
Under review as a conference paper at ICLR 2024

Supplementary Materials Organization:

A More Experimental Analysis 13

A.1 Base-to-new Generalization . 13

A.2 Robustness to Different Architectures . 13

B Experimental Details 13

B.1 Statistic of Datasets . 13

B.2 Prompt Templates for Each Dataset . 15

B.3 Pseudocode . 15

A MORE EXPERIMENTAL ANALYSIS

A.1 BASE-TO-NEW GENERALIZATION

Results. Our method can be extended to the base-to-new generalization scenario by incorporating the
KNN algorithm. To accomplish this, we utilize the text embeddings of the new classes to query the
training set and select the k nearest neighbors as the training data for the new class. Subsequently, we
apply our proposed method to generate the classifier for the new classes using the synthesized dataset.
In order to compare our approach, we select CLIP (Radford et al., 2021), CoOp (Zhou et al., 2022b),
and CoCoOp (Zhou et al., 2022a).

Table 8 presents the results, which demonstrate that our approach outperforms the other methods
in terms of base accuracy, new accuracy, and their harmonic mean. On average across 11 datasets,
our method surpasses CLIP, CoOp, and CoCoOp by 14.62%, 1.27%, and 3.49% in terms of base
accuracy. It also outperforms them by 0.31%, 11.31%, and 2.84% in terms of new accuracy, and
by 7.02%, 7.06%, and 2.89% in terms of the harmonic mean. Moreover, our approach achieves the
highest harmonic mean in 8 out of 11 datasets. These results clearly indicate the effectiveness of our
approach in generalizing to new classes.

A.2 ROBUSTNESS TO DIFFERENT ARCHITECTURES

We further evaluate the efficacy of our proposed method across 11 datasets with varying visual
architectures of CLIP. We selected two approaches for comparison: a training-required method,
CoOp (Zhou et al., 2022b), and a training-free method, Tip-Adapter (Zhang et al., 2022). And these
methods are trained on the 16-shot dataset. As shown in Table 9, our method yielded a substantial
improvement of 17.28%, 18.20%, 16.18%, and 16.62% on average, compared to the zero-shot
CLIP (Radford et al., 2021) approach, for ResNet-50, ResNet-101, ViT-B/32, and ViT-B/16 CLIP,
respectively, across all 11 datasets. The results demonstrate the effectiveness of our method across
different CLIP architectures.

B EXPERIMENTAL DETAILS

B.1 STATISTIC OF DATASETS

Following previous work (Zhou et al., 2022a;b; Wang et al., 2023c; Huang et al., 2022; Wang et al.,
2023a), we conduct experiments on 17 publicly available image classification datasets. The datasets
include ImageNet (Deng et al., 2009), Caltech101 (Li et al., 2004), OxfordPets (Parkhi et al., 2012),
StanfordCars (Krause et al., 2013), Flowers102 (Nilsback & Zisserman, 2008), Food101 (Bossard
et al., 2014), FGVCAircraft (Maji et al., 2013), EuroSAT (Helber et al., 2019), UCF101 (Soomro
et al., 2012), DTD (Cimpoi et al., 2014), SUN397 (Xiao et al., 2010), ImageNetV2 (Recht et al.,

13

Under review as a conference paper at ICLR 2024

(a) Average over 11 datasets

base new H
CLIP 69.34 74.22 71.70
CoOp 82.69 63.22 71.66
CoCoOp 80.47 71.69 75.83
Ours 83.96 74.53 78.72

(b) ImageNet

base new H
CLIP 72.43 68.14 70.22
CoOp 76.47 67.88 71.92
CoCoOp 75.98 70.43 73.10
Ours 75.95 69.79 72.74

(c) Caltech101

base new H
CLIP 96.84 94.00 95.40
CoOp 98.00 89.81 93.73
CoCoOp 97.96 93.81 95.84
Ours 98.04 94.51 96.24

(d) OxfordPets

base new H
CLIP 91.17 97.26 94.12
CoOp 93.67 95.29 94.47
CoCoOp 95.20 97.69 96.43
Ours 94.10 97.15 95.60

(e) StanfordCars

base new H
CLIP 63.37 74.89 68.65
CoOp 78.12 60.40 68.13
CoCoOp 70.49 73.59 72.01
Ours 78.71 66.92 72.34

(f) Flowers102

base new H
CLIP 72.08 77.80 74.83
CoOp 97.60 59.67 74.06
CoCoOp 94.87 71.75 81.71
Ours 97.78 72.46 83.24

(g) Food101

base new H
CLIP 90.10 91.22 90.66
CoOp 88.33 82.26 85.19
CoCoOp 90.70 91.29 90.99
Ours 90.63 91.21 90.92

