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Appendix

For further details, we provide more information in the Appendix, including the evaluated 10 datasets (§A),
key modules (§B)), compared baselines (§C), metrics mathematical formula (§DJ), system configuration (§E),
ADGym comparison analysis (§F)), the details of proposed TSGym (§G), and additional experimental results

(§HD.

A Dataset List

We conduct extensive evaluations on nine standard long-term forecasting benchmarks - four ETT variants
(ETTh1, ETTh2, ETTml1, ETTm?2), Electricity (abbreviated as ECL), Traffic, Weather, Exchange, and ILI,
complemented by the M4 dataset for short-term forecasting tasks, with complete dataset specifications provided
in Table[ATl

Table Al: Data description of the 10 datasets included in TSGym.

Task  Dataset Domain Frequency  Lengths Dim  Description
ETThl Electricity 1 hour 14,400 7  Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTh2 Electricity 1 hour 14,400 7 Power transformer 2, comprising seven indicators such as oil temperature and useful load
ETTml Electricity 15 mins 57,600 7 Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTm2 Electricity 15 mins 57,600 7  Power transformer 2, comprising seven indicators such as oil temperature and useful load
LTF ECL Electricity 1 hour 26,304 321  Electricity records the electricity consumption in kWh every 1 hour from 2012 to 2014
Traffic Traffic 1 hour 17,544 862  Road occupancy rates measured by 862 sensors on San Francisco Bay area freeways
‘Weather Environment 10 mins 52,696 21 Recorded every for the whole year 2020, which contains 21 meteorological indicators
Exchange  Economic 1 day 7,588 8  ExchangeRate collects the daily exchange rates of eight countries
ILI Health 1 week 966 7  Recorded indicators of patients data from Centers for Disease Control and Prevention
. Yearly
Demographic:  ouerty
ST M4 Industry, Monthly 199933 100000 M4 competition datgset containing 100,000 unaligned time series with varying
. Weakly lengths and time periods
Macro, Micro A
Daily
and Other
Hourly

B Key Modules

Modern deep learning for MTSF utilizes several specialized modules to tackle non-stationarity, multi-scale
dependencies, and inter-variable interactions. In this section, we analyze the design and efficacy of prevalent
specialized modules adopted in state-of-the-art models (Fig.[T).

Normalization modules address temporal distribution shifts through adaptive statistical alignment. While
z-score normalization employs fixed moments, modern techniques enhance adaptability: RevIN [26] introduces
learnable affine transforms with reversible normalization/denormalization; Dish-TS [15] decouples inter-/intra-
series distribution coefficients; Non-Stationary Transformer [35] integrates statistical moments into attention
via de-stationary mechanisms. These methods balance stationarized modeling with inherent non-stationary
dynamics.

Decomposition methods, standard in time series analysis, break down series into components like trend and
seasonality to improve predictability and handle distribution shifts. (1) Time-domain decomposition utilizes
moving average operations to isolate slowly-varying trends from high-frequency fluctuations that represent
seasonality (e.g., DLinear [63]], Autoformer, FEDformer). (2) Frequency-domain decomposition partitions
series via Discrete Fourier Transform (DFT), assigning low-frequency spectra to trends and high-frequency
bands to seasonality, which is applied in the Koopa [34]] model.

Multi-Scale modeling addresses the inherent temporal hierarchy in time series data, where patterns manifest
differently across various granularities (e.g., minute-level fluctuations vs. daily trends). Pyraformer [32]
integrates multi-convolution kernels via pyramidal attention to establish hierarchical temporal dependencies.
FEDformer [69]] employs mixed experts to combine trend components from multiple pooling kernels with
varying receptive fields, where larger kernels capture macro patterns while smaller ones preserve local details.
TimeMixer [50] extends this paradigm through bidirectional mixing operations - upward propagation refines fine-
scale seasonal features while downward aggregation consolidates coarse-scale trends. FiLM [68]] dynamically
adjusts temporal resolutions through learnable lookback windows, enabling adaptive focus on relevant historical
contexts across scales. Crossformer [66] implements flexible patchsize configurations, where multi-granular
patches independently model short-term fluctuations and long-term cycles through dimension-aware processing.

Temporal Tokenization strategies, originating from Transformers [51} 33] and now extended to RNNs [30],
vary by temporal representation granularity: (1) Point-wise methods (e.g., Informer [67]], Pyraformer [32])
process individual timestamps as tokens. They offer temporal precision but face quadratic complexity, requiring
attention sparsification that may hinder long-range dependency capture. (2) Patch-wise strategies (e.g., PatchTST
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[40]) aggregate local temporal segments into patches. Pathformer [10] similarly employs patch-based processing
via adaptive multi-scale pathways. (3) Series-wise approaches (e.g., iTransformer [33]]) construct global variate
representations, enabling cross-variate modeling but risking temporal misalignment. TimeXer [52] uses hybrid
tokenization: patch-level for endogenous variables and series-level for exogenous, bridged by a learnable global
token.

Temporal Dependency Modeling captures dynamic inter-step dependencies through diverse architectural
mechanisms, balancing local interactions and global patterns. Recurrent state transitions (e.g., LSTM) model
sequential memory via gated memory cells; temporal convolutions (e.g., TCN [6]) construct multi-scale receptive
fields using dilated kernels; attention mechanisms (e.g., Transformers) enable direct pairwise interactions across
arbitrary time steps. Efficiency-driven innovations include sparse attention (Informer [67]), periodicity-based
aggregation (Autoformer [57]), and state-space hybrids (Mamba [18]]), achieving tractable long-range dependency
modeling while preserving temporal fidelity.

Variate Correlation, fundamental to modeling critical correlations in multivariate time series forecasting
(MTSF), operates through two primary paradigms [43]: (1) Channel-Independent (CI) Strategy: Processes
channels independently with shared parameters (e.g., PatchTST [40]), ensuring robustness and efficiency but
ignoring multivariate dependencies, limiting use with strong inter-channel interactions [41].

