
Published as a conference paper at ICLR 2025

UNSUPERVISED META-LEARNING VIA IN-CONTEXT
LEARNING

Anna Vettoruzzo∗
Halmstad University, Sweden
anna.vettoruzzo@hh.se

Lorenzo Braccaioli∗
University of Trento, Italy
lorenzo.braccaioli@unitn.it

Joaquin Vanschoren
Eindhoven University of Technology, Netherlands
j.vanschoren@tue.nl

Marlena Nowaczyk
Halmstad University, Sweden
marlena17nowaczyk@gmail.com

ABSTRACT

Unsupervised meta-learning aims to learn feature representations from unsuper-
vised datasets that can transfer to downstream tasks with limited labeled data. In
this paper, we propose a novel approach to unsupervised meta-learning that lever-
ages the generalization abilities of in-context learning observed in transformer ar-
chitectures. Our method reframes meta-learning as a sequence modeling problem,
enabling the transformer encoder to learn task context from support images and
utilize it to predict query images. At the core of our approach lies the creation of
diverse tasks generated using a combination of data augmentations and a mixing
strategy that challenges the model during training while fostering generalization to
unseen tasks at test time. Experimental results on benchmark datasets showcase
the superiority of our approach over existing unsupervised meta-learning base-
lines, establishing it as the new state-of-the-art. Remarkably, our method achieves
competitive results with supervised and self-supervised approaches, underscoring
its efficacy in leveraging generalization over memorization.

1 INTRODUCTION

Meta-learning, or learning-to-learn, enables models to accumulate knowledge from multiple tasks,
allowing rapid adaptation and generalization to new tasks (Vettoruzzo et al., 2024; Vanschoren,
2019). Traditional meta-learning approaches typically rely on labeled data to construct tasks during
meta-training. However, collecting large labeled datasets in real-world applications is challenging
and often impractical. Unsupervised meta-learning (UML) methods address this issue by leveraging
unlabeled data to learn transferable feature representations, enabling adaptation to new tasks with
limited labeled data (Vettoruzzo et al., 2024).

Various approaches have been proposed to address the UML problem (Hsu et al., 2018; Jang et al.,
2022; Khodadadeh et al., 2019; Kong et al., 2021; Lee et al., 2022; 2020). However, UML still faces
several challenges. Existing UML methods often rely on simple data augmentations to construct
the training tasks, while following the standard meta-learning task sampling pipeline for evaluation.
This results in a significant difference between training and testing tasks, limiting generalization and
often requiring fine-tuning on the test domain. Furthermore, existing UML approaches typically
assume that the training and test datasets belong to the same domain. In our framework, we loosen
this assumption resulting in a more challenging setting that necessitates a better model generalization
compared to usual meta-learning applications. We refer to this as the cross-domain scenario.

In this paper, we propose a novel approach to UML that addresses these challenges by leveraging
in-context learning within a transformer architecture (Dong et al., 2022; Min et al., 2022). In-
context learning allows the model to use the context provided by a sequence of input-output pairs
to make predictions on new input data. Inspired by recent advancements in large language models
(LLMs) (Wei et al., 2022; Brown et al., 2020; Liu et al., 2022), we formulate meta-learning as a

∗Equal contributions.

1

Published as a conference paper at ICLR 2025

𝑥𝑛,𝑘
(𝑠𝑝)

= 𝒜𝑘(𝑥𝑛)

𝑦𝑛,𝑘
(𝑠𝑝)

= 𝑛

Support set Query set

. . .

𝑥𝑗
(𝑞𝑟)

= 𝜆𝑧𝑗 + 1 − 𝜆 𝑥𝑛,𝑗

𝑦𝑗
(𝑞𝑟)

= 𝑛

𝒟𝑡𝑟𝑎𝑖𝑛 = {𝑥𝑖}

Transformer encoder 𝑀𝜃

. . .

Linear ෝ𝑦𝑗
(𝑞𝑟)

Learned class encoder 𝑔𝜙

Fixed feature extractor 𝑓𝜓

*

mixupaugment

𝑁
samples

𝑆𝑖,𝑗 = 𝑓𝜓 𝑥𝑗
𝑞𝑟

, 𝑔𝜃 ∗ , 𝑓𝜓 𝑥𝑛,𝑘
𝑠𝑝

, 𝑔𝜙 𝑦𝑛,𝑘
𝑠𝑝

𝑛,𝑘

Figure 1: Visualization of CAMeLU (with 3-way 5-shot tasks). The left side illustrates the task
creation mechanism, where N samples are drawn from an unlabeled dataset Dtrain. Each sample
xn is augmented K times to obtain x

(sp)
n,k . A strategy inspired by mixup (Zhang et al., 2018) is utilized

for generating the query set by using an augmented version of xn, i.e., x̃n,j . The same pseudo-label
n ∈ [1, N] is assigned to all data generated from the sample xn. On the right side, the so-created
task is fed into the transformer encoder for predicting the query input. Inspired by CAML (Fifty
et al., 2024), the transformer encoder processes demonstrations created by concatenating features
from a fixed pre-trained feature extractor and a learned class encoder. The symbol ∗ denotes the
unknown query label that the transformer encoder aims to predict.

sequence modeling problem, where a task is seen as a non-causal sequence of support images and
an unknown query image. The support set is treated as the context utilized by the model to predict the
class of the query image. We call our approach CAMeLU, which stands for Context-Aware Meta-
Learning in Unsupervised scenarios. Central to our approach is a novel task creation mechanism
that enables the generation of a large number of different tasks from an unlabeled dataset. Drawing
inspiration from the natural decision process of learning by analogy (Winston, 1980), we construct
tasks that closely resemble the structure of those encountered during inference. Specifically, we use a
combination of different data augmentation techniques based on basic image manipulations (Shorten
& Khoshgoftaar, 2019) for generating the samples in the support set. Conversely, a strategy similar
to mixup (Zhang et al., 2018) is employed to generate query images by combining a support element,
after applying a distinct augmentation function, and an image randomly sampled from the training
dataset. This process ensures that the query contains sufficient information from the support image
to be classified as the latter, while introducing diversity by blending them. Consequently, query
images appear distinct from their corresponding support images while still belonging to the same
class, better mimicking the tasks seen at test time and hence enhancing generalization. Following
task creation, support and query images are encoded using a fixed pre-trained feature extractor. The
resulting latent representations are aggregated into a sequence and passed as input to a transformer
encoder along with their label encodings. The transformer encoder learns to extract contextual
information from support images and predict the query image in a single pass, eliminating the need
for the fine-tuning step during inference. An overview of our approach is visualized in Fig. 1.

Throughout extensive experiments we demonstrate the effectiveness of the proposed approach to
generalize to new tasks in real-time. Particularly, CAMeLU outperforms other UML baselines
across several datasets, establishing itself as the state-of-the-art in the field. It also achieves com-
parable results to its supervised counterpart and to SSL approaches. While the latter requires fine-
tuning on the test domain, CAMeLU obtains comparable performance with a single forward step,
highlighting its applicability to real-time applications. Furthermore, by recasting the meta-learning
phase as in-context learning within a transformer architecture, we improve efficiency, ensuring the
whole training and inference phase can be executed with a consumer device with 8GB VRAM.

The main contributions of this paper are as follows:

• We introduce CAMeLU, a novel UML method that leverages in-context learning within a
transformer architecture, reframing meta-learning as a sequence modeling problem.

• We propose a novel task creation mechanism that generates diverse few-shot tasks from
unlabeled datasets using a combination of data augmentations and a mixing strategy. This

2

Published as a conference paper at ICLR 2025

ensures better alignment between training and testing tasks, thus improving generalization
performance.

• We demonstrate that CAMeLU outperforms existing UML baselines across five datasets,
without the need for fine-tuning to the test domains.

• We investigate the ability of CAMeLU to generalize across various datasets, including
those significantly different from the training data.

2 RELATED WORK

Unsupervised meta-learning. Meta-learning is a well-studied field in the machine learning com-
munity due to its ability to enable models to quickly adapt to tasks with limited labeled data. Pi-
oneering work in the field (Finn et al., 2017; Snell et al., 2017; Vinyals et al., 2016; Mishra et al.,
2018; Sung et al., 2018) considers the scenarios where a large labeled dataset is available for meta-
training, a challenging requirement in real-world applications. UML addresses this challenge by
extracting meaningful information from unsupervised data that can be transferred to downstream
tasks with limited labeled data. Different techniques have been explored in the literature to construct
diverse tasks. CACTUs (Hsu et al., 2018) applies clustering in the embedding space and assigns the
same pseudo-label to all images in the same cluster. Other methods focus on generating synthetic
samples, either using data augmentations, as in UMTRA (Khodadadeh et al., 2019), or leveraging
interpolation in the latent space of a generative model (Khodadadeh et al., 2020). Differently, Meta-
GMVAE (Lee et al., 2020) and Meta-SVEBM (Kong et al., 2021) use variational autoencoders and
memory-based models for pseudo-label generation. Recent methodologies have also incorporated
SSL techniques (Doersch et al., 2015) into UML methods. In particular, Set-SimCLR (Lee et al.,
2022) builds on top of the SimCLR (Chen et al., 2020) approach and reframes meta-learning as a
set-level problem, while PsCo (Jang et al., 2022), inspired by MoCo (He et al., 2020), utilizes a mo-
mentum encoder and a queue of previous samples to improve pseudo-labeling and construct diverse
tasks for UML applications. Similarly, BECLR (Poulakakis-Daktylidis & Jamali-Rad, 2024) intro-
duces an approach for unsupervised few-shot learning by proposing a constrastive representation
learning framework, instead of meta-learning.

Data augmentation. Several UML approaches rely on data augmentation to construct the training
tasks (Khodadadeh et al., 2019; Lee et al., 2022; Jang et al., 2022). However, traditional transforma-
tions such as rotation, translation, cropping, resizing, and flipping (Shorten & Khoshgoftaar, 2019)
might generate images that are too similar to the original ones, ending up in tasks with low in-class
variability between the support and query images. This creates a problem when the model needs to
generalize to test tasks, where the query data are different instances than the support ones, not only
augmented versions of them. In this paper, we addressed this limitation by generating query images
using a strategy inspired by mixup (Zhang et al., 2018) to enhance model generalization. Similarly
to mixup, which performs linear interpolation of the feature vectors at the pixel level, other strate-
gies based on mixing images comprise CutMix (Yun et al., 2019), PatchMix (Liu et al., 2021), and
Manifold Mixup (Verma et al., 2019).