(h) FGVCAircraft

base new H
CLIP 27.19 36.29 31.09
CoOp 40.44 22.30 28.75
CoCoOp 33.41 23.71 27.74
Ours 45.88 34.09 39.12

(i) SUN397

base new H
CLIP 69.36 75.35 72.23
CoOp 80.60 65.89 72.51
CoCoOp 79.74 76.86 78.27
Ours 81.95 75.62 78.65

(j) DTD

base new H
CLIP 53.24 59.90 56.37
CoOp 79.44 41.18 54.24
CoCoOp 77.01 56.00 64.85
Ours 80.63 59.82 68.69

(k) EuroSAT

base new H
CLIP 56.48 64.05 60.03
CoOp 92.19 54.74 68.69
CoCoOp 87.49 60.04 71.21
Ours 93.28 79.21 85.67

(l) UCF101

base new H
CLIP 70.53 77.50 73.85
CoOp 84.69 56.05 67.46
CoCoOp 82.33 73.45 77.64
Ours 86.63 79.09 82.69

Table 8: Base-to-new generalization. Comparison of CLIP, CoOp, CoCoOp, and our method. CoOp
and CoCoOp are training-required methods, while our method is a training-free method. base and
new denotes the average accuracy of base and new classes, and H denotes their harmonic mean.

Table 9: Robustness of different architectures on 11 datasets. The models are trained under the
16-shot setting with different visual architectures of CLIP. Bold denotes the highest results.

Method Pets Flowers FGVC DTD EuroSAT Cars Food SUN Cal UCF IN Avg.
ResNet-50
zero-shot CLIP 85.77 66.14 17.28 42.32 37.56 55.61 77.31 58.52 86.29 61.46 58.18 58.77
CoOp 87.01 94.51 31.26 63.58 83.53 73.36 74.67 69.26 91.83 75.71 62.95 73.42
Tip-Adapter 88.14 89.89 29.76 60.93 70.54 66.77 77.83 66.85 90.18 70.58 62.01 70.32
Ours 88.81 95.72 40.61 66.51 86.12 75.12 79.05 70.70 92.55 77.53 63.82 76.05
ResNet-101
zero-shot CLIP 86.75 64.03 18.42 38.59 32.59 66.23 80.53 58.96 89.78 60.96 61.62 59.86
CoOp 88.57 95.19 34.76 65.47 83.54 79.74 79.08 71.19 93.42 77.95 66.60 75.96
Tip-Adapter 87.23 90.77 31.51 62.37 66.45 72.96 81.31 67.96 93.01 73.53 64.41 71.96
Ours 91.43 96.17 42.58 68.62 86.32 79.99 82.15 72.07 93.63 79.31 66.33 78.06
ViT-B/32
zero-shot CLIP 87.49 66.95 19.23 43.97 45.19 60.55 80.50 61.91 90.87 62.01 62.05 61.88
CoOp 88.68 94.97 33.22 65.37 83.43 76.08 78.45 72.38 94.62 78.66 66.85 75.70
Tip-Adapter 88.34 91.61 30.92 61.90 69.53 69.59 80.94 70.27 93.85 73.74 65.41 72.37
Ours 91.21 96.16 41.74 67.63 87.30 77.55 81.84 73.60 94.42 80.17 67.00 78.06
ViT-B/16
zero-shot CLIP 89.21 71.34 24.72 44.39 47.60 65.32 86.06 62.50 92.94 66.75 66.73 65.23
CoOp 92.53 96.47 42.91 68.50 80.87 83.09 87.21 75.29 95.77 82.24 71.92 79.71
Tip-Adapter 91.54 94.41 39.48 65.68 76.58 75.44 86.47 71.85 95.10 77.94 70.46 76.81
Ours 93.73 97.92 50.33 71.26 89.19 82.63 87.27 75.87 95.79 84.09 72.24 81.85

14

Under review as a conference paper at ICLR 2024

2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b), ImageNet-
R (Hendrycks et al., 2021a), ImageNet-LT (Liu et al., 2019), and Places-LT (Zhou et al., 2017).

Table 10: Detailed statistics of datasets used in experiments.