(2) Channel-Dependent (CD) Strategy: Integrates channel information via methods like channel-wise self-
attention (iTransformer [33]]) or MLP-based mixing (TSMixer [11])). This allows explicit dependency modeling
but risks overfitting and struggles with noise in high dimensions.

C Compared Baselines

We systematically compare state-of-the-art forecasting models using the 6 architectural modules introduced in
Section [B] Table[C2]presents the configuration of each baseline in terms of these modules. The "Notes" column
provides concise annotations of each model’s key methodological features, allowing for quick identification of
the technical differentiators among the baselines.

D Metrics Mathematical Formula

The metrics used in this paper can be calculated as follows[56]:

1 H H
MSE = - 2 (X; — Xi)?, MAE = — 2:1
H H S
sMAPE — 200 g~ X = X Xi| MAPE = @ZM,

=X+ Xl H = X
" .

1 \X — X, 1[ SMAPE MASE

MASE = — OWA = -
FZj ; LS X~ Xy 2 {SMAPENM T MASExe

where m is the periodicity of the data. X, X € R7*C are the ground truth and prediction results of the future

with H time points and C' dimensions. X; means the ¢-th future time point.

E System Configuration

We conducted all experiments in the same experimental environment, which includes four NVIDIA A100 GPUs
with 80GB and eight 40GB of memory. We saved overall experimental time by running experiments in parallel.

F Compared with ADGym

Compared with ADGym [20], TSGym exhibits the following differences and advantages:

(1) Broader model structure design choices. ADGym includes only MLP, autoencoder (AE), ResNet, and
Transformer architectures, while TSGym provides an in-depth decoupling of different attention mechanisms
within Transformers and incorporates two pre-trained large models: LLMs and TSFEM. (2) More diverse data
processing design choices. ADGym focuses solely on data augmentation and two normalization methods,
whereas TSGym encompasses series sampling, series normalization, series decomposition, as well as various
series encoding options. (3) More complex meta-features. The meta-features in ADGym include statistical
metrics for tabular datasets, while TSGym considers multiple sequence characteristics across different channels
in multivariate time series, such as distribution drift, sequence autocorrelation, and more. (4) More standardized

21



Table C2: Component Configurations of 27 Baseline Models

" . Variate
Backbone Method Normali- - Decom- — Multi-  Token- Temporal (0 o0 Notes
zation  position Scale izations Dependency lation
SegRNN[30 SubLast Patch-wise GRU cl Reduces iterations via patch-wise processing and parallel

multi-step forecasting.

RNN . . - . . .
S ) . .. Selective State Efficient model selectively propagating information with-
Mambal 18 Stat Point-wise Space Model cD out attention or MLP blocks.
SCINet[3T] Stat TRUE  Point-wise Convld D Recursively downsamples, convolves, anq interacts with
data to capture complex temporal dynamics.
CNN MICN{ES MA TRUE  Point-wise Convld D Comblnes local feat}xres arlld global correlal{ons using
multi-scale convolutions with linear complexity.
TimesNet[36 Stat TRUE Pointwise ~ Comad ~ cp rransforms ID time series into 2D tensors to capture
multi-periodicity and temporal variations.
FILM[63 RevIN TRUE  Point-wise l.ueg§ndre e ) Preserves hlS.[OI"ICélll mfg and reduces noise with Legen-
Projection Unit dre and Fourier projections.
LightTS[65 Patch-wise MLP D nghtwelght MLP quel for multlyanate forepastlng,
using continuous and interval sampling for efficiency.
DLinear(63 MA Point-wise MLP cycp Decomposes series into trend and seasonal components,
then applies linear layers for improved forecasting.
Point-wise, Uses Koopman theory to model non-stationary dynamics,

MLP Koopal34 Stat DFT Patch-wise MLP cD handling time-variant and time-invariant components.

TSMixer{IT Point-wise MLP D Simple MLP model efficiently captures both time and
feature dependencies for forecasting.
Frcq_ucncy- crcp Uscs_frcqucncy-domain MLPs to capture global depen-
domain MLP dencies and focus on key frequency components.
Fast MLP-based model for long-term forecasting, han-

FreTS[60 Point-wise

TiDE[13 Stat Point-wise MLP CI . - . A
dling covariates and non-linear dependencies.
TimeMixerf50 RevIN MA TRUE  Point-wise MLP crcp Fully MLP-based modgl, disentangles and mixes multi-
scale temporal patterns.
Reformer{T] Point-wise LSHS;I(— D Memory-efﬁcnem T{apsformer with locality-sensitive
Attention hashing for faster training on long sequences.
Informer(&7] Point-wise ProbSp?.rse- D Efﬁcmqt Transformer with ProbSparse»Auepuon ar.ld a
Attention generative decoder for faster long-sequence forecasting.

High-performance, interpretable multi-horizon forecast-
TFT|29 Stat Point-wise ~ Self-Attention ~ CD  ing model combining recurrent layers for local process-
ing and attention layers for long-term dependencies.

