Best known
lower bound

Best known
upper bound

Stationary, no-corruptions

(Pr =0,A7 =0)

Q[VT(y/Trace(X)
v/ Vimaz(E) In(1/9))] [2]

OVT(y/Trace(X)
v/ Vimaz (2) In(7°/9))] 3]

Stationary, corruptions
(Pr =0,A7 >0)

Q(A7rD) (Proof sketch below)
No previous bound

Thm 5.1: O(T602
+T3DA7). No previous bound

Non-stationary, no-corruptions
(®7 > 0,A7 =0).

[1: T2/30,/%)

Thm 5.1: (’)(T%‘I)T + T%UQ)
No previous bound. [I] gives
in expectation bound only.

Non-stationary, corruptions
(Pr > 0,Ar > 0)

Prop 2.6: Q (ArD).
No previous bound

Thm 5.1: (’)(T%‘I)T 1+ Ts02
+T3ArD). No previous bound

Table 1: Regret bounds for online estimation with heavy-tailed data and strongly
convex loss. Ours is the first work to give bounds in many settings as seen above in
red. The setting of @7 = 0, Ar = 0 (line 1) is characterized (upto log factors) in [2]
and [3]. For the setting of (&1 = 0, Ar > 0) (line 2), we give the first dimension
free upper and lower bounds. There is a gap however as our lower bound does not
characterize dependence on the time horizon T'. For the setting of (&7 > 0, Ap = 0),
[1] gives a lower bound while ours is the first high-probability regret bound for heavy
tailed data. For the general case (P71 > 0, Ar > 0) ours is the only known bounds.
Except line 1, there is a gap between known lower and upper bounds as can be seen.

Proof Sketch of lower bound when &7 = 0, Ay > 0: Similar to Prop 2.6,
consider two scenarios for mean-estimation. In one scenario, the un-corrupted
samples are all drawn from a Dirac mass at 0, but the first Ap samples are
corrupted with all d coordinates set to D/ Vd. In the other scenario, there
are no corruptions and the un-corrupted samples are all from Dirac mass at
location with all coordinates D/\/& In both situations, the first A samples
are identical. Thus, no estimator in the first Ar samples can distinguish
between these two scenarios and will incur regret at-least (ApD)/4.
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