Dataset # Classes # Training # Test Task

OxfordPets 37 2,944 3,669 fine-grained pets recognition
Flowers102 102 4,093 2,463 fine-grained flowers recognition
FGVCAircraft 100 3,334 3,333 fine-grained aircraft recognition
DTD 47 2,820 1,692 Textural recognition
EuroSAT 10 13,500 8,100 Satellite image recognition
StanfordCars 196 6,509 8,041 Fine-grained car recognition
Food101 101 50,500 30,300 Fine-grained food recognition
Sun397 397 15,880 19,850 Scene recognition
Caltech101 100 4,128 2,465 Object recognition
UCF101 101 7,639 3,783 Action recognition
ImageNet 1,000 1.28M 50,000 Object recognition

ImageNetV2 1,000 - 10,000 Robustness of collocation
ImageNet-Sketch 1,000 - 50,889 Robustness of sketch domain
ImageNet-A 200 - 7,500 Robustness of adversarial
ImageNet-R 200 - 30,000 Robustness of rendition styles

ImageNet-LT 1,000 115,846 50,000 long-tail object recognition
Places-LT 365 62,500 7300 long-tail place recognition

B.2 PROMPT TEMPLATES FOR EACH DATASET

For the zero-shot classifier, we employ handcrafted prompts to generate the classifier weight, as
proposed in CLIP (Radford et al., 2021). By default, we utilize the prompt template “a photo of
{class}.” for class labels, where {class} represents the name of the classes. However, for fine-grained
classification datasets such as FGVCAircraft (Maji et al., 2013), we incorporate the name of the
superclass or a description into the template. The prompt templates for each dataset are shown as
follows.

B.3 PSEUDOCODE

15

Under review as a conference paper at ICLR 2024

Table 11: Prompt templates for each class.

Dataset Prompt template

Caltech101 (Li et al., 2004) “a photo of a {class}.”

OxfordPets (Parkhi et al., 2012) “a photo of a {class}, a type of pet.”

StanfordCars (Krause et al., 2013) “a photo of a {class}.”

Flowers102 (Nilsback & Zisserman, 2008) “a photo of a {class}, a type of flower.”

Food101 (Bossard et al., 2014) “a photo of {class}, a type of food.”

FGVCAircraft (Maji et al., 2013) “a photo of a {class}, a type of aircraft.”

SUN397 (Xiao et al., 2010) “a photo of a {class}.”

DTD (Cimpoi et al., 2014) “{class} texture.”

EuroSAT (Helber et al., 2019) “a centered satellite photo of {class}.”

UCF101 (Soomro et al., 2012) “a photo of a person doing {class}.”

ImageNet (Deng et al., 2009)

“a bad photo of the {class}.”
“a origami {class}.”

“a photo of the large {class}.”
“a {class} in a video game.”

“art of the {class}.”
“a photo of the small {class}.”

ImageNet-LT (Liu et al., 2019) “a photo of a {class}.”

Places-LT (Zhou et al., 2017) “a photo of a {class}.”

16

Under review as a conference paper at ICLR 2024

Algorithm 1 Pytorch-like pseudocode for our method.

1 # Input:

2 # - X: (N, D) visual features from CLIP visual encoder.

3 # - Y: (N,) ground-truth label for the features.

4 # - X_test: (M, D) test visual features from CLIP visual encoder.

5 # - Y_test: (M,) ground-truth label for test features.

6 # - W_c: (K, D) zero-shot classifier generated by prompting.

7 # Output:

8 # - acc: test accuracy.

9

10 def hard_to_beat(X, Y, X_test, Y_test, W_c):

11 # 1. Compute mean vectors for each class.

12 mus = []

13 for i in range(K):

14 idx = torch.where(Y == i)

15 mus.append(X[idx].mean(dim=0))

16 mus = torch.cat(mus)

17

18 # 2. Estimate the precision matrix using Equation (4).

19 # centered features

20 centered_X = torch.cat([(X[torch.where(Y == i)] - mus[i]) for i in range(K)])

21 cov = torch.cov(centered_X)

22 # compute the precision matrix (inverse covariance)

23 inv_cov = D * torch.inv((N - 1) * cov + trace(cov) * eye(D))

24

25 # 3. Compute weight and bias using Equation (3).

26 W = mus @ inv_cov

27 b = log(1 / K) - 0.5 * einsum('nd, dc, nc -> n', mus, inv_cov, mus)

28

29 # 4. Search the hyperparameter using the validation set.

30 alpha = search_hyperparam(W_c, W, b)

31

32 # 5. Test.

33 test_logits = X_test @ W_c.T + alpha * (X_test @ W.T + b)

34 acc = compute_acc(test_logits, Y_test)

35 return acc

17

	Introduction
	Related Work
	Method
	Gaussian Discriminant Analysis for CLIP Adaptation
	Extension to other scenarios

	Experiments
	Setup
	Results on Few-Shot Classification
	Out-of-distribution Generalization
	Results on Imbalanced Learning
	Results on Base-to-new Generalization
	Results on Unsupervised Learning
	Ablation Study

	Conclusion
	More Experimental Analysis
	Base-to-new Generalization
	Robustness to Different Architectures

	Experimental Details
	Statistic of Datasets
	Prompt Templates for Each Dataset
	Pseudocode