Autoformer{57 MA Point-wise Auto-. D Uses Auto-CoFre{atlon and decomposition for accurate
Correlation long-term predictions.
PyraFormer[32 TRUE  Point-wise Pyramld— D Cfnplures lemp?ral dependencies at multiple resolutions
Attention with constant signal path length.
NSTransformer{33]  Stat Point-wise De-slau(.mary D Res}ores non-stationary mtorn:nauon .lhrough de-
Attention stationary attention for improved forecasting.
Exponential- . .
ETSformer(55 DFT Point-wise Smoothing- D Iptegrates exponentlal. smoothlng and frequ‘e.ncy atten-
Transformer ‘Attention tion for accuracy, efficiency, and interpretability.
FEDformer{69 MA TRUE  Point-wise AutoCorrelation CD Combines seasonal-trend decon_lpnsltmn Wlt.h frequency-
enhanced Transformer for efficient forecasting.
Crossformer(66 TRUE  Patch-wise TwoStz_tgc— D Cgpturcs both Icmpor_al and cross-variable dependencies
Attention with two-stage attention.
PatchTST[40 Stat Patch-wise  FullAttention CI chmcnts time series into patches and uses channel-
independent embeddings.
iTransformer|33 Stat Series-wise  FullAttention CD R.cdcﬁncs token Cmbcddmg fo treat time points as series-
wise tokens for better multivariate modeling.
TimeXer[52 Stat Series-wise  FullAttention CD Enhan;es forecas.tmg by Incorporaling exogenous vari-
ables via patch-wise and variate-wise attention.
PAt[AT Stat Patch-wise  FullAttention 1 Similar to PatchTST, uses attention-based patching for

efficient forecasting without large language models.
Enhances multivariate forecasting by using Mixture of
DUET[43 RevIN MA Point-wise  FullAttention CI/CD Experts (MOE) for temporal clustering and a frequency-
domain similarity mask matrix for channel clustering.

Table F3: Compared with ADGym, TSGym covers a broader and more in-depth design space, as
well as a more structured and extensive automated selection experiment.

ADGym TSGym
Design Dimensions 13 16
Design Space Size 195,9552 796,2624
Model Architectures MLP,AE,ResNet,FTTransformer MLP,RNN, Transformers, LLM, TSFM
Max of Data Samples 3000 57,600
Meta Feature Dimensions 200 1404
Baseline Methods 7 27

911 automated selection experiments. Due to time constraints, ADGym limits the sample size to fewer than 3000
912 samples, whereas TSGym imposes no such restriction, providing a larger-scale experimental design that leads to
913 more solid experimental conclusions.

914 In summary, compared with ADGym, TSGym makes significant progress and development in both compo-
915 nents benchmarking and automated selection. More details can be seen in table [F3]
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G Details of TSGym

In this section, we introduce detailed descriptions of the design choices, extracted meta-features and the trained
meta-predictors.

G.1 More Details of Design Choices in TSGym.

We selected competitive components from the key modules of existing state-of-the-art (SOTA) works as our
design choices. In Appx. [B] we introduced the underlying principles of these components according to different
design dimensions. While most of the individual components have demonstrated their effectiveness through
ablation studies in their respective original papers, the interactions and synergies among them when combined
have never been systematically explored. Notably, when assembling complete pipelines from different design
choices, we automatically exclude incompatible combinations, such as pairing MLP-based architectures with
diverse series attention modules.

G.2 Meta-features and Meta-predictors

Details and the selected list of meta-features. All meta-features in this paper integrate two complementary
perspectives: (1) static characteristics extracted via TSFEL [42] spanning temporal, statistical, spectral, and
fractal domains, and (2) dynamic behavioral metrics from TFB [7] to quantify temporal distribution shifts.
In Section .2] we present the results of the meta-predictor trained on meta-features derived from static
characteristics, which corresponds to the default setting in TSGym. Furthermore, in Fig. we visualize the
dimension-reduced meta-features across different datasets. In Table [HIO} we report the performance of the
meta-predictor under various meta-feature configurations. The following categorizes these features with their
analytical purposes (see Tables[G4HG7|for implementation details):

+ Temporal features (Table[G4): Characterize sequential dynamics through trend detection, entropy analysis,
and change-point statistics, preserving sensitivity to temporal ordering.

Statistical features (Table [G3): Capture distribution properties via central tendency (mean/median), disper-
sion (variance/IQR), and shape descriptors (skewness/kurtosis), invariant to observation order.

Spectral features (Table[G6): Decompose signals into frequency components using Fourier/wavelet trans-
forms, identifying dominant periodicities and hidden oscillations.

Fractal features (Table[G7): Quantify multiscale complexity through fractal dimensions and Hurst exponents,
reflecting self-similarity patterns across temporal resolutions.

Shifting Metric: To complement static features, this TFB-derived metric measures temporal distribution drift
via KL-divergence between adjacent windows. Values approaching 1 indicate severe shifts caused by external
perturbations or systemic transitions, providing a diagnostic tool for non-stationary dynamics.

Details of the trained meta-predictors. For each design choice, we first use the LabelEncoder class from
scikit-learn to convert it into a numerical class index. This index is then fed into an nn. Embedding layer within
our model to obtain a dense vector representation. These learned embeddings, along with other meta-features,
subsequently form the input to the meta-predictor. The meta-predictor is optimized using Pearson loss to learn
the relative performance ranks of different design choices, thereby emphasizing the linear correlation between
predicted and actual rankings.

Moreover, we experimented with different training strategies to guide the meta-predictor in selecting the top-1
design pipelines.

(1) +Resample: Constraining the number of combinations from different datasets to be equal when training the
meta-predictor.

(2) +AlIPL: Training on datasets with varying prediction lengths and transfers this knowledge to a test set with a
single prediction length.

(3) We train the meta-predictor using diverse meta features, including those generated by segmenting the datasets
based on timestamps (Sub), those combining information from different time periods (Whole), and those
designed to capture distributional shifts (Delta). The symbol "+'" denotes the concatenation of multiple meta
features.

We report the results of +Resample and +AlIPL in Table[d] and the results of diverse meta-features in Table
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Table G4: Temporal Meta-feature Specifications

Feature

Description

Functionality

Absolute Energy
Area Under the Curve
Autocorrelation

Average Power
Centroid

Signal Distance
Negative Turning
Neighbourhood Peaks
Peak-to-Peak Distance
Positive Turning

Root Mean Square
Slope

Sum of Absolute Differ-

ences
Zero-Crossing Rate

Computes the absolute energy of the signal.

Computes the area under the curve of the signal
computed with the trapezoid rule.

Calculates the first 1/e crossing of the autocorre-
lation function (ACF).