In-context learning. In-context learning refers to the ability to perform a new task via inference
alone by conditioning on a few input-output pairs and making predictions for new inputs (Dong
et al., 2022). Although typical of LLMs (Devlin et al., 2019; Radford et al., 2019; Touvron et al.,
2023), this ability has also been explored in different fields, such as in-painting (Bar et al., 2022;
Zhang et al., 2024), image segmentation (Butoi et al., 2023), and notably meta-learning (Chan et al.,
2022; Singh et al., 2024; Kirsch et al., 2022; Fifty et al., 2023; 2024; Min et al., 2022). Recent
methods, such as Chan et al. (2022) and Singh et al. (2024), examine the emergence of in-context
learning abilities from a data distribution perspective, extending these insights to images. GPICL
(Kirsch et al., 2022) further demonstrates that transformers can be meta-trained as general-purpose
in-context learners, while CAML (Fifty et al., 2024) adapts this concept to non-causal sequence
modeling problems. Building on these advancements, our work takes a different direction by tack-
ling the unsupervised meta-learning problem. Specifically, we introduce a novel task creation mech-
anism that, together with an in-context learner, enables learning directly from an unlabeled dataset.
This approach differentiates our method from prior in-context learning techniques, aligning it with
the unique requirements of UML.

3

Published as a conference paper at ICLR 2025

3 PROPOSED APPROACH

Our proposed approach, Context-Aware Meta-Learning in Unsupervised scenarios (CAMeLU),
leverages the in-context learning ability of transformers to address the challenges of UML. These
challenges include the need to construct meaningful tasks from unlabeled data and the requirement
for models to generalize effectively to new tasks during inference. CAMeLU consists of two phases
that are intertwined during the model training. Initially, tasks are automatically constructed from
an unlabeled dataset utilizing a combination of two strategies. Subsequently, we reformulate the
meta-learning framework as a sequence modeling problem, aiming to harness the in-context learn-
ing capability of a transformer. This enables the model to extract context from the support sam-
ples and predict the unknown query samples without requiring any fine-tuning during the inference
phase. The combination of these two phases is essential and guarantees good generalization per-
formance without labeled information. Transformers excel at modeling dependencies and capturing
relationships between support and query samples, which is particularly beneficial in few-shot learn-
ing scenarios. The novel task creation mechanism complements this by constructing diverse and
challenging pseudo-tasks, effectively preparing the model for the complexities of target tasks. We
delve into the two phases in Sect. 3.1 and Sect. 3.2, respectively.

3.1 TASK CREATION

Central to our proposed approach is the task creation mechanism. In meta-learning, a task Ti corre-
sponds to a data generating distribution Ti ≜ {pi(x), pi(y|x)}, and consists of data from N distinct
classes. The data sampled from each task is divided into a support set, D(sp)

i , containing K train-
ing examples per class, and a query set, D(qr)

i . At meta-test time, only the support set D(sp)
new of a

task Tnew ∼ Dtest is labeled and used to fine-tune the model and make accurate predictions on the
unlabeled query set. Contrary to supervised meta-learning, tasks in UML are only available at test
time, while a large unlabeled dataset Dtrain is available during training. The main goal is to extract
prior knowledge from this unlabeled dataset that can be generalized to a target task, Tnew ∼ Dtest,
during inference. A critical aspect of UML approaches lies in the task creation mechanism to create
tasks from Dtrain, which must ensure that the constructed training tasks reflect the structure of those
encountered during testing, thereby facilitating effective generalization to novel tasks at test time.
To do so, we employ two distinct strategies for constructing the support and query sets of each task.

For the support set, we randomly sample N images from Dtrain under the assumption that they
belong to distinct categories, as shown in Fig. 1. This assumption is reasonable when N << C,
where C denotes the total number of classes in Dtrain, which is satisfied using a large training
dataset. If we assume that all samples are equally distributed among the classes, i.e., m samples per
class, the probability that two or more samples are in the same class is equal to

P = 1− (C ·m) · ((C − 1) ·m) · · · ((C −N + 1) ·m)

(C ·m) · (C ·m− 1) · · · (C ·m−N + 1)
= 1− C! ·mN · (C ·m−N)!

(C −N)! · (C ·m)!
.

For example, the probability for a 5-way classification on the ImageNet-964 dataset used in our
experiment is around 0.01, which is negligible. To emulate the K-shot scenario typical of meta-
learning tasks, we augment each of the N images K times, with an augmentation function Ak

sampled from a predefined set of transformations A, and we assign the same pseudo-label n ∈ [1, N]
to all data generated from the same sample xn. Specifically, for each image xn, K augmentation
functions are applied to obtain x

(sp)
n,k = Ak(xn) with Ak ∼ A and k = 1, . . . ,K. One requirement

of Ak is that the function must preserve class membership, i.e., xn ∈ c → Ak(xn) ∈ c, for c ∈ C.
Although this property cannot be directly verified due to the lack of class information in the training
set, it is reasonable to assume that it holds by selecting transformations that minimally alter the
image content.

For the query set, we employ a different approach. We demonstrate in Appendix A.5 that simply
applying data augmentations sampled from A is not sufficient for creating a query set resembling
those in test tasks. At test time, the query set samples are different instances belonging to the same
N classes encountered in the support set, not augmented versions of the support samples. However,
since Dtrain is unlabeled, we need a strategy to create new samples with the same implicit classes
as those in the support set. For each query image x(qr)

j that we want to generate, we randomly select

4

Published as a conference paper at ICLR 2025

an image xn from the ones sampled for the support set generation and we apply an augmentation
function Aj ∼ A, possibly different from the one used for the support generation. We then propose
a new strategy inspired by mixup, where we combined the augmented image x̃n,j = Aj(xn) and an
image zj sampled from Dtrain according to:

x
(qr)
j = λzj + (1− λ)x̃n,j (1)

where λ ∼ Beta(α, β) with α = 1, β = 1 and λ ∈ (0, 0.5), and x
(qr)
j is assigned the same label

n as the support samples generated from xn. By merging a small proportion of a new image zj
into x̃n,j , we enhance diversity in the query set with respect to the images in the support set. This
strategy enforces the model to extract robust features and effectively generalize to scenarios where
query images differ from the support samples, as commonly encountered at test time.

This task-creation mechanism can be seen as a task augmentation strategy (Yao et al., 2021; Rajen-
dran et al., 2020) that allows the generation of a large number (almost infinite) of diverse tasks. This
is particularly useful for meta-learning and in-context learning applications where the model needs
to acquire knowledge from a multitude of tasks to generalize to unseen tasks sampled from different
domains.

Differences with mixup. While the strategy used for generating the query images draws inspira-
tion from the mixup strategy proposed in Zhang et al. (2018), there are some substantial differences.
The aim of mixup is to develop a new data augmentation strategy to expand the number of training
examples and diversify the data distribution used for training, thereby enhancing the robustness and
generalization of neural networks. In CAMeLU, the primary objective of merging images is to en-
courage the model to learn even in scenarios where only a fraction of the class context is present
in the image. In CAMeLU, λ is sampled from a uniform distribution (obtained with a Beta distri-
bution with α = 1, β = 1) in (0, 0.5), guaranteeing that the amount of information from zj that is
embedded into x

(qr)
j is less than 50%, thus ensuring that the assigned label is consistent with the

class of the support images generated from xn. Indeed, we assign the same label n to x
(qr)
j , forcing

the network to learn to retrieve information in x
(qr)
j that is related to the category of xn. Contrar-

ily, mixup creates new examples by interpolating both images and labels at the scope of limiting
memorization over the training distribution.

3.2 IN-CONTEXT LEARNING METHOD

Following task creation, we rephrase the meta-learning framework as a non-causal sequence mod-
eling problem, where the order of the examples does not entail a causal relationship. Inspired by
recent developments in LLMs (Garg et al., 2022; Li et al., 2023; Devlin et al., 2019; Radford et al.,
2019; Touvron et al., 2023), we treat each task as a prompt, where the support embeddings, together
with the learned projected labels, form the demonstration context, whereas the query represents the
classification problem that the network is required to solve. A model is said to in-context learn a task
if it can approximate y(qr)j for a new query input x(qr)

j by conditioning on a sequence Si,j containing
in-context (support) examples and one query input defined as follows:

Si,j =
(
(x

(sp)
1 , y

(sp)
1), . . . , (x

(sp)
NK , y

(sp)
NK), x

(qr)
j

)
, j = 1, . . . , Q, (2)

with Q the number of query samples to classify and NK the total number of context (support)
samples. Formally, Mθ can in-context learn a task Ti if it can predict y(qr)j with an average error

E

 Q∑
j=1

ℓ(Mθ(Si,j), y
(qr)
j)

 < ϵ, (3)

where ℓ is the loss function, Si,j is the sequence associated to x
(qr)
j in Ti, and y

(qr)
j ∈ [1, N].

To achieve this, we design a model comprising three components: (1) a feature extractor fψ ,
(2) a class encoder gϕ, and (3) a transformer encoder with a linear projection layer on top, i.e.,
Mθ. The feature extractor aims to map support and query samples into a latent space where im-
ages with similar characteristics and semantic meaning are assigned similar representations. In

5

Published as a conference paper at ICLR 2025

(a) Feature extractor (b) Transformer encoder

Figure 2: Visualization of clustered embeddings obtained with CAMeLU after the feature extractor
(left) and the transformer encoder (right) on a 5-way 5-shot task sampled from the CUB dataset.
Crosses indicate the centroids of each class, and the numbers denote the Euclidean distances between
the query (triangle) and each class centroid. The plots are obtained using t-SNE (Van der Maaten &
Hinton, 2008) with a perplexity equal to 9.

Appendix A.4 we explore various feature extractors for this purpose, including those pre-trained
via a supervised approach or leveraging an SSL technique. The resulting representations are
then concatenated with a class embedding. The class embeddings for the support representa-
tions are generated by encoding the corresponding classes using the class encoder gϕ. However,
as the classes of the queries are unknown, a randomly initialized learnable vector is appended
to each query representation. The so-combined embeddings are then organized into sequences
Si,j =

(
(fψ(x

(sp)
1), gϕ(y

(sp)
1)), . . . , (fψ(x

(sp)
NK), gϕ(y

(sp)
NK)), fψ(x

(qr)
j)

)
, j = 1, . . . , Q, resembling

the one in Eq. 2. These sequences are fed into the transformer encoder, and only the transformer
output corresponding to the query sample is selected and passed through a projection layer to predict
the query label. This process iterates for all queries in the task, and the aggregated loss is employed
for model training. In particular, the training process can be formulated as an optimization process
where the objective is as follows:

min
θ,ϕ

ESi

 1

Q

Q∑
j=1

ℓ(Mθ(Si,j), y
(qr)
j)

 (4)

with Si = {Si,j}Qj=1 denoting the set of sequences associated to each task Ti generated from Dtrain
and ℓ is the cross-entropy loss function.

During evaluation, when a new task is presented, the available examples in D
(sp)
new are utilized as

contextual information to guide the classification of the query samples without requiring any fine-
tuning or adaptation steps.

Analysis. To gain a better understanding of how the in-context learner functions during inference,
we show the embedding space of an exemplary test task after the feature extractor and the trans-
former encoder in Fig. 2. The embedding space after the feature extractor appears sparse, with a
large Euclidean distance between the query sample and the centroid of each class, which indicates
limited class separability and less informative representations. In contrast, the transformer encoder
significantly improves the representation, producing more compact and well-separated clusters. No-
tably, the query representation aligns closely with the support examples of the same class, show-
casing the effectiveness of the transformer in utilizing the task context to refine predictions. This
demonstrates the in-context learner’s ability to adapt representations dynamically based on the task
context and also provides evidence supporting CAMeLU’s superior performance, particularly in
cross-domain and few-shot scenarios where generalization is more challenging. Experiments for the
other datasets can be found in Appendix A.2.

