
Best known Best known
lower bound upper bound

Stationary, no-corruptions Ω[
√
T (

√
Trace(Σ) O[

√
T (

√
Trace(Σ)

(ΦT = 0,ΛT = 0) +
√
νmax(Σ) ln(1/δ))] [2] +

√
νmax(Σ) ln(T/δ))] [3]

Stationary, corruptions Ω(ΛTD) (Proof sketch below) Thm 5.1: Õ(T
5
6σ2

(ΦT = 0,ΛT ≥ 0) No previous bound +T
3
4DΛT ). No previous bound

Non-stationary, no-corruptions
[1]: Ω(T 2/3Φ

1/3
T )

Thm 5.1: Õ(T
2
3ΦT + T

5
6σ2)

(ΦT ≥ 0,ΛT = 0). No previous bound. [1] gives
in expectation bound only.

Non-stationary, corruptions Prop 2.6: Ω (ΛTD) . Thm 5.1: Õ(T
2
3ΦT + T

5
6σ2

(ΦT ≥ 0,ΛT ≥ 0) No previous bound +T
3
4ΛTD). No previous bound

Table 1: Regret bounds for online estimation with heavy-tailed data and strongly
convex loss. Ours is the first work to give bounds in many settings as seen above in
red. The setting of ΦT = 0,ΛT = 0 (line 1) is characterized (upto log factors) in [2]
and [3]. For the setting of (ΦT = 0,ΛT ≥ 0) (line 2), we give the first dimension
free upper and lower bounds. There is a gap however as our lower bound does not
characterize dependence on the time horizon T . For the setting of (ΦT ≥ 0,ΛT = 0),
[1] gives a lower bound while ours is the first high-probability regret bound for heavy
tailed data. For the general case (ΦT ≥ 0,ΛT ≥ 0) ours is the only known bounds.
Except line 1, there is a gap between known lower and upper bounds as can be seen.

Proof Sketch of lower bound when ΦT = 0,ΛT ≥ 0: Similar to Prop 2.6,
consider two scenarios for mean-estimation. In one scenario, the un-corrupted
samples are all drawn from a Dirac mass at 0, but the first ΛT samples are
corrupted with all d coordinates set to D/

√
d. In the other scenario, there

are no corruptions and the un-corrupted samples are all from Dirac mass at
location with all coordinates D/

√
d. In both situations, the first ΛT samples

are identical. Thus, no estimator in the first ΛT samples can distinguish
between these two scenarios and will incur regret at-least (ΛTD)/4.
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