Computes the average power of the signal.
Computes the centroid along the time axis.

Computes signal traveled distance.

Computes number of negative turning points of
the signal.

Computes the number of peaks from a defined
neighbourhood of the signal.

Computes the peak to peak distance.

Computes number of positive turning points of
the signal.

Computes root mean square of the signal.
Computes the slope of the signal.
Computes sum of absolute differences of the

signal.
Computes Zero-crossing rate of the signal.

Measures the total energy of the signal, often used to understand signal power
and activity levels.

Provides a measure of the overall signal amplitude or ""energy"" over time.

Measures the correlation of the signal with its own past values, useful for identi-
fying repeating patterns.
Averages the squared values of the signal, capturing its power over time.

Indicates the ""center"" or ""balance point'
insight into its distribution.

of the signal in time, providing

Measures the total path length covered by the signal over time, capturing the
extent of signal fluctuations.

Counts the number of times the signal changes direction from positive to negative.

Identifies the number of peak points within a specified window, useful for pattern
detection.

Measures the time interval between successive peaks, indicating the period of
oscillations.

Counts the number of times the signal changes direction from negative to positive.

Calculates the square root of the average squared values of the signal, often used
as a measure of signal strength.

Measures the rate of change in the signal’s amplitude over time, indicating trends
or shifts.

Measures the total variation in the signal by summing the absolute differences
between consecutive values.

Counts how many times the signal crosses the zero axis, indicating its frequency
and periodicity.

Table G5: Statistical Meta-feature Specifications

Feature

Description

Functionality

Maximum Value
Mean Value

Median
Minimum Value

Standard Deviation
Variance

Empirical Cumulative
Distribution Function
ECDF Percentile
ECDF Percentile Count
ECDF Slope

Histogram Mode
Interquartile Range
Kurtosis

Mean Absolute Devia-
tion

Mean Absolute Differ-
ence

Mean Difference
Median Absolute Devia-
tion

Median Absolute Differ-
ence

Median Difference

Skewness

Computes the maximum value of the signal.
Computes mean value of the signal.

Computes the median of the signal.
Computes the minimum value of the signal.

Computes standard deviation (std) of the signal.
Computes variance of the signal.

Computes the values of ECDF along the time
axis.

Computes the percentile value of the ECDF.

Computes the cumulative sum of samples that
are less than the percentile.

Computes the slope of the ECDF between two
percentiles.

Compute the mode of a histogram using a given
number of bins.

Computes interquartile range of the signal.
Computes kurtosis of the signal.
Computes mean absolute deviation of the signal.

Computes mean absolute differences of the sig-
nal.

Computes mean of differences of the signal.

Computes median absolute deviation of the sig-
nal.

Computes median absolute differences of the
signal.

Computes median of differences of the signal.

Computes skewness of the signal.

Identifies the highest amplitude or peak value in the signal, useful for determining
extreme values.

Calculates the average value of the signal, providing insight into its central
tendency.

Finds the middle value of the signal when sorted, offering robustness to outliers.
Identifies the lowest amplitude or trough value in the signal, useful for detecting
minima.

Measures the variation or spread of the signal values, indicating how much the
signal deviates from the mean.

Quantifies the spread of signal values, related to the square of the standard
deviation.

Provides a cumulative distribution function, representing the probability distribu-
tion of the signal values.

Extracts specific percentiles from the cumulative distribution, useful for under-
standing the signal’s quantiles.

Measures the number of samples falling below a given percentile, providing
distribution insights.

Measures the steepness or rate of change in the cumulative distribution, indicating
distribution sharpness.

Finds the most frequent value in the signal’s histogram, representing the peak of
the signal’s distribution.

Measures the range between the 25th and 75th percentiles, indicating the spread
of the central 50% of the signal values.

Measures the ""tailedness
outliers or extreme values.

of the signal distribution, indicating the presence of

Measures the average deviation of the signal values from the mean, providing an
indication of signal variability.

Calculates the average of absolute differences between successive signal values,
reflecting the signal’s smoothness.

Computes the average of the first-order differences, used to measure overall
signal change.

Measures the spread of the signal values around the median, offering a robust
measure of variability.

Similar to mean absolute difference but based on the median, used to assess
signal smoothness.

Calculates the median of first-order differences, providing insights into signal
trend stability.

Measures the asymmetry of the signal’s distribution, indicating whether it is
skewed towards higher or lower values.
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Table G6: Spectral Meta-feature Specifications

Feature

Description

Functionality

Entropy

Fundamental Frequency

Human Range Energy

Linear Prediction Cep-

stral Coefficients

Maximum Frequency

Maximum Power Spec-

trum
Median Frequency

Mel-Frequency Cepstral

Coefficients
Multiscale Entropy
Power Bandwidth
Spectral Centroid
Spectral Decrease
Spectral Distance
Spectral Entropy

Spectral Kurtosis

Spectral Positive Turn-

ing
Spectral Roll-Off

Spectral Roll-On
Spectral Skewness
Spectral Slope
Spectral Spread

Spectral Variation

Spectrogram Mean Co-

efficients

Wavelet Absolute Mean

‘Wavelet Energy

Wavelet Entropy

Wavelet Standard Devi-

ation
Wavelet Variance

Computes the entropy of the signal using Shan-
non Entropy.

Computes the fundamental frequency of the sig-
nal.

Computes the human range energy ratio.

Computes the linear prediction cepstral coeffi-
cients.

Computes maximum frequency of the signal.

Computes maximum power spectrum density of
the signal.

Computes median frequency of the signal.
Computes the MEL cepstral coefficients.

Computes the Multiscale entropy (MSE) of the
signal, that performs entropy analysis over mul-
tiple scales.

Computes power spectrum density bandwidth of
the signal.

Barycenter of the spectrum.

Represents the amount of decreasing of the spec-
tra amplitude.

Computes the signal spectral distance.