6

Published as a conference paper at ICLR 2025

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of CAMeLU across different datasets, and we com-
pare the results with several baseline methods. In particular, we provide a quantitative comparison
with UML baselines in Sect. 4.3, and we highlight the ability of CAMeLU to leverage generalization
over memorization in Sect. 4.4. We then present the results with a small-scale training dataset in
Sect. 4.5 and a comparison with SSL methods in Sect. 4.6.

4.1 DATASETS AND BASELINES

For the evaluation, we use two generic object recognition datasets, i.e., miniImageNet (Ravi &
Larochelle, 2016) and CIFAR-fs (Bertinetto et al., 2019), and three fine-grained image classification
datasets, i.e., CUB (Wah et al., 2011), Aircraft (Maji et al., 2013), and Meta-iNat (Wertheimer
& Hariharan, 2019). While miniImageNet and CIFAR-fs share some classes with ImageNet-1k,
CUB, Aircraft, and Meta-iNat focus on more specialized domains, ensuring a rigorous cross-domain
evaluation. Each dataset is split into training, validation, and test sets following the splits in Ravi
& Larochelle (2016) and Bertinetto et al. (2019) for miniImageNet and CIFAR-fs, respectively,
and in Triantafillou et al. (2019) and Poulakakis-Daktylidis & Jamali-Rad (2024) for the remaining
datasets. All labels are removed from the datasets during the training phase.

We compare CAMeLU with standard UML approaches such as CACTUs (Hsu et al., 2018), UM-
TRA (Khodadadeh et al., 2019), Meta-GMVAE (Lee et al., 2020), and PsCo (Jang et al., 2022).
These methods are evaluated in-domain as recommended in the original papers, with training and
testing performed on the same dataset. While this setup is relatively simpler than the cross-domain
evaluation employed for CAMeLU, applying these methods in a cross-domain scenario may not be
fair, as they were not explicitly designed for such a challenging scenario. Only PsCo (Jang et al.,
2022) is further evaluated in a cross-domain setting, as the authors demonstrate its adaptability to
this scenario through an additional adaptation phase to the test domain. We also compare CAMeLU
with BECLR (Poulakakis-Daktylidis & Jamali-Rad, 2024) in Sect. 4.5, a contrastive framework
for unsupervised few-shot learning, and CAML (Fifty et al., 2024), a supervised meta-learning ap-
proach that assumes tasks are available both during the training and testing phases and leverages the
in-context ability of transformer architectures to generalize to new tasks. Due to their similarities,
we refer to CAML as the supervised counterpart of CAMeLU. Furthermore, Sect. 4.6 provides a
comparative analysis with two fine-tuned state-of-the-art self-supervised trained networks, namely
SimCLR (Chen et al., 2020) and SwAV (Caron et al., 2020).

4.2 TRAINING DETAILS

We report the results following the N -way K-shot classification task typical of meta-learning algo-
rithms, where N = 5 and K = 1 or K = 5. All models are trained for 100 epochs with 500 episodes
per epoch. Fine-tuning at test time (100 steps) is applied only if required. For CAMeLU, we do not
apply any fine-tuning step to demonstrate the strength of its training stage, which does not require
additional parameter updates during inference. Furthermore, we introduce ImageNet-964, a variant
of ImageNet-1k (Deng et al., 2009) where classes from the validation and test splits of miniImageNet
are removed to prevent data leakage—a problem that is not taken into consideration by previous stud-
ies (Fifty et al., 2024; Jang et al., 2022). To provide a fair comparison, all cross-domain methods are
trained on ImageNet-964. For CAMeLU, we use a ResNet-50 (He et al., 2016) feature extractor pre-
trained on ImageNet-964 and a class encoder that maps one-hot label vectors to a 256-dimensional
space. In Appendix A.4, we also report the results with different feature extractors. The transformer
encoder consists of 8 layers, each with an eight-head self-attention block, an MLP, and a single pro-
jection layer that maps the transformer output to the predicted category. The model is trained with
the Adam optimizer with a learning rate of 10−5 and a warmup cosine scheduler (Vaswani et al.,
2017). To account for statistical variations, each algorithm is run three times in full, and the com-
plete results reporting the standard deviations are presented in Appendix A.10. The experiments are
executed using Python and the PyTorch library on an Nvidia GeForce RTX 3070 Ti Laptop GPU
with 8GB of VRAM, while ablation studies and competitors are executed on an Nvidia A100-SXM4
GPU with 40GB of VRAM. More details about the training settings can be found in Appendix A.1,
and the code is available at https://github.com/bracca95/CAMeLU.git.

7

https://github.com/bracca95/CAMeLU.git

Published as a conference paper at ICLR 2025

Table 1: Performance comparison on miniImageNet, CIFAR-fs, CUB, Aircraft, and Meta-iNat
datasets for 5-way 1-shot and 5-way 5-shot scenarios. Cross-domain approaches are trained using
ImageNet-964 and a ResNet-50 feature extractor. The symbol † indicates results that are affected
by data leakage. The bold font highlights the best performing UML approach for each setting. Re-
sults show the average across three complete runs of the algorithms. Complete results with standard
deviations are reported in Tab. 12 in Appendix A.10.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

Method 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

In-Domain
CACTUs-MAML 43.30 54.21 42.00 56.64 31.19 36.81 24.06 27.26 20.13 21.84
CACTUs-ProtoNet 48.85 62.52 50.90 64.52 33.93 44.41 26.27 30.88 27.30 29.08
UMTRA 39.93 50.73 32.93 46.13 27.06 36.6 22.40 31.73 28.96 37.12
Meta-GMVAE 55.38† 65.10† 52.02 64.18 33.59 39.09 24.83 27.60 34.22 40.23
PsCo 47.29 64.85 42.21 62.92 33.09 51.02 26.19 38.80 36.97 55.88

Cross-Domain
PsCo 67.89 90.17 53.34 76.22 43.35 70.19 29.87 38.20 46.21 70.05
CAMeLU 76.51 92.14 61.79 80.43 65.52 80.35 33.17 39.11 57.27 75.45

CAML (supervised) 81.75 92.31 59.44 75.27 54.63 66.81 28.92 32.06 50.86 67.07

4.3 COMPARATIVE RESULTS

Table 1 provides an overview of the experimental results for both the 5-way 1-shot and the 5-way
5-shot scenarios. The results demonstrate that CAMeLU outperforms the existing UML methods,
regardless of the difference in the evaluation setting. As highlighted in Sect. 4.1, CACTUs, UM-
TRA, and Meta-GMVAE are evaluated only in-domain, requiring knowledge about the test domain
prior to training. This is not necessary for CAMeLU as it demonstrates high performance in the
challenging cross-domain scenario. Even compared to PsCo, the only UML method designed for
cross-domain applications, CAMeLU exhibits a performance improvement across all datasets. Fur-
thermore, PsCo requires a fine-tuning phase to adapt to the test domain, whereas CAMeLU achieves
good performance with a single forward pass, enhancing its applicability to real-time applications.
It is also worth noting that CAMeLU achieves comparable performance to its supervised counter-
part, CAML, when evaluated on miniImageNet and it even outperforms CAML when evaluated on
more dissimilar domains, such as CUB, Aircraft, and Meta-iNat. This finding highlights the efficacy
of the task construction strategy used in CAMeLU, which acts as a sort of task augmentation and
enhances the generalization capability of the model.

4.4 MEMORIZATION TO GENERALIZATION PHASE SHIFT

0 20 40 60 80 100
Epochs

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
la

tiv
e

va
lid

at
io

n
ac

cu
ra

cy

Memorization Learning Generalization

miniImageNet
CIFAR-fs
CUB
Aircraft

Figure 3: Analysis of learning behavior when
transferring knowledge from a different prior
dataset. The relative validation accuracy
shows the difference between the current and
first epoch accuracy on the validation set of
miniImageNet, CIFAR-fs, CUB, and Aircraft.
CAMeLU is trained with ImageNet-964.

During the training of CAMeLU, we observed a
distinct trend in the validation accuracy, similar to
the findings in Kirsch et al. (2022). Fig. 3 illus-
trates this pattern, showing the validation accu-
racy relative to its initial value, or, in other words,
how much the model learns from datasets differ-
ent from the one we are training on. Specifically,
the curves in Fig. 3 resemble a logistic curve,
which can be divided into three phases that we
denote as memorization, learning, and general-
ization. In the memorization phase, the model
memorizes the tasks seen during training and ex-
tends this knowledge to unseen tasks, resulting in
a slight improvement for datasets with high sim-
ilarity with ImageNet-964 (e.g., miniImageNet
and CIFAR-fs). For the other datasets, instead,
transferring this knowledge can even result in a
performance decrease due to the intrinsic domain
distance of the dataset (see CUB and Aircraft,

8

Published as a conference paper at ICLR 2025

Table 2: Accuracy results obtained training PsCo, BECLR, and CAMeLU with a small-scale dataset,
namely miniImageNet, denoted as (mini) in the table. Results show both in-domain performance
(on the test set of miniImageNet) and cross-domain performance on CIFAR-fs, CUB, Aircraft, and
Meta-iNat. The average results across three complete runs of the algorithms are reported. Complete
results with standard deviations are presented in Tab. 13 in Appendix A.10.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

PsCo (mini) 47.29 64.85 42.21 62.92 33.09 51.02 26.19 38.80 36.97 55.88
BECLR (mini) 81.04 87.88 57.05 72.82 42.47 58.03 27.48 38.46 49.87 65.05
CAMeLU (mini) 75.99 90.38 61.25 78.79 60.60 74.77 31.39 36.52 55.60 72.12

which are fine-grained datasets). As training progresses and the model observes more tasks, the
learning phase occurs. This phase is characterized by a transition to the learning-to-learn state
where the model learns to identify the tasks and to extract the features that are more useful for
solving them. The duration of this phase varies, with datasets like miniImageNet and CIFAR-fs
exhibiting rapid learning within approximately 10 epochs, while datasets such as CUB and Aircraft
may necessitate up to 40 epochs. This timespan depends on several factors, including the similarity
between the training and evaluation datasets, the size of the test dataset, and the model’s learning
ability (Kirsch et al., 2022; Power et al., 2022). For instance, CUB, with its fine-grained nature
and small test set size (around 1770 images), necessitates a longer learning phase compared to the
miniImageNet dataset (which has a test set with 12 000 images). Subsequently, in the generalization
phase, the model can generalize to tasks significantly different from those observed during training
using a single forward pass. Further analyses about the generalization capabilities of CAMeLU and
the number of epochs required for reaching the generalization phase are presented in Sect. 4.5 and
Appendix A.8.

