3 work [6].

Case	Pre-training	Pre-training	Pre-training	WikiText-103	LAMBADA
	parameters	steps, tokens, time	test perplexity \downarrow	perplexity \downarrow	accuracy ↑
1: Baseline	bsz512-seqlen1K	300K, 157B, 37Hr	20.75	27.78	33.19%
2: SLW 20K	bsz512-seqlen1K	310K, 157B, 30Hr	20.49	27.43	34.60%
3: SLW 60K	bsz512-seqlen1K	330K, 157B, 33Hr	20.11	27.01	34.41%
4: SLW 100K	bsz512-seqlen1K	350K, 157B, 35Hr	20.16	26.91	34.21%
5: SLW 140K	bsz512-seqlen1K	370K, 157B, 35Hr	20.17	27.17	33.92%
6: Baseline	bsz4K-seqlen1K	37.5K, 157B, 16Hr	20.99	28.09	32.54%
7: SLW 10K	bsz4K-seqlen1K	42.5K, 157B, 16Hr	20.34	27.22	33.98%
8: SLW 20K	bsz4K-seqlen1K	47.5K, 157B, 16Hr	20.25	27.13	34.54%
9: SLW 30K	bsz4K-seqlen1K	52.5K, 157B, 16Hr	20.22	27.15	34.16%
10: SLW 40K	bsz4K-seqlen1K	57.5K, 157B, 16Hr	20.26	27.11	33.53%
13: Baseline	bsz512-seqlen2K	150K, 157B, 32Hr	20.87	28.19	32.99%
15: SLW 70K	bsz512-seqlen2K	185K, 157B, 31Hr	19.82	26.04	33.46%
17: SLW 110K	bsz512-seqlen2K	205K, 157B, 31Hr	19.64	26.03	34.58%
18: SLW 150K	bsz512-seqlen2K	215K, 157B, 32Hr	19.64	25.99	33.32%
15: SLW 190K	bsz512-seqlen2K	245K, 157B, 33Hr	19.64	26.09	33.09%

Table 6: Zero-shot evaluation of the GPT-2 117M models on the WikiText-103 and LAMBADA datasets, following the evaluation methodology from [40].

Table 7: GPT-3 125M zero-shot evaluation results

		Baseline	Baseline	SLW
Case	Original [6]	repro	30x LR	40x LR
Model size	125M	125M	125M	125M
Train tokens	300B	300B	30B	30B
Batch size	256	256	2K	2K
Bsz warmup	4B	4B	4B	N/A
LR	6e-4	6e-4	1.8e-2	2.4e-2
min LR	6e-5	6e-5	0	0
LR warmup	375M	375M	375M	375M
LR decay	260B	260B	30B	30B
decay style	cosine	cosine	cosine	cosine
SLW	N/A	N/A	N/A	11.5K steps
Avg. accuracy	33.6	31.4	29.8	31.1
(0) HellaSwag	33.7	30.4	28.2	28.9
(1) LAMBADA	42.7	39.3	30.4	34.2
(2) TriviaQA	4.15	1.72	0.76	1.45
(3) WebQs	1.77	0.197	0	0.394
(4) Winogrande	52.0	49.3	50.9	51.9
(5) PIQA	64.6	61.9	59.8	62.7
(6) ARC Challenge	26.6	23.3	21.7	22.3
(7) ARC Easy	43.6	39.9	36.0	39.1
(8) ANLI R1	33.4	32.8	33.1	33.4
(9) ANLI R2	33.2	33.3	33.3	33.6
(10) ANLI R3	33.6	33.3	33.2	34.7

A.6 GPT-3 1.3B evaluation results

In this section we evaluate the proposed SLW method on the larger GPT-3 1.3B model. Compared to the GPT-3 125M evaluation in main paper section 5.2 there are two differences on the setup: (1) The GPT-3 125M evaluation aims to explore whether the proposed method can retain the accuracy performance while greatly reducing the training tokens, while this GPT-3 1.3B evaluation aims to explore that, under same amount of training tokens, does proposed method provides better training stability and better accuracy performance. (2) To improve the training data quality, for GPT-3 1.3B pre-training we added two additional sub-datasets (CC-Stories [45] and RealNews [54]), together with additional data cleaning on all data following the process in [42].