Computes the spectral entropy of the signal
based on Fourier transform.

Measures the flatness of a distribution around its
mean value.

Computes number of positive turning points of
the fft magnitude signal.

Computes the spectral roll-off of the signal.
Computes the spectral roll-on of the signal.

Measures the asymmetry of a distribution around
its mean value.

Computes the spectral slope.

Measures the spread of the spectrum around its
mean value.

Computes the amount of variation of the spec-
trum along time.

Calculates the average power spectral density
(PSD) for each frequency throughout the entire
signal.

Computes CWT absolute mean value of each
wavelet scale.

Computes CWT energy of each wavelet scale.
Computes CWT entropy of the signal.

Computes CWT std value of each wavelet scale.

Computes CWT variance value of each wavelet
scale.

Quantifies the uncertainty or randomness in the signal, offering insights into its
complexity.

Identifies the primary frequency at which the signal oscillates, crucial for detect-
ing periodic behaviors.

Measures the energy in the human audible range, useful for identifying signals
relevant to human hearing.

Extracts features related to the signal’s frequency components, commonly used
in speech and audio processing.

Identifies the highest frequency component of the signal, providing insight into
its frequency range.

Measures the peak value in the power spectral density, identifying dominant
frequencies in the signal.

Identifies the frequency that divides the signal’s power spectrum into two equal
halves.

Used to extract features representing the spectral characteristics of the signal,
primarily used in speech analysis.

Quantifies the signal’s complexity at different scales, useful for detecting non-
linear temporal behaviors.

Measures the width of the frequency band where the majority of the signal’s
power is concentrated.

Identifies the ""center’
audio analysis.

of the signal’s frequency spectrum, used in sound and

Measures how rapidly the spectral amplitude decreases across frequency, useful
for identifying spectral roll-off.

Quantifies the difference between the signal’s spectrum and a reference, helpful
in pattern recognition.

Measures the randomness or complexity in the frequency domain of the signal.

Quantifies the tail heaviness of the signal’s frequency distribution, identifying
outliers or abnormal distributions.

Counts the points where the signal’s Fourier transform changes direction from
negative to positive.

Measures the frequency below which a specified percentage of the total spectral
energy is contained.

Similar to roll-off but identifies the frequency above which a specified amount
of energy is concentrated.

Measures the skew in the signal’s frequency distribution, highlighting the pres-
ence of spectral biases.

Quantifies the slope of the power spectral density, often used to distinguish
between harmonic and non-harmonic signals.

Measures the dispersion or spread of the signal’s spectral energy.
Quantifies how much the frequency content of the signal changes over time.

Averages the power spectral density across all time intervals, capturing the
signal’s overall spectral energy distribution.

Measures the average wavelet transform magnitude across scales, useful for
detecting changes in signal frequency.

Quantifies the energy at each wavelet scale, reflecting the signal’s energy distri-
bution across frequencies.

Measures the complexity or unpredictability of the signal at different wavelet
scales.

Measures the variation or spread of the wavelet transform across different scales.

Quantifies the dispersion of the signal at different wavelet scales.

Table G7: Fractal Meta-feature Specifications

Feature

Description

Functionality

Detrended Fluctuation

Analysis

Higuchi Fractal Dimen-

sion

Hurst Exponent

Lempel-Ziv Complexity

Maximum
Length
Petrosian Fractal
mension

Fractal

Di-

Computes the Detrended Fluctuation Analysis
(DFA) of the signal.

Computes the fractal dimension of a signal using
Higuchi’s method (HFD).

Computes the Hurst exponent of the signal
through the Rescaled range (R/S) analysis.
Computes the Lempel-Ziv’s (LZ) complexity
index, normalized by the signal’s length.
Computes the Maximum Fractal Length (MFL)
of the signal.

Computes the Petrosian Fractal Dimension of a
signal.

Measures long-range correlations and self-similarity in the signal, used for
identifying fractal behavior.

Measures the complexity of the signal’s pattern by calculating its fractal dimen-
sion.

Measures the long-term memory or persistence in the signal, useful for identify-
ing trends and randomness.

Quantifies the randomness or predictability of the signal based on its compress-
ibility.

Measures the fractal dimension at the smallest scale of the signal, reflecting its
intricate pattern complexity.

Measures the signal’s fractal dimension based on its variation across different
scales.
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Table HS8: Full results for the long-term forecasting task. All the results are averaged from 4 different
prediction lengths, that is {24, 36, 48, 60} for ILI and {96, 192, 336, 720} for the others.

TSGym DUET TimeMixer MICN TimesNet PatchTST DLinear  Crossformer Autoformer — SegRNN Mamba iTransformer ~ TimeXer
(Ours) 43 150; 149 156 140 163 166, 157 130; [18: 133 152

Metric  MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE

ETTm1 |0.360 0.384|0.407 0.409|0.384 0.399]0.402 0.4290.432 0.430|0.390 0.404|0.404 0.407|0.501 0.501|0.532 0.496|0.388 0.404|0.501 0.466|0.414 0.415]0.386 0.400
ETTm2 [0.265 0.322]0.296 0.338{0.277 0.325|0.342 0.391[0.296 0.334|0.288 0.334|0.349 0.399|1.487 0.789{0.330 0.368 [0.273 0.322]0.356 0.370|0.290 0.332|0.279 0.325
ETThl |0.425 0.434(0.433 0.437|0.448 0.438|0.589 0.537|0.474 0.464 [0.454 0.449|0.465 0.461 |0.544 0.520]0.492 0.485|0.422 0.429|0.544 0.504|0.462 0.452|0.446 0.443
ETTh2 |0.371 0.406|0.380 0.403|0.383 0.406|0.585 0.530|0.415 0.424]0.385 0.409|0.566 0.520|1.552 0.908 |0.446 0.460|0.374 0.405|0.465 0.448|0.382 0.406 [0.372 0.399