4.5 GENERALIZATION ON SMALL-SCALE DATASETS

While most studies on training transformer architectures focus on large-scale training datasets, we
investigate the generalization capabilities of CAMeLU using a small-scale training dataset. Specifi-
cally, we train CAMeLU on miniImageNet and evaluate its performance both in-domain (i.e., on the
test set of miniImageNet) and cross-domain on CIFAR-fs, CUB, Aircraft, and Meta-iNat. CAMeLU
demonstrates effective generalization in this scenario, showing impressive performance in both in-
domain and cross-domain settings, as shown in Tab. 2, surpassing PsCo and BECLR by a large
margin.

Additionally, a comparison of CAMeLU’s performance when trained on a small-scale dataset like
miniImageNet (Tab. 2), on ImageNet-964 (Tab. 1), and on a large-scale dataset (Tab. 5 in Appendix

0 20 40 60 80 100
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
la

tiv
e

va
lid

at
io

n
ac

cu
ra

cy

CAML
CAMeLU

Figure 4: Relative validation accuracy of
CAMeLU (orange) and CAML (blue) when
evaluated in-domain on miniImagenet and com-
puted as in Sect. 4.4. The curve obtained with
CAMeLU reflects the three phases of mem-
orization, learning, and generalization even
when using a small-scale dataset.

A.3) show that our method is only slightly af-
fected by the size of the training dataset. This
robustness enhances CAMeLU’s applicability to
scenarios where only a small unlabeled training
dataset is available, which is common in real-
world applications.

Finally, Fig. 4 shows the relative validation accu-
racy of CAMeLU and CAML while trained and
evaluated on miniImageNet. While the curve ob-
tained with CAMeLU reflects the three phases of
memorization, learning, and generalization dis-
cussed in Sect. 4.4, the relative validation ac-
curacy of CAML remains flat. This difference
may be attributed to the task creation mechanism
of CAMeLU, which acts as a task augmentation
strategy, increasing the variability of tasks pre-
sented to the model during training and thereby
enhancing its generalization capabilities.

9

Published as a conference paper at ICLR 2025

Table 3: Comparison between CAMeLU and SSL approaches for the 5-way 1-shot and 5-way 5-
shot scenario on miniImageNet, CIFAR-fs, CUB, Aircraft, and Meta-iNat. The symbol † indicates
results that are affected by data leakage. Results show the average across three complete runs of the
algorithms. Complete results with standard deviations are reported in Tab. 14 in Appendix A.10.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

Method 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

SimCLR 83.32† 94.86† 64.52 84.36 47.35 66.87 29.36 39.99 52.44 73.19
SwAV 74.83† 94.96† 66.97 87.14 47.84 69.31 30.33 47.43 53.57 74.53

CAMeLU 76.51 92.14 61.79 80.43 65.52 80.35 33.17 39.11 57.27 75.45

4.6 COMPARISON WITH SSL METHODS

In this section, we compare CAMeLU with SimCLR (Chen et al., 2020) and SwAV (Caron et al.,
2020). For training SSL methods in our experiments, we employed a backbone network with a
ResNet-50 architecture pre-trained on ImageNet-1k and obtained from PyTorch Lightning Bolts
(Borovec et al., 2022). While this setup leads to data leakage when evaluated on miniImageNet,
due to overlap between the test and training classes, pre-training these SSL approaches from scratch
using a different training dataset was beyond our available computational resources. To facilitate
model adaptation to the test domain, we fine-tuned a classification layer on top of the pre-trained
backbone using SGD with an initial learning rate of 0.01, momentum of 0.9, weight decay of 10−4,
and 100 fine-tuning steps per task, following Jang et al. (2022). This setup differs from the evaluation
setting used in CAMeLU, where predictions are obtained with a single forward pass, leveraging
the in-context learning ability of transformer architectures. However, SSL approaches must adapt
to the test domain before label predictions, resulting in a less challenging evaluation setting than
CAMeLU. Results for SSL approaches are averaged over 500 test tasks and presented in Tab. 3.
While SSL approaches outperform CAMeLU on miniImageNet and CIFAR-fs, their performance
decreases when evaluated on the other datasets. CUB, Aircraft, and Meta-iNat are fine-grained
datasets significantly different from ImageNet-1k, challenging the transferability of features learned
by SSL methods to these datasets. Moreover, the high performance on miniImageNet and CIFAR-fs
may be attributed to the presence of data leakage with ImageNet-1k and the high similarity with
CIFAR-fs, as discussed in Sect. 4.2. CAMeLU, in contrast, demonstrates effective generalization
to tasks sampled from these datasets, once again highlighting its generalization ability over mere
memorization.

5 CONCLUSION

In this paper, we introduce CAMeLU, a novel approach for UML that leverages the in-context learn-
ing capabilities of transformer architectures to extract context from the support samples and make
effective predictions on the query data. CAMeLU reframes meta-learning as a sequence model-
ing problem, where support images provide task context for predicting query images. At the core of
CAMeLU is a novel task creation mechanism that generates diverse tasks from an unlabeled dataset,
promoting effective generalization to unseen tasks. Our experimental results showcase the superior-
ity of CAMeLU over existing UML methods, highlighting the applicability of the proposed method
to domains different from the training one. Notably, CAMeLU can generalize to new domains with a
single forward pass (real-time predictions), and it even outperforms its supervised counterpart thanks
to its task creation mechanism. Furthermore, the proposed model can be stored and trained with a
single GPU with only 8GB of VRAM, underscoring its efficiency in learning-to-learn in-context,
rather than using a meta-training phase typical of previous meta-learning approaches.

Future research directions may explore extensions of CAMeLU to more complex domains, as well
as investigations into further improving the task creation mechanism for enhanced generalization. It
would be interesting to incorporate SSL techniques to obtain more robust feature representations and
enhance generalization capabilities. Additionally, conducting further investigation into CAMeLU’s
ability to encourage generalization over memorization would provide valuable insights into its learn-
ing dynamics and potential areas for improvement.

10

Published as a conference paper at ICLR 2025

ETHICS STATEMENT AND REPRODUCIBILITY GUIDELINES

In this work, we used well-established, publicly available datasets to train and evaluate our archi-
tecture. While these datasets and pre-trained models provide a valuable foundation for research, we
acknowledge the potential for inherent biases that may not fully represent diverse real-world scenar-
ios. We have taken every precaution to ensure that our experiments are conducted responsibly, with
no intention of causing harm or perpetuating any biases present in the data. Furthermore, we declare
no conflicts of interest in the execution or reporting of this research. Our objective is to present the
findings in a transparent manner and contribute positively to the broader research community.

To ensure the reproducibility of our experiments, we have provided the code and detailed instructions
on how to run the experiments. The general configuration of our model is described in Sect. 4, with
additional technical details outlined in Sect. A.1 of the Appendix. Moreover, we have employed
random seed initialization to ensure consistency across runs. The complete codebase, models, and
pre-trained weights are available on GitHub 1 to facilitate further research and replication.

ACKNOWLEDGMENTS

This work was supported by the “Knowledge Foundation” (KK-stiftelsen).

1https://github.com/bracca95/CAMeLU.git

11

https://github.com/bracca95/CAMeLU.git

Published as a conference paper at ICLR 2025

REFERENCES

Amir Bar, Yossi Gandelsman, Trevor Darrell, Amir Globerson, and Alexei Efros. Visual prompting
via image inpainting. Advances in Neural Information Processing Systems, 35:25005–25017,
2022.

L Bertinetto, J Henriques, P Torr, and A Vedaldi. Meta-learning with differentiable closed-form
solvers. In International Conference on Learning Representations (ICLR), 2019. International
Conference on Learning Representations, 2019.

Jirka Borovec, William Falcon, Akihiro Nitta, Ananya Harsh Jha, otaj, Annika Brundyn, Donal
Byrne, Nathan Raw, Shion Matsumoto, Teddy Koker, Brian Ko, Aditya Oke, Sidhant Sundrani,
Baruch, Christoph Clement, Clément Poiret, Rohit Gupta, Haswanth Aekula, Adrian Wälchli,
Atharva Phatak, Ido Kessler, Jason Wang, JongMok Lee, Shivam Mehta, Zhengyu Yang, and
Garry O’Donnell. Pytorch lightning bolts. https://lightning-bolts.readthedocs.
io/en/latest/, 2022. Online; accessed 25 Apr 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Victor Ion Butoi, Jose Javier Gonzalez Ortiz, Tianyu Ma, Mert R Sabuncu, John Guttag, and
Adrian V Dalca. Universeg: Universal medical image segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 21438–21451, 2023.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in neural
information processing systems, 33:9912–9924, 2020.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learn-
ing in transformers. Advances in Neural Information Processing Systems, 35:18878–18891, 2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by
context prediction. In Proceedings of the IEEE international conference on computer vision, pp.
1422–1430, 2015.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
and Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Christopher Fifty, Jure Leskovec, and Sebastian Thrun. In-context learning for few-shot molecular
property prediction. arXiv preprint arXiv:2310.08863, 2023.

Christopher Fifty, Dennis Duan, Ronald Guenther Junkins, Ehsan Amid, Jure Leskovec, Christopher
Re, and Sebastian Thrun. Context-aware meta-learning. In The Twelfth International Conference
on Learning Representations, 2024.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

12

https://lightning-bolts.readthedocs.io/en/latest/
https://lightning-bolts.readthedocs.io/en/latest/

Published as a conference paper at ICLR 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Kyle Hsu, Sergey Levine, and Chelsea Finn. Unsupervised learning via meta-learning. In Interna-
tional Conference on Learning Representations, 2018.

Huiwon Jang, Hankook Lee, and Jinwoo Shin. Unsupervised meta-learning via few-shot pseudo-
supervised contrastive learning. In The Eleventh International Conference on Learning Repre-
sentations, 2022.

Siavash Khodadadeh, Ladislau Boloni, and Mubarak Shah. Unsupervised meta-learning for few-
shot image classification. Advances in neural information processing systems, 32, 2019.

Siavash Khodadadeh, Sharare Zehtabian, Saeed Vahidian, Weijia Wang, Bill Lin, and Ladislau
Boloni. Unsupervised meta-learning through latent-space interpolation in generative models. In
International Conference on Learning Representations, 2020.

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-context
learning by meta-learning transformers. arXiv preprint arXiv:2212.04458, 2022.

Deqian Kong, Bo Pang, and Ying Nian Wu. Unsupervised meta-learning via latent space energy-
based model of symbol vector coupling. In Fifth Workshop on Meta-Learning at the Conference
on Neural Information Processing Systems, 2021.

Dong Bok Lee, Dongchan Min, Seanie Lee, and Sung Ju Hwang. Meta-gmvae: Mixture of gaussian
vae for unsupervised meta-learning. In International Conference on Learning Representations,
2020.