Similar to previous experiments, we test two set of hyperparameters on both baseline and proposed method: The first set follows the original GPT-3 setup: 300B training tokens, seqlen 2K, batch size 512 (baseline case includes batch size warmup that starts with 16 then gradually increase to 512 in first 8B tokens), learning rate 2×10^{-4} with a linear warmup of 375M tokens and a single cycle cosine decay over 260B tokens (2×10^{-5} min. learning rate). The second set changes the batch size to 4K (8x) and learning rate to 8×10^{-4} (4x).

		Baseline	SLW	
Case	Original [6]	repro	8x Bsz	
Model size	1.3B	1.3B	1.3B	
Train tokens	300B	300B	300B	
Batch size	512	512	4K	
Bsz warmup	8B	8B	N/A	
LR	2e-4	2e-4	8e-4	
min LR	2e-5	2e-5	2e-5	
LR warmup	375M	375M	375M	
LR decay	260B	260B	260B	
decay style	cosine	cosine	cosine	
SLW	N/A	N/A	11K steps	
Avg. accuracy	44.4	41.6	41.9	
(0) LAMBADA	63.6	63.7	65.0	
(1) TriviaQA	19.7	10.1	11.3	
(2) WebQs	4.63	3.25	2.36	
(3) PIQA	75.1	73.4	73.8	
(4) RACE-h	40.9	35.6	37.1	
(5) BoolQ	62.4	63.4	61.8	

Table 8: GPT-3 1.3B zero-shot evaluation results

The baseline case only enables stable training on the first set of hyperparameters. Under larger batch size and learning rate, a training divergence (similar to main paper Figure 5 blue line) happened and the training cannot continue. On the other hand, the proposed SLW method is able to provide stable training under 8x larger batch size and 4x larger learning rate. Under the same number of training tokens, the 8x larger batch size leads to better training efficiency and 2x training time speedup, similar to what we obserbe in GPT-2 pre-training (main paper Table 2 case 10 vs. 15). This demonstrate the stability-efficiency benefit of the proposed method.

In addition, Table 8 and 9 present the zero-shot and few-shot evaluations of the trained GPT-3 1.3B models on 6 tasks used by the original GPT-3 work [6]: LAMBADA [28], TriviaQA [15], WebQs [3], PIQA [4], RACE-h [20], BoolQ [47]. Results show that similar to the original GPT-3, under few-shot prompts the average accuracy is better than zero-shot results for both models trained with baseline batch size warmup (from 41.6 to 44.8) and proposed SLW method (from 41.9 to 45.3).¹³ The change on each task also follows the same pattern: TriviaQA and WebQs accuracy improve a lot under few-shot; PIQA, RACE-h, and BoolQ have similar accuracy under zero and few-shot; LAMBADA accuracy becomes worse under few-shot. More importantly, under the same 300B training tokens the proposed SLW method provides better average accuracy (zero-shot from 41.6 to 41.9, few-shot from 44.8 to 45.3) than the baseline, demonstrating that the proposed method (in addition to the stability-efficiency benefit) is able to provide better accuracy performance.

¹³Similar to main paper section 5.2, our reproduced GPT-3 baseline has 2.9/3.3 point lower average zero/fewshot accuracy than the original GPT-3, which is because of the different training data and OpenAI employed special data processing techniques [6]

 Table 9: GPT-3 1.3B few-shot evaluation results. k denotes the number of shots following the original GPT-3 work [6].

		Baseline	SLW
Case	Original [6]	repro	8x Bsz
Model size	1.3B	1.3B	1.3B
Train tokens	300B	300B	300B
Batch size	512	512	4K
Bsz warmup	8B	8B	N/A
LR	2e-4	2e-4	8e-4
min LR	2e-5	2e-5	2e-5
LR warmup	375M	375M	375M
LR decay	260B	260B	260B
decay style	cosine	cosine	cosine
SLW	N/A	N/A	11K steps
Avg. accuracy	48.1	44.8	45.3
(0) LAMBADA (k=15)	57.0	58.8	59.7
(1) TriviaQA (k=64)	32.1	19.2	19.0
(2) WebQs (k=64)	19.6	18.4	19.4
(3) PIQA (k=50)	74.3	74.2	72.8
(4) RACE-h (k=10)	41.4	35.0	37.6
(5) BoolQ (k=32)	64.1	63.2	63.2