ECL [0.179 0.275]0.179 0.262|0.185 0.273|0.186 0.297 [0.219 0.314]0.209 0.298|0.225 0.319]0.193 0.289|0.234 0.340|0.216 0.302|0.209 0.312]0.190 0.277|0.191 0.286
Traffic [0.434 0.3100.797 0.427]0.496 0.313|0.544 0.320 [0.645 0.348|0.497 0.321|0.673 0.419|1.458 0.782]0.637 0.397|0.807 0.411|0.679 0.380(0.474 0.318{0.509 0.333
Weather [0.229 0.267 [0.252 0.277|0.244 0.274|0.264 0.316 [0.261 0.287|0.256 0.279|0.265 0.317[0.253 0.312]0.339 0.3790.251 0.298|0.291 0.315[0.259 0.280|0.243 0.273
Exchange | 0.392 0.4180.322 0.384|0.359 0.402|0.346 0.422]0.405 0.437|0.381 0.412|0.346 0.414|0.904 0.695|0.506 0.500|0.408 0.423|0.714 0.562|0.369 0.410(0.410 0.424

ILI 2.345 1.053]|2.640 1.018|4.502 1.557(2.938 1.178|2.140 0.907|2.160 0.901|4.367 1.540|4.311 1.396|3.156 1.207 |4.305 1.397(3.729 1.335]|2.305 0.974 |2.633 1.034

Models

1** Count | 9 3 0 0 0 1 0 0 0 2 0 0 1
Models PAtn Koopa TSMixer FreTS Pyraformer Nonstationary ETSformer FEDformer SCINet LightTS Informer  Transformer Reformer
¢ 147 134 [LL 160 132 136 155 169 131 (65 67 148

Metric  MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE | MSE MAE

ETTm1 |0.384 0.399]0.367 0.396]0.527 0.512]0.409 0.417]0.695 0.593]0.509 0.467|0.636 0.592|0.438 0.450|0.409 0.412|0.438 0.445]0.969 0.736|0.836 0.678|0.998 0.723
ETTm2 |0.291 0.336|0.264 0.327|1.030 0.750|0.336 0.378|1.565 0.876|0.412 0.398 |1.381 0.807 |0.301 0.348|0.294 0.335|0.432 0.448 |1.504 0.878 |1.454 0.851|1.856 0.996
ETTh1 |0.468 0.454(0.472 0.471]0.615 0.579|0.476 0.464|0.814 0.692|0.610 0.543|0.750 0.651 |0.448 0.461|0.520 0.488|0.530 0.505|1.057 0.798|0.930 0.768|0.973 0.739
ETTh2 |0.386 0.412(0.388 0.423|2.160 1.220|0.548 0.514 |3.776 1.557[0.552 0.505|0.572 0.534|0.427 0.446|0.428 0.440|0.633 0.551 |4.535 1.745|2.976 1.369|2.487 1.238

ECL |0.205 0.2860.219 0.319|0.229 0.337|0.209 0.296|0.295 0.387|0.194 0.296|0.275 0.370|0.225 0.336|0.220 0.323|0.243 0.344|0.369 0.444|0.273 0.367 [0.324 0.404
Traffic [0.513 0.3280.595 0.413]0.599 0.403{0.597 0.377 [0.697 0.391]0.642 0.351 | 1.035 0.584|0.615 0.379|0.654 0.419 |0.656 0.428|0.830 0.464|0.708 0.384|0.694 0.380
Weather |0.257 0.280|0.230 0.2710.242 0.301 |0.255 0.299{0.284 0.349|0.289 0.312{0.365 0.424|0.315 0.369|0.256 0.283|0.245 0.295|0.572 0.523|0.599 0.531(0.475 0.472
Exchange | 0.365 0.407|0.610 0.516|0.487 0.546|0.442 0.453|1.183 0.855|0.557 0.490|0.361 0.416|0.520 0.502|0.374 0.418|0.486 0.493|1.548 0.997|1.379 0.921 |1.612 1.044

ILI 2.359 0.975|2.064 0.912|5.617 1.680|3.447 1.279|4.691 1.442|2.592 1.012|4.046 1.419|3.088 1.214|6.505 1.853|7.078 1.975|5.035 1.539|4.682 1.448 |4.211 1.350

1% Count ‘ 0 2 0 0 0 0 0 0 0 0 0 0 0
404 e ECL ® M4_Hourly
301
304
201
201
104 M4_Yearly ®
10
ey 01
weather _ ratfic M4_Quarterly
0]
© M4_Monthl
ETTml.. ETTh1 104 ! y
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® Exchange =201 ® M4_Daily
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(a) PCA projection of meta-features for 9 (b) PCA projection of meta-features for 6
long-term forecasting datasets short-term forecasting datasets

Figure G1: Distributions of meta-features after PCA dimensionality reduction, comparing datasets
for long-term and short-term time series forecasting tasks.

H Additional Experimental Results

H.1 Comprehensive Benchmarking of TSGym Against State-of-the-Art Methods

Due to space limitations in the main text, here we provide complete experimental comparisons for both long-
term and short-term forecasting tasks. Table[H:T] details the full long-term forecasting performance across all
prediction horizons, while Table presents the comprehensive short-term forecasting results. Following
standard benchmarking conventions, we highlight top-performing methods in red and second-best results with
underlined formatting. These extensive evaluations consistently validate TSGym’s competitive performance
across diverse temporal prediction scenarios. In addition, we investigate the impact of different meta-feature
configurations through controlled ablation studies. As demonstrated in Table[HT0] no individual meta-feature
configuration exhibits consistent superiority across all datasets.