Dong Bok Lee, Seanie Lee, Kenji Kawaguchi, Yunji Kim, Jihwan Bang, Jung-Woo Ha, and Sung Ju
Hwang. Self-supervised set representation learning for unsupervised meta-learning. In The
Eleventh International Conference on Learning Representations, 2022.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International Conference on
Machine Learning, pp. 19565–19594. PMLR, 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Chen Liu, Yanwei Fu, Chengming Xu, Siqian Yang, Jilin Li, Chengjie Wang, and Li Zhang. Learn-
ing a few-shot embedding model with contrastive learning. In Proceedings of the AAAI conference
on artificial intelligence, volume 35, pp. 8635–8643, 2021.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B Dolan, Lawrence Carin, and Weizhu Chen.
What makes good in-context examples for gpt-3? In Proceedings of Deep Learning Inside Out
(DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning
Architectures, pp. 100–114, 2022.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

13

Published as a conference paper at ICLR 2025

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn in
context. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 2791–2809, 2022.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. In International Conference on Learning Representations, 2018.

Stylianos Poulakakis-Daktylidis and Hadi Jamali-Rad. Beclr: Batch enhanced contrastive few-shot
learning. In The Twelfth International Conference on Learning Representations, 2024.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Janarthanan Rajendran, Alexander Irpan, and Eric Jang. Meta-learning requires meta-augmentation.
Advances in Neural Information Processing Systems, 33:5705–5715, 2020.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International
conference on learning representations, 2016.

Brigit Schroeder and Yin Cui. Fgvcx fungi classification challenge 2018. https://github.
com/visipedia/fgvcx_fungi_comp, 2018. Online; accessed 25 Apr 2024.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of big data, 6(1):1–48, 2019.

Aaditya Singh, Stephanie Chan, Ted Moskovitz, Erin Grant, Andrew Saxe, and Felix Hill. The
transient nature of emergent in-context learning in transformers. Advances in Neural Information
Processing Systems, 36, 2024.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 1199–1208, 2018.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, et al. Meta-dataset: A dataset
of datasets for learning to learn from few examples. In International Conference on Learning
Representations, 2019.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Joaquin Vanschoren. Meta-learning. Automated machine learning: methods, systems, challenges,
pp. 35–61, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

14

https://github.com/visipedia/fgvcx_fungi_comp
https://github.com/visipedia/fgvcx_fungi_comp

Published as a conference paper at ICLR 2025

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-
Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states.
In International conference on machine learning, pp. 6438–6447. PMLR, 2019.

Anna Vettoruzzo, Mohamed-Rafik Bouguelia, Joaquin Vanschoren, Thorsteinn Rognvaldsson, and
KC Santosh. Advances and challenges in meta-learning: A technical review. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2024.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. California Institute of Technology, 2011.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. Transactions on Machine Learning Research, 2022.

Davis Wertheimer and Bharath Hariharan. Few-shot learning with localization in realistic settings.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
6558–6567, 2019.

Patrick H Winston. Learning and reasoning by analogy. Communications of the ACM, 23(12):
689–703, 1980.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Huaxiu Yao, Long-Kai Huang, Linjun Zhang, Ying Wei, Li Tian, James Zou, Junzhou Huang, et al.
Improving generalization in meta-learning via task augmentation. In International conference on
machine learning, pp. 11887–11897. PMLR, 2021.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 6023–6032, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, 2018.

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. What makes good examples for visual in-context
learning? Advances in Neural Information Processing Systems, 36, 2024.

15

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 EXPERIMENTAL DETAILS

Datasets. For training CAMeLU, we use ImageNet-964, which is a variant of the original
ImageNet-1k dataset (Deng et al., 2009) where classes belonging to the validation and test splits
of miniImageNet (Ravi & Larochelle, 2016) are removed. This results in a total of 1 234 487 images
for training the model compared to the 1 281 167 in the original ImageNet-1k dataset. When a multi-
dataset approach is utilized for training CAMeLU (see Appendix A.3), MSCOCO (Lin et al., 2014)
and Fungi (Schroeder & Cui, 2018) are loaded into the program and used together with ImageNet-
964 for creating the whole training dataset. MSCOCO is a dataset originally proposed for object
detection, where each image is assigned to G classes corresponding to the G objects present in it.
To use it for image classification, we replicate each image G times and we assign to each of them
one of the G classes. In this way, we obtain a dataset with 117 266 images for training, and we
rely on the fact that the transformer is capable of applying self-attention to the object of the class
in question. Fungi is a fine-grained dataset with a size of only 64 307, which is two orders of mag-
nitude smaller than ImageNet-964 and MSCOCO. For evaluation and for in-domain training of the
baselines, we use miniImageNet, CIFAR-fs, CUB, Aircraft, and Meta-iNat. miniImageNet is split
into train/validation/test using the splits proposed in Ravi & Larochelle (2016), resulting in 38 400
images for training, 9600 for validation, and 12 000 for testing. The same number of images are also
present in CIFAR-fs, and the splits follow the work in Bertinetto et al. (2019). CUB and Aircraft,
instead, are two fine-grained datasets with a smaller size compared to the others. CUB (Wah et al.,
2011) consists of 8239 in the training set, 1779 in the validation set, and 1770 in the test set, while
Aircraft has respectively 7000/1500/1500 images in the train/validation/test sets (Triantafillou et al.,
2019). Finally, Meta-iNat (Wertheimer & Hariharan, 2019) consists of 243 986 images split into
1135 classes, with 227 reserved for testing. All images are resized to 224 × 224 and normalized
with zero mean and unit variance before input into the model. For the UML baselines, due to the
smaller model size utilized in the experiments, images are resized to 84 × 84, as suggested in the
original papers (Khodadadeh et al., 2019; Hsu et al., 2018; Lee et al., 2020; Jang et al., 2022).

CAMeLU. The architecture used for CAMeLU consists of a fixed pre-trained feature extractor,
a class encoder, and a transformer encoder. The feature extractor is pre-trained using ResNet-50
on ImageNet-964 following the same architecture and hyperparameters in He et al. (2016). The
class encoder is a single learnable layer with a dimensionality of 256 and initialized with Kaiming
initialization (He et al., 2015). Image embeddings are concatenated with class embeddings before
being fed into the transformer encoder. This results in a vector with a total length of 2304, composed
of 2048 features from the image embeddings and 256 from the label embeddings. When ablating the
feature extractor with CLIP (Radford et al., 2021) in Appendix A.4, a ViT-B/16 encoder architecture
is utilized and downloaded from the Hugging Face website (Wolf et al., 2019). The pre-training is
performed using a large dataset with 400 million (image, text) pairs (Radford et al., 2021), and it is
fixed during the training phase of CAMeLU. The output size of the image embedding is reduced to
1024, with 768 features from the image embedding, which results in a reduced memory complexity
compared to ResNet-50. The transformer encoder comprises 8 encoder layers. Each layer consists of
8 attention heads and an MLP with a reversed bottleneck of 3072 (with GeLU activation function). A
projection layer completes the model architecture to map the transformer output to a class prediction.
This architecture enables us to store the entire model in an Nvidia GeForce RTX 3070 Ti Laptop
GPU with 8GB of VRAM, while a further reduction of memory can be achieved by utilizing CLIP
on ViT-B/16 as feature extractor, which requires only 4 GB of VRAM to store the entire model.

For the task creation mechanism, 3 augmentation functions are selected from a list comprising crop-
ping, rotation, horizontal flip, grayscale, color jittering, gaussian blur, and random affine transfor-
mation. The exact parameters used in our experiments for each augmentation function are detailed
in Tab. 4. For the query set, an additional pixel-level mixing strategy with λ ∼ Beta(α, β) with
α = 1, β = 1 and λ ∈ (0, 0.5) is utilized. More details about this selection choice can be found in
Appendix A.6.

The training of CAMeLU is performed for 100 epochs, with 500 episodes each, using the Adam
optimizer with an initial learning rate of 10−5 and a warmup cosine scheduler with 1500 warmup
steps and a final learning rate of 10−6. For the evaluation, instead, a single forward pass is performed
and the accuracy between the output and the true label is calculated on the query set of each given

16

Published as a conference paper at ICLR 2025

Table 4: Complete list of transformations used for generating the support set of each task in
CAMeLU. The names of the augmentations are taken from the torchvision library in Python.

Augmentation Parameters

RandomResizedCrop image size = 224, scale = (0.2, 0.8), ratio= (0.75, 1.33)
RandomRotation degrees = 60, probability = 1.0
RandomHorizontalFlip probability = 1.0
Grayscale output channels = 3
ColorJitter brightness = 0.2, contrast = 0.2, saturation = 0.2, hue = 0.2
GaussianBlur kernel size = 3, sigma = (0.1, 2.0)
RandomAffine degrees = 0, shear = [−45, 45,−45, 45]

task. Results are then averaged across 500 tasks, and the mean and standard deviation across three
complete runs (consisting of training and evaluation) of the algorithm are used in our experiments.

Baselines. We compare our results with UML methods, an unsupervised few-shot learning
method, a supervised meta-learning method, and two SSL methods. For the UML baselines, we
consider CACTUs-MAML (Hsu et al., 2018), CACTUs-ProtoNet (Hsu et al., 2018), UMTRA (Kho-
dadadeh et al., 2019), Meta-GMVAE (Lee et al., 2020), and PsCo (Jang et al., 2022). All these meth-
ods are evaluated in-domain, i.e., using the same dataset for training and evaluation, to adhere to the
setting proposed in the original papers. Only PsCo is also extended to the cross-domain scenario
that we discuss in this paper. All methods are trained for 100 epochs, using the parameters reported
in the original papers (Khodadadeh et al., 2019; Hsu et al., 2018; Lee et al., 2020; Jang et al., 2022),
and evaluated with 100 adaptation steps on each task when required by the model. When evaluated
in-domain, all approaches use a Conv5 architecture consisting of 5 convolutional layers with 64
filters and a kernel size of 3, followed by batch normalization, ReLU non-linearity, max pooling,
and a classifier head. The only exception is Meta-GMVAE. For this method, the authors trained a
Conv5 feature extractor with SimCLR and input the learned features into a variational autoencoder
(VAE) (Lee et al., 2020). Due to time limitations and the computational resources required to train
a model with SimCLR, in our experiments, we used a feature extractor consisting of a pre-trained
version of SimCLR on ResNet-50 (Borovec et al., 2022) using ImageNet-1k, followed by a pro-
jection layer fine-tuned for 100 steps to the training dataset, as done for the SSL baselines. This
approach results in a better performance than the one reported in the original paper (Lee et al., 2020)
(see Tab. 1), likely due to the improved ability of the feature extractor to extract meaningful fea-
tures. For PsCo, when evaluated on a cross-domain setting, we utilized the ResNet-50 architecture
trained on ImageNet-964 to avoid data leakage, and we then applied the model to the test domain
using 100 adaptation steps to it. We also included BECLR (Poulakakis-Daktylidis & Jamali-Rad,
2024) in our comparison utilizing the same hyperparameters and model architectures proposed in the
original paper, given the importance of hyperparameter choice for final performance. Specifically,
the ResNet-50 feature extractor was trained only on miniImageNet and evaluated on cross-domain
scenarios in Tab. 2.

To compare our results with CAML (Fifty et al., 2024), the same architecture and hyperparameter of
our approach are applied to this method. This results in a lower performance for CAML compared
to the original paper (Fifty et al., 2024), as the reduced size of the model and the different feature
extractor (ResNet-50 instead of ViT-CLIP), but it guarantees fair comparisons and lets us train the
model with the available computational resources.

We also provide a comparison with two SSL approaches - SimCLR (Chen et al., 2020) and SwAV
(Caron et al., 2020). The details for training and evaluation are provided in Sect. 4.6.

A.2 IN-CONTEXT LEARNING ANALYSIS

To verify the contribution of the in-context learner in CAMeLU, we examine the embedding space
learned during inference, both after the feature extractor and the transformer encoder. Fig. 5 presents
a t-SNE visualization of a single test task, where clusters represent the embeddings of the support
classes. For simplicity, we illustrate a 5-way 5-shot task with one query sample for each dataset, and
we report the Euclidean distance between the query and the centroid of each class. As the dataset

17

Published as a conference paper at ICLR 2025

(a) Feature extractor (miniImageNet) (b) Transformer encoder (miniImageNet)

(c) Feature extractor (CUB) (d) Transformer encoder (CUB)

(e) Feature extractor (Aircraft) (f) Transformer encoder (Aircraft)

Figure 5: Visualization of clustered embeddings obtained with CAMeLU after the fixed feature
extractor (left) and the transformer encoder (right) across different datasets. The plots represent 5-
way 5-shot tasks during inference. Crosses indicate the centroids for each class, triangles represent
the query sample embeddings, and the numbers denote the Euclidean distances between the query
and each class centroid. The plots are obtained using t-SNE (Van der Maaten & Hinton, 2008) with
a perplexity equals to 9.

18

Published as a conference paper at ICLR 2025

Table 5: Comparison of CAMeLU and CAML when trained on the single ImageNet-964 dataset
(IN-964) and on a multi-dataset (mds) consisting of ImageNet-964 + MSCOCO + Fungi. Results
show the mean and standard deviations for the 5-way 1-shot and the 5-way 5-shot settings across
three complete runs of the algorithms.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

CAMeLU (IN-964) 76.51± 0.79 92.14± 0.30 61.79± 0.59 80.43± 0.21 65.52± 0.37 80.35± 0.63 33.17± 0.94 39.11± 1.97 57.27± 0.39 75.45± 0.42
CAMeLU (mds) 76.56± 0.36 91.82± 0.21 62.41± 0.70 80.36± 0.32 65.35± 0.70 79.78± 0.38 32.54± 0.41 37.87± 0.59 57.36± 0.33 75.40± 0.29

CAML (IN-964) 81.75± 0.18 92.31± 0.11 59.44± 0.63 75.27± 0.77 54.63± 1.78 66.81± 3.12 28.92± 0.37 32.06± 0.43 50.86± 0.50 67.07± 0.39
CAML (mds) 81.90± 0.54 92.93± 0.33 63.08± 0.43 79.73± 0.63 56.85± 1.92 69.43± 1.85 28.36± 2.26 31.56± 2.14 54.72± 0.63 70.50± 0.67

complexity increases, we observe greater variation between the embeddings learned from the fixed
feature extractor and those refined by the transformer encoder. For instance, with the miniImageNet
dataset, the feature extractor alone is able to recognize the class of the query, clustering the query
sample with the support samples belonging to the same class. However, in more challenging datasets
such as CUB and Aircraft, the embedding space after the feature extractor appears more sparse,
reflected by the large Euclidean distance between the query sample and the centroid of each class. In
contrast, the transformer encoder significantly improves the representation, producing more compact
and well-separated clusters, underscoring its crucial role in CAMeLU. For instance, in the Aircraft
dataset, the query would be misclassified as class 5 (in grey) based on the feature extractor alone,
but it is correctly classified after passing through the transformer. This highlights the role of the
transformer encoder in updating the support and query representations based on the context of the
task, not only the image context, improving classification accuracy.

A.3 MULTI-DATASET TRAINING

We conduct additional experiments to evaluate the performance of CAMeLU when trained on a
large-scale dataset. As our focus is on cross-domain classification through in-context learning, we
hypothesize that training on a dataset spanning various concepts could enhance classification per-
formance, as suggested in Min et al. (2022) and Fifty et al. (2024). To test this hypothesis, we com-
bine three training datasets with varying levels of granularity: ImageNet-964 (Deng et al., 2009),
MSCOCO (Lin et al., 2014), and Fungi (Schroeder & Cui, 2018). During each training episode, a
dataset is uniformly sampled, and N data points are extracted. These samples are then utilized in our
method as described in Sect. 3. Table 5 presents the results for CAMeLU and the supervised CAML
method. Notably, training with a combination of multiple datasets (denoted as mds in Tab. 5) yields
improved performance for CAML (supervised) compared to training solely on ImageNet-964, likely
due to the increased variability in the sampled tasks. However, CAMeLU does not exhibit a similar
performance boost, as its task creation mechanism already introduces substantial variability, reduc-
ing the benefit of additional dataset diversity. Moreover, the large size of ImageNet-964 (around
80% of the overall dataset), leads to its more frequent selection compared to the other datasets
and limits the potential for performance gains from the other datasets. Consequently, to optimize
computational resources and time, we conducted all the other experiments by training solely on
ImageNet-964.

A.4 ABLATION STUDIES - FEATURE EXTRACTOR

To assess the impact of the pre-trained feature extractor, we evaluate CAMeLU with various extrac-
tors pre-trained using different strategies. In particular, we compare the effectiveness of a ResNet-50
encoder pre-trained in a supervised manner both on ImageNet-1k and on ImageNet-964, a ResNet-
50 pre-trained on ImageNet-1k using two SSL strategies, i.e., SimCLR (Chen et al., 2020) and SwAV
(Caron et al., 2020), and a ViT-B/16 architecture pre-trained with CLIP (Radford et al., 2021) on a
large dataset with 400 million (image, text) pairs. The extractors were downloaded from the Hug-
ging Face (Wolf et al., 2019) and PyTorch Lightning Bolts (Borovec et al., 2022) websites, except
for the ResNet-50 architecture pre-trained on ImageNet-964. Results in Tab. 6a demonstrate that
the models pre-trained on ImageNet-1k exhibit significantly higher performance on miniImageNet,
compared to other datasets, primarily due to the data leakage issue described in Sect. 4.2. This issue
is mitigated by pre-training the ResNet-50 architecture on ImageNet-964, which results in a drop
in the performance on miniImageNet and CIFAR-fs due to the removal of data leakage, making it

19

Published as a conference paper at ICLR 2025

Table 6: Ablation study of feature extractors utilized in CAMeLU. The feature extractors include
ResNet-50 pre-trained on ImageNet-964 (ResNet50 (IN-964)), ResNet-50 pre-trained on ImageNet-
1k (ResNet50 (IN-1k)), ResNet-50 pre-trained on ImageNet-1k with SimCLR and SwAV, as well
as a ViT-B/16 architecture pre-trained with CLIP. All models are trained using CAMeLU on (a)
ImageNet-964 or (b) using a combination of ImageNet-964 + MSCOCO + Fungi (multi-dataset).
The symbol † indicates results that are affected by data leakage. Results show the mean and standard
deviations across three complete runs of the algorithms.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

Extractor 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

ResNet-50 (IN-964) 76.51± 0.79 92.14± 0.30 61.79± 0.59 80.43± 0.21 65.52± 0.37 80.35± 0.63 33.17± 0.94 39.11± 1.97 57.27± 0.39 75.45± 0.42
ResNet-50 (IN-1k) 78.17± 1.69† 95.75± 0.48† 66.02± 0.78 84.40± 0.64 60.69± 1.13 79.08± 0.75 33.23± 0.70 40.05± 0.85 56.21± 0.43 74.35± 0.21
ResNet-50 (IN-1k) - SimCLR 56.10± 1.16† 79.45± 2.37† 46.14± 1.24 63.03± 2.73 36.85± 2.69 50.34± 3.22 24.30± 1.06 27.25± 2.21 42.61± 0.41 58.95± 0.72
ResNet-50 (IN-1k) - SwAV 60.16± 0.70† 84.32± 0.34† 56.81± 0.84 75.49± 1.76 44.39± 0.75 60.44± 0.18 27.82± 0.62 34.56± 1.67 47.31± 0.41 65.84± 0.09
ViT-B/16 - CLIP 76.44± 0.51 91.96± 0.31 69.74± 0.95 86.25± 0.92 61.05± 1.91 75.17± 2.77 37.82± 2.14 43.10± 1.95 61.22± 0.67 77.09± 0.15

(a) ImageNet-964 training

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

Extractor 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

ResNet-50 (IN-964) 76.56± 0.36 91.80± 0.20 62.28± 0.69 80.15± 0.37 65.06± 0.82 79.27± 1.22 31.89± 1.43 37.13± 1.67 57.36± 0.33 75.04± 0.49
ResNet-50 (IN-1k) 79.07± 0.88† 96.44± 0.16† 66.15± 0.31 84.90± 0.42 60.62± 0.45 79.26± 0.20 33.41± 0.98 41.23± 1.14 59.14± 0.14 74.31± 0.51
ResNet-50 - SimCLR 53.83± 1.87 78.10± 1.94 45.06± 1.06 61.90± 0.33 37.64± 1.74 51.40± 1.70 25.31± 0.49 28.87± 0.99 41.89± 0.15 58.87± 0.36
ResNet-50 - SwAV 58.82± 0.34 83.45± 0.24 57.33± 0.57 76.62± 1.01 44.79± 0.24 60.71± 0.85 27.30± 0.77 34.50± 0.85 47.18± 0.35 65.65± 0.19
ViT-B/16 - CLIP 77.92± 1.89 93.83± 0.70 78.04± 0.91 91.88± 0.45 74.08± 1.81 88.86± 2.33 49.21± 2.46 58.97± 2.74 67.95± 1.25 82.59± 1.05

(b) Multi-dataset training

comparable with the results on CLIP-ViT-B/16. For CLIP-ViT-B/16, however, thorough verifica-
tion of potential data leakage was not possible due to the undisclosed nature of its training dataset.
As such, these results should be interpreted with caution. CLIP-ViT-B/16 stands out as the best-
performing method due to its dataset-agnostic nature and its ability to learn representations that
generalize across a broad range of tasks. Furthermore, when training CAMeLU with a multi-dataset
approach (Tab. 6b), as described in Appendix A.3, results for CLIP-ViT-B/16 improve further, high-
lighting its applicability also to datasets significantly different from those used for training (Radford
et al., 2021). These findings demonstrate that CAMeLU’s performance scales with the strength of
the feature extractor, indicating potential for further investigation as more robust feature extractors
become available. However, in this work, we decided to use the ResNet-50 architecture to guarantee
a fair comparison with previous baselines.

A.5 EVALUATION OF THE TASK CREATION MECHANISM

0 20 40 60 80 100
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n
ac

cu
ra

cy

Proposed startegy (mini)
Data augmentation (mini)
Proposed startegy (CUB)
Data augmentation (CUB)

Figure 6: Validation accuracy on miniImageNet
(mini) and CUB while training CAMeLU with
two different task creation mechanisms. Red
and purple curves are obtained with our proposed
strategy in Sect. 3.1, while orange and pink curves
are obtained by applying only data augmentations
based on image manipulations to generate the sup-
port and query samples. The training is performed
using ImageNet-964.