H.2 Additional Results of Large Evaluations on Design Choices

To systematically evaluate our architectural decisions, we conduct detailed ablation studies focusing on 17
component-level analyses, presented separately in Tables [HTTHHT?] for clarity and due to space constraints.
These comparative experiments assess the performance impact of different design choices for each component
across nine datasets in the long-term forecasting task. Bolded values indicate the best-performing configuration
for each dataset, while the summary row highlights the most frequently superior design choices, with red-bolded
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Table H10: Effects of different meta feature settings on the long-term forecasting task. All metric
values are averaged across different prediction lengths. For more details about meta features, refer to

section[G.2]

Models ~ Whole+Sub+Delta | Sub | Sub+Delta | Delta | Whole(default) | DUET
Metric mse mae | mse mae | mse mae | mse mae | mse mae | mse mae
ETTm1 | 0.357 0.383 | 0.363 0.388 | 0.354 0.380 | 0.377 0.405 | 0.357 0.383 | 0.407 0.409
ETTm2 | 0.273 0.329 | 0.269 0.329 | 0.266 0.324 | 0.380 0.389 | 0.261 0.319 | 0.296 0.338
ETThl | 0.417 0.429 | 0433 0435 | 0418 0.433 | 0.558 0.496 | 0.426 0.440 | 0433 0437
ETTh2 | 0.375 0.407 | 0.362 0.402 | 0.360 0.398 | 1.256 0.744 | 0.358 0.400 | 0.380 0.403
ECL 0.172 0.266 | 0.171 0.269 | 0.176  0.270 | 0.182 0.278 | 0.170 0.265 | 0.179  0.262
Traffic 0.433 0.309 | 0.437 0.313 | 0.432 0.308 | 0.587 0.368 | 0.435 0.313 | 0.797 0.427
Weather | 0.239 0.274 | 0.228 0.266 | 0.233 0.270 | 0.263 0.310 | 0.229 0.268 | 0.252 0.277
Exchange | 0.406 0.429 | 0.408 0429 | 0.404 0.428 | 0.761 0.622 | 0.410 0.431 | 0.322  0.384
ILI 2.401 1.030 | 3.099 1.195 | 2.855 1.141 | 2.814 1.125 | 2.233 1.015 | 2.640 1.018

Table H11: Long-term Forecasting Performance of Different Design Choices — Part I (6 Components).
Performance of various configurations for 6 Components across multiple datasets, evaluated using
best MSE, median, and IQR. Bolded entries indicate the best-performing hyperparameter for each
dataset. The last row shows the number of times each configuration achieved the best result, with
red-bolded values highlighting the most frequently superior design.

multi- . L Channel- L
x_mark ‘ granularity Normalization ‘ Decomposition ‘ independent ‘ Tokenization
dataset  stat False True |False True |DishTS None RevIN Stat | DFT MA MoEMA None|False True | inverted-  series- series-
encoding encoding patching

Best |0.352 0.35 |0.349 0.352| 036 0362 0.351 0.353/0.351 0.352 0354 0.354]0.354 0.35 0.354 0.352 0.351

ETTml1 Median | 0.423 0.452(0.428 0.455| 0.528 0.583 0.406 0.405|0.454 0.406 0.45 0.476|0.469 0.389 0.404 0.485 0.384
IQR |0.145 0.179]0.155 0.186| 0.212 0.235 0.097 0.097|0.159 0.131 0.169 0.179|0.195 0.107 0.132 0.207 0.092

Best [0.255 0.255(0.254 0.255| 0.272 0.277 0.253 0.255]0.257 0.256 0.258 0.256]0.259 0.253 0.259 0.257 0.254

ETTm2 Median | 0.367 0.367(0.356 0.406| 0.76 1.07 0297 03 [0.353 0.381 0.384 0.38 |0.408 0.307 0.305 0.452 0.307
y IQR |0.579 0.782]0.428 0.947| 0.746 1267 0.045 0.036|0.552 0.769 0.681  0.51 |0.871 0.154 0.226 0.963 0.177
Best |0.401 0.408|0.403 0.405| 0.44 0433 0.404 0.402|0.407 041 0405 0411]0.412 0.401 0.412 0.414 0.401

ETTh1 Median [0.491 0.491{0.484 0.51 | 0.545 0.632 0.468 0.462|0.494 0.489 0.495 0.486|0.511 0.462 0478 0.52 0.456
B IQR |0.125 0.126|0.098 0.183| 0.207 0.371 0.05 0.05 |0.141 0.098 0.157 0.118]0.202 0.042 0.062 0.241 0.037
Best |0.326 0.334]0.339 0.326| 0.41 0.402 0.325 0.337|0.338 0.327 0.344 0.339(0.327 0.341 0.348 0.325 0.347

ETTh2 Median | 0.444 0.467|0.449 0.455| 1.188 1.764 0.392 0.397| 0.43 0.453 0.547 0.438]0.532 0.394 0.495 0.468 0.388
IQR |0.939 0.732] 0.65 1.74 | 1.657 2.855 0.044 0.048|0.494 1.035 1.105 0.726|1.513 0.189 0.418 1.924 0.217

Best |0.159 0.157]0.157 0.159| 0.159 0.16 0.159 0.157|0.158 0.163 0.161 0.157|0.157 0.163 0.157 0.158 0.164

ECL Median [0.208 0.204|0.204 0.208 | 0.219 0.229 0.191 0.191[0.206 0.209 0.206  0.202|0.207 0.202 0.194 0.213 0.19
IQR |0.056 0.057]0.058 0.055| 0.053 0.059 0.035 0.052]|0.065 0.053 0.054 0.056|0.057 0.055 0.051 0.061 0.051

Best |0.394 0.396|0.398 0.394| 0.411 0.441 0.398 0.394|0.398 0.4 0394 0.4 |0.394 0.409 0.399 0.394 0.409

traffic Median | 0.555 0.5990.576 0.581| 0.546 0.657 0.542 0.496|0.607 0.575 0.56  0.561|0.568 0.627 0.531 0.6 0.607
IQR | 0.19 0.199]0.208 0.183| 0.164 0.12 0.207 0.195/0.185 0.19 0203 0.198|0.196 0.195 0.19 0.191 0.183