To assess the effectiveness of the task cre-
ation strategy employed in our proposed ap-
proach, we conduct a comparative analysis of
CAMeLU’s performance under two different
task creation mechanisms. Specifically, we
evaluate CAMeLU when tasks are generated
solely using data augmentations for both the
support and query sets, following a strategy
similar to UMTRA (Khodadadeh et al., 2019),
versus employing our proposed approach out-
lined in Sect. 3.1. By applying our task cre-
ation strategy, we generate more complex tasks,
making the generalization problem harder and
the in-context learner more robust (Chan et al.,
2022; Singh et al., 2024). The results presented
in Tab. 7a confirm our claim. Across all the
datasets, our proposed strategy enhances the
generalization on cross-domain datasets such as
CUB, Aircraft, and Meta-iNat. This conclu-
sion is further supported by Fig. 6, which shows
the validation accuracy on miniImageNet and
CUB using the two mechanisms discussed be-
fore, along with the CLIP-ViT feature extractor described in Appendix A.4. These results confirm

20

Published as a conference paper at ICLR 2025

Table 7: Ablation experiments of the proposed task creation mechanism by (a) generating tasks
only using data augmentations for the support and query set on ImageNet-964 and (b) applying
k-means clustering on the ResNet-50 embeddings on miniImageNet. Results show the mean and
standard deviations across three complete runs of the algorithms in the 5-way 1-shot and 5-way 5-
shot scenarios.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

Method 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

ImageNet-964
Augment 78.20± 0.38 91.35± 0.35 64.30± 0.31 81.08± 0.23 62.19± 1.29 75.53± 1.52 31.90± 1.69 37.46± 1.71 56.46± 0.53 74.00± 0.80
Proposed 76.51± 0.79 92.14± 0.30 61.79± 0.59 80.43± 0.21 65.52± 0.37 80.35± 0.63 33.17± 0.94 39.11± 1.97 57.27± 0.39 75.45± 0.42

(a) Data augmentation vs. the proposed strategy

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

Method 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

miniImageNet
k-means 75.86± 1.27 89.57± 0.65 46.14± 1.96 62.19± 2.19 33.76± 3.58 40.39± 4.06 24.48± 3.34 27.11± 4.23 36.32± 1.68 47.66± 1.59
Proposed 75.99± 0.20 90.38± 0.21 61.25± 0.55 78.79± 0.21 60.60± 0.80 74.77± 1.70 31.39± 1.17 36.52± 0.88 55.60± 0.20 72.12± 0.35

(b) k-means clustering vs. the proposed strategy

Table 8: Evaluation of the proposed task creation strategy when applied to build pseudo-tasks on top
of MAML. The results are compared with other MAML-based baselines for UML, such as UMTRA
and CACTUs-MAML.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

Method 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

CACTUs-MAML 43.30 54.21 42.00 56.64 31.19 36.81 24.06 27.26 20.13 21.84
UMTRA 39.93 50.73 32.93 46.13 27.06 36.60 22.40 31.73 28.96 37.12

Proposed + MAML 34.04 46.13 37.02 52.00 31.22 41.54 26.12 34.34 30.94 42.43

that our task creation strategy is more robust, particularly in cross-domain evaluations, even when
stronger feature extractors are utilized.

Additionally, we experimented with k-means clustering as an alternative to the proposed task cre-
ation strategy. Inspired by CACTUs (Hsu et al., 2018), we applied clustering on the embeddings
generated by the feature extractor to generate pseudo-labels. The results are presented in Tab. 7b
when training on miniImageNet due to the high computational cost of k-means and indicate that our
proposed mechanism generalizes better across domains. Furthermore, k-means clustering requires
an insight into the number of classes in the training dataset, as choosing a high number of clus-
ters would lead to a lack of samples per class, whereas a low number may hinder generalization.
In contrast, CAMeLU does not rely on such assumptions, enhancing its robustness compared to
clustering-based approaches.

Finally, we show that the benefits of our task creation strategy extend beyond CAMeLU. In Tab. 8 we
apply our proposed mechanism to generate pseudo-tasks on top of MAML (Finn et al., 2017). This
allows for a direct comparison with MAML-based approaches, such as UMTRA (Khodadadeh et al.,
2019) and CACTUs-MAML (Hsu et al., 2018), by replacing their original task creation mechanisms.
The increased performance of our strategy applied to the baselines demonstrates its superiority over
previous task creation methods. It may be objected that CACTUs-MAML achieves higher perfor-
mance on miniImageNet and CIFAR-fs. However, this is caused by the use of a feature extractor
pre-trained on ImageNet-1k, which introduces an unfair advantage by leaking information about the
test data into the training phase. This performance gap narrows when the test distribution deviates
from the training data (e.g., CIFAR-fs) and disappears for datasets with low correlation to ImageNet-
1k, supporting our hypothesis. Indeed, on datasets that share low similarity with ImageNet-1k, our
method consistently outperforms both UMTRA and CACTUs-MAML. While these results high-
light the strength of our task creation strategy, the performance still remains significantly lower than
CAMeLU, especially in cross-domain scenarios. This emphasizes the critical role of combining
our robust task creation mechanism with the in-context learning capabilities of transformer-based
architectures to achieve superior performance.

21

Published as a conference paper at ICLR 2025

(a) Image x̃n,j (b) Random
image zj

(c) Query im-
age x

(qr)
j with

pixel level mix

(d) Query im-
age x

(qr)
j with

patch level mix

Figure 7: Visualization of a query image x̃n,j generated by
mixing (a) the support image and (b) a randomly sampled
image at (c) the pixel level or at (d) the patch level using
λ = 0.49.

Table 9: mSSIM values
computed as the average be-
tween SSIM (x̃n,j , x

(qr)
j) and

SSIM (zj , x
(qr)
j) when x

(qr)
j is

obtained using a pixel level or a
patch level mixing strategy with
λ = 0.25 and λ = 0.49.

λ = 0.25 λ = 0.49

Pixel level 0.60 0.61
Patch level 0.56 0.57

A.6 QUERY SAMPLES GENERATION STRATEGY

We also conducted additional experiments to validate the choice of utilizing Eq. 1 for generating
query samples. In particular, we compare the results obtained as a linear combination of the aug-
mented image x̃n,j with the randomly sampled image zj (pixel level), as in Eq. 1, and at the patch
level, as in Yun et al. (2019). Specifically, for the latter, we randomly select a patch from zj with
an area ratio proportional to λ, and we paste it into x̃n,j . Fig. 7 illustrates an example of these
two techniques by mixing two images sampled from ImageNet-964. As shown in Fig. 7c, merging
the images at the pixel level results in a mixed image where some information from x̃n,j and zj is
retained in every part of the image. Contrarily, in Fig. 7d, there is no information about x̃n,j in the
lower left corner, forcing the network to attend only to the upper right part of the image to classify it
with the same class as x̃n,j . Therefore, we hypothesize that the pixel level strategy is more suitable
for our approach as the goal is to attend to the whole image to extract robust features that allow the
model to classify the query image with the same class as the support one while ensuring diversity
between the two. To validate this, we utilized the Structural Similarity Index (SSIM) (Wang et al.,
2004). SSIM is used as a metric to measure the similarity between two given images based on
three image features: luminance, contrast, and structure. Formally, considering x and y two given
images, SSIM is calculated as follows:

SSIM(x, y) =

[
2µxµy + c1
µ2
x + µ2

y + c1

]α
+

[
2σxσy + c2
σ2
x + σ2

y + c2

]β
+

[
σxy + c3
σxσy + c3

]γ
(5)

where µ represents the mean of an image, σ denotes the standard deviation, c1, c2, c3 are constant
values, and α, β, γ denote the relative importance of each metrics. By assuming α = β = γ = 1
and c2 = c2/2, we get

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
. (6)

Instead of applying the above formula all over the image at once, (Wang et al., 2004) proposed
a local variant that consists of computing the SSIM index locally and averaging these values to
obtain the global SSIM value. For our purpose, we computed this metric between each of the two
images used for the generation, i.e., x̃n,j and zj , and the resulting mixed image, i.e., x(qr)

j . We then
average the results, obtaining an indicator, denoted as mSSIM , of how similar the query image is
with the images used for the generation, or in other words, how much local information is retained
from x̃n,j and zj into x

(qr)
j . Results are shown in Tab. 9 for λ = 0.25 and λ = 0.49, confirming

the hypothesis that, even for high λ values, mixing at the pixel level guarantees more information
retained across the whole image compared to using a patch level strategy. This is also confirmed by
the results in Tab. 10, which shows a decrease in the performance when CAMeLU is trained with
the patch level strategy for query generation.

We also ablate the values of the α and β parameters used in the Beta distribution from which λ
is sampled. Tab. 10 presents the results for different values of α and β when λ ∼ Beta(α, β) and
λ ∈ (0, 0.5). The results indicate that the optimal choice for CAMeLU is to select α = 1, β = 1,

22

Published as a conference paper at ICLR 2025

Table 10: Accuracy results of CAMeLU when trained with different strategies for generating the
query samples. Pixel level mix refers to the scenario where query samples are generated with Eq. 1,
while patch level mix refers to a strategy similar to the one proposed in Yun et al. (2019). Results are
reported in the 5-way 5-shot scenario with λ ∼ Beta(α, β) and different α and β values. Results
show the mean and standard deviations across three complete runs of the algorithms.

miniImageNet CIFAR-fs CUB Aircraft

Pixel level mix
α = 0.1, β = 0.1 90.68± 0.67 75.88± 2.08 76.31± 2.44 35.31± 2.57
α = 0.5, β = 0.5 91.34± 0.24 77.70± 0.73 79.52± 0.73 37.56± 1.92
α = 1, β = 1 92.14± 0.30 80.43± 0.21 80.35± 0.63 39.11± 1.97
α = 2, β = 5 90.68± 1.02 77.00± 1.40 79.62± 2.50 38.02± 1.85
α = 5, β = 5 90.63± 0.30 78.12± 0.15 79.71± 0.42 37.57± 0.11

Patch level mix
α = 1, β = 1 91.25± 0.50 77.80± 0.45 76.12± 1.06 33.60± 1.27

Table 11: Computational and time complexity of CAMeLU in comparison with PsCo. The compar-
ison is performed considering the time required for the task creation, the training time (expressed in
time per epoch), the inference time on a single task, and the GPU and CPU memory usage during
training and inference.

Time task construction Training time Inference time
(ms) (ms/epoch) (ms/task)

PsCO 20772 4613656 605
CAMeLU 1376 153000 57

GPU training CPU training GPU inference CPU inference
(MiB) (MiB) (MiB) (MiB)

PsCO 43904 20904 1630 2061
CAMeLU 6250 2588 3224 1667

which appears to be a uniform distribution. Additionally, α = 2, β = 5 also yields comparable
results, highlighting the importance of selecting a sufficiently small λ to ensure the incorporation of
sufficient information from x̃n,j into x

(qr)
j facilitating the model’s ability to classify the latter with

the same class as x(sp)
n,i .

A.7 COMPUTATIONAL COMPLEXITY AND RESOURCES USAGE

In this Sect., we analyze the computational and time complexity of CAMeLU and we compare it
with PsCo Jang et al. (2022). Tab. 11 presents the time required for task generation, model training,
and inference, along with GPU and CPU memory usage. The results demonstrate that CAMeLU is
not only faster than PsCo but also significantly more memory efficient. Notably, CAMeLU requires
only 57ms for task inference, making it particularly suitable for real-time applications.

The computational complexity of CAMeLU is primarily attributed to the transformer architecture,
which is known for its computational demands due to the self-attention mechanism. The transformer
model has a computational complexity of O(n2 · d) per layer (Vaswani et al., 2017), where n is the
sequence length and d is the hidden dimension. In our context, n includes both the support samples
and the query sample. Consequently, the total computational complexity for evaluating Q queries is
O(Q · (NK+1)2 · d), where N is the number of classes, K the number of shots, NK+1 indicates
one query per input sequence, and Q is the total number of queries. This results in a quadratic
complexity in the number of support samples which can be computationally demanding. However,
we have demonstrated in Tab. 1 that CAMeLU achieves good performance even with only K = 1
support sample per class. Additionally, further experiments with only one query sample per episode

23

Published as a conference paper at ICLR 2025

(a) CAMeLU on miniImageNet (b) CAMeLU on CUB

(c) CAML on miniImageNet (d) CAML on CUB

Figure 8: Comparison of logistic function approximations and phase boundaries for learning and
generalization phases in CAMeLU and CAML for miniImageNet and CUB datasets.

and one support sample per class (i.e., N = 5, K = 1, Q = 1) yield results of 80.74 ± 0.65 for
miniImageNet, 63.07 ± 1.14 for CIFAR-fs, 54.84 ± 1.41 for CUB, 30.32 ± 0.76 for Aircraft, and
55.76± 0.08 for Meta-iNat. These results are comparable to those reported in Tab. 1 for the 5-ways
1-shot scenario using 25 queries, highlighting that a single query is sufficient for good performance,
as also demonstrated in CAML.

A.8 QUANTITATIVE ANALYSIS OF LEARNING PHASES

To quantitatively assess the number of epochs required to enter the generalization phase, we propose
to approximate the validation accuracy curves with the generalized logistic function

f(x) = a+
d− a

1 + e−b(x−x0)
= a+

d− a

1 + ce−bx
, (7)

where parameters a, b, c, d are responsible for particular features of the logistic function. Parameters
a and d indicate the lower and, respectively, the upper asymptote. Parameter b is the logistic growth
rate, and finally, parameter c = ebx0 is related to the inflection point x0 at which the maximum
growth of the function occurs. To find the best fitting logistic curve we use a standard regression
function. The logistic function is strictly increasing, thus the derivative, which is given by f ′(x) =
bc(d−a)e−bx

(1+ce−bx)2
, is always positive. The derivative firstly increases (from values close to zero), and

after reaching its maximum value at the inflection point, it decreases. To determine the bounds for
reaching the learning and generalization phases, we find the values for which the derivative is equal
to a given fraction of the maximum possible growth rate. After testing several cases, the results
show that the choice of this threshold does not affect the relation between the phases’ boundaries.
Therefore, we decided to conduct our analysis for 20% of maximum growth rate.

Figures 8a and 8b show the results for CAMeLU on the miniImageNet and CUB datasets, respec-
tively. For miniImageNet, we obtain the approximation function to be f(x) = 0.04+ 0.54

1+9636e−0.43x .
Moreover, the number of epochs where the learning phase begins is 15 and the number of epochs
where the generalization phase begins is 29. On the other hand, for CUB dataset, the approximation
function is f(x) = 0.01 + 0.48

1+25530e−0.47x , and the number of epochs where the following phases
begin is 16 and 28.

24

Published as a conference paper at ICLR 2025

Figures 8c and 8d show the results for CAML on the miniImageNet and the CUB datasets, re-
spectively. Similarly, we obtain the approximation function for the miniImageNet to be f(x) =
0.06 + 0.56

1+1326e−0.25x . and the number of epochs where the learning phase and the general-
ization phase begin is 18 and 42. Finally, for the CUB dataset, the approximation function is
f(x) = −0.07 + 0.50

1+648e−0.13x , and the number of epochs where the following phases begin is
29 and 74.

Remarkably, CAML requires more training time to reach the generalization phase than CAMeLU.
This difference likely arises from CAMeLU’s task creation mechanism, which generates tasks with
high cross-task variance. This strategy acts as a form of task augmentation, facilitating quicker
generalization to unseen tasks.

A.9 LIMITATIONS

Despite the promising results demonstrated by our novel UML approach on several datasets, some
limitations remain. Its applicability and robustness in real-world scenarios with diverse and noisy
data remain to be thoroughly evaluated. In real-world applications, data can be incomplete, mis-
labeled, or drawn from significantly different distributions, leading to potential degradation in the
model’s performance in the presence of noisy or corrupted data. Additionally, the feature extractor
used in CAMeLU is pre-trained in a supervised manner. While the pre-training dataset is indepen-
dent of the data seen at inference, replacing it with an extractor pre-trained using an SSL strategy
could make the pipeline fully unsupervised, albeit at the price of performance degradation. Lastly,
the proposed approach is designed to handle a fixed number of classes (ways) per task during train-
ing and testing, requiring knowing the value of N in advance. Modifications to the task creation and
training process would be necessary to extend our approach to handle an arbitrary number of ways.

A.10 COMPLETE RESULTS WITH STANDARD DEVIATIONS

Table 12: Performance comparison on miniImageNet, CIFAR-fs, CUB, Aircraft, and Meta-iNat
datasets for 5-way 1-shot and 5-way 5-shot scenarios. Cross-domain approaches are trained using
ImageNet-964 and a ResNet-50 feature extractor. The symbol † indicates results that are affected by
data leakage. The bold font highlights the best performing UML approach for each setting. Results
show the mean and standard deviations across three complete runs of the algorithms. This table
refers to Tab. 1 in Sect. 4.3.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

Method 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

In-Domain
CACTUs-MAML 43.30± 0.29 54.21± 1.00 42.00± 1.47 56.64± 0.49 31.19± 0.37 36.81± 0.68 24.06± 0.78 27.26± 0.04 20.13± 0.44 21.840± 0.14
CACTUs-ProtoNet 48.85± 0.69 62.52± 0.71 50.90± 0.46 64.52± 0.94 33.93± 0.37 44.41± 1.31 26.27± 0.28 30.88± 0.51 27.30± 0.12 29.08± 0.13
UMTRA 39.93± 1.15 50.73± 0.67 32.93± 1.68 46.13± 2.81 27.06± 1.41 36.6± 2.43 22.40± 3.42 31.73± 2.25 28.96± 0.32 37.12± 0.21
Meta-GMVAE 55.38± 0.90† 65.10± 0.64† 52.02± 0.88 64.18± 0.62 33.59± 0.63 39.09± 0.57 24.83± 0.51 27.60± 0.52 34.22± 0.58 40.23± 0.54
PsCo 47.29± 0.41 64.85± 0.38 42.21± 0.46 62.92± 0.44 33.09± 0.44 51.02± 0.42 26.19± 0.30 38.80± 0.38 36.97± 0.39 55.88± 0.41

Cross-Domain
PsCo 67.89± 0.48 90.17± 0.23 53.34± 0.49 76.22± 0.40 43.35± 0.47 70.19± 0.46 29.87± 0.36 38.20± 0.39 46.21± 0.44 70.05± 0.45
CAMeLU 76.51± 0.79 92.14± 0.30 61.79± 0.59 80.43± 0.21 65.52± 0.37 80.35± 0.63 33.17± 0.94 39.11± 1.97 57.27± 0.39 75.45± 0.42

CAML (supervised) 81.75± 0.18 92.31± 0.11 59.44± 0.63 75.27± 0.77 54.63± 1.78 66.81± 3.12 28.92± 0.37 32.06± 0.43 50.86± 0.50 67.07± 0.39

Table 13: Accuracy results obtained training PsCo, BECLR, and CAMeLU with a small-scale
dataset, namely miniImageNet, denoted as (mini) in the table. Results show both in-domain per-
formance (on the test set of miniImageNet) and cross-domain performance on CIFAR-fs, CUB, Air-
craft, and Meta-iNat. The mean and standard deviation across three complete runs of the algorithms.
This table refers to Tab. 2 in Sect. 4.5.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

PsCo (mini) 47.29± 0.41 64.85± 0.38 42.21± 0.46 62.92± 0.44 33.09± 0.44 51.02± 0.42 26.19± 0.30 38.80± 0.38 36.97± 0.39 55.88± 0.41
BECLR (mini) 81.04± 1.24 87.88± 0.66 57.05± 1.58 72.82± 0.95 42.47± 1.30 58.03± 1.12 27.48± 0.83 38.46± 0.95 49.87± 1.35 65.05± 1.07
CAMeLU (mini) 75.99± 0.20 90.38± 0.21 61.25± 0.55 78.79± 0.21 60.60± 0.80 74.77± 1.70 31.39± 1.17 36.52± 0.88 55.60± 0.20 72.12± 0.35

25

Published as a conference paper at ICLR 2025

Table 14: Comparison between CAMeLU and SSL approaches for the 5-way 1-shot and 5-way 5-
shot scenario on miniImageNet, CIFAR-fs, CUB, Aircraft, and Meta-iNat. The symbol † indicates
results that are affected by data leakage. Results show the mean and standard deviations across three
complete runs of the algorithms. This table refers to Tab. 3 in Sect. 4.6.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

Method 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

SimCLR 83.32± 0.23† 94.86± 0.61† 64.52± 0.69 84.36± 0.40 47.35± 0.53 66.87± 0.82 29.36± 0.90 39.99± 0.86 52.44± 0.47 73.19± 0.43
SwAV 74.83± 0.71† 94.96± 0.91† 66.97± 0.15 87.14± 0.10 47.84± 0.31 69.31± 0.01 30.33± 0.31 47.43± 0.11 53.57± 0.82 74.53± 0.92

CAMeLU 76.51± 0.79 92.14± 0.30 61.79± 0.59 80.43± 0.21 65.52± 0.37 80.35± 0.63 33.17± 0.94 39.11± 1.97 57.27± 0.39 75.45± 0.42

26

	Introduction
	Related work
	Proposed approach
	Task creation
	In-context learning method

	Experiments
	Datasets and baselines
	Training details
	Comparative results
	Memorization to generalization phase shift
	Generalization on small-scale datasets
	Comparison with SSL methods

	Conclusion
	Appendix
	Experimental details
	In-context learning analysis
	Multi-dataset training
	Ablation studies - Feature extractor
	Evaluation of the task creation mechanism
	Query samples generation strategy
	Computational complexity and resources usage
	Quantitative analysis of learning phases
	Limitations
	Complete results with standard deviations