Best |0.223 0.22 | 0.22 0.222| 0.225 0225 0.22 0.224|0.226 0.223  0.22 0.221] 0.22 0.22 0.22 0.22 0.223

weather Median | 0.261 0.272{0.259 0.274| 0.267 0.301 0.255 0.256(0.265 0.27  0.261 0.263|0.273 0.246 0.247 0.281 0.246
IQR [0.041 0.079|0.047 0.065| 0.059 0.21 0.033 0.04 |0.047 0.053 0.052 0.055|0.062 0.035 0.034 0.073 0.033

Best |0.245 0.237|0.239 0.242| 0.24 025 0.351 0.337(0.243 0.239 0.246  0.242| 0.24 0.238 0.24 0.245 0.238

Exchange Median 0.493 0.502|0.462 0.548 | 0.674 0.93 0.432 0.415[0.472 0.519 0.495 0.507|0.569 0.394 0.415 0.582 0.395
8 IQR | 043 0.471]0.434 0.491| 0.869 0.855 0.164 0.168|0.386 0.546 0.43  0.466|0.595 0.144 0.253 0.613 0.149

Best |1.596 1.546|1.562 1.576| 1.763 2351 1.584 1.555|1.673 1.599 1.581 1.573|1.545 1.745 1.583 1.548 1.745

ili Median | 2.813 2.883|2.881 2.797| 2.785 4.416 2.486 2.493|2.878 2.784 2859 2.883|2.796 3.043 2.865 2.844 2.819
IQR |1.621 1.698|1.656 1.681| 1.152 0.975 0.742 0.764|1.612 1.596 1.701 1.739|1.665 1.693 1.757 1.68 1.442

1% Count ‘ 20 7 ‘ 22 5 ‘ 1 1 16 9 ‘ 8 9 5 5 ‘ 8 19 ‘ 5 3 19

980 entries denoting the dominant configurations. This fine-grained analysis offers empirical insights to guide
981 component selection in time-series forecasting systems.
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Table H12: Long-term Forecasting Performance of Different Design Choices — Part IT (4 Components)
and Part IT (7 Components). Same structure and evaluation metrics as Table

(a) Part II — 4 Components (Backbone, Attention, etc.)

Backbone | Attention | Feature-Attention | Sequence Length
de- - ) f oy
dataset  stat GRU MLP [rans | auto-cor- s‘tatioen_ary- el:;ll::::]:(;] null S on er:l‘ll::::g null S o | 192 48 512 96
attention _ attention attention
Best 0352 0352  0.351 0.359 0.382 0354 035 0359 0.354 0356 035 0355 036 [0.352 0476 0.349 038
ETTm1 |Median |0.457 0411 0449 0.499 0455 0409 0437 0486 0441 0453 0408 0472 0462 [0.386 0.545 0.395 0.423
IQR |0.157 0.179  0.151 0.242 0.087 0.106  0.164  0.189 0.143 0.182  0.146 0.171 0202 [0.106 0.089 0.121 0.082
Best 0264 0.255 0.256 0.258 0.289 0265 0255 026 0.267 026 0253 026 0262 [0.263 0.293 0.253 0.274
ETTmz |Median |0.407 034 0416 0.663 0.32 0335 0356 0437 0.766 0534 0326 0398 0389 | 0.34 0403 0.341 0415
IQR |0.565 0.382  0.854 0.9 0.033 0911 0441 0711 1.086 0906 0281 0836 0.86 |0.836 0.429 0.922 0.753
Best 0411 0.402 0406 0418 0471 0413 0401 0432 0.406 042 0401 0417 0412 [0.422 0.445 0.401 0435
ErThi |Median 0496 048 0502 051 0.526 0475 0487 0527 0.504 0495 0481  0.505 0513 [0.487 0.498 0.482 0.49
IQR [0.115 0.09 0.167 0.19 0.06 007 0105 0207 0214 0.149 0078 0.137 0244 [0.128 0.114 0.156 0.114
Best |0.327 0.339 0344 0.356 0.383 035 0325 036 0355 0347 0334 0329 0346 [0.351 0384 0.325 0361
ETThe |Median[0.516 0427 0453 0.462 0.41 0.546 0445 0589 0.504 0544 0421 0449 0.587 [0.422 0473 0.438 0531
IQR |0.642 0.617 1453 2.021 0.03 0754 065 1345 1393 2209 0305 1.086 1483 | 0.64 0.842 1.394 0.721
Best [0.163 0.163  0.157 0.163 0.165 0.16  0.162 0.158 0.157 0.158  0.158 0.159 0.158  [0.162 0.181 0.157 0.169
pel,  |Median 0214 0205 0.201 0.205 0.181 0207 0209 0.199 0.195 0.194 0213 0.199 0209 [0.183 0.241 0.182 0.209
IQR |0.056 0.06 0.054 0.054 0.048 0055 006 0048 0.052 0052 006  0.051 0.054  [0.025 0.044 0.047 0.041
Best |0.409 0.408  0.394 0.407 0417 0401 0407 0394 0.399 0407 0399  0.394 0402 [0.409 0515 0.394 0.446
traffic | Median|0.585 0.608  0.558 0576 0.475 0583 059 0596 0523 0539 0654 0507 0.537 [0.476 0.685 0.453 0.578
ratlic | QR [0.179 0215 0.195 0.208 0.102 0.181  0.198  0.199 0.19 0.149  0.138 0.195 0.163  [0.135 0.126 0.181 0.144
Best 0222 0.221 0.221 0.227 0.21 0229 022 0226 0.221 0227 022 0222 0223 [0.227 0253 0.22 0239
eather | Median|0.264 0268 0.266 0.279 0.233 0264 0265 0274 0.25 0272 0254 027 0282 [0.248 0.286 0.242 0258
Weather | jQr  |0.049 0.047 0054 0.065 0.018 0.047 0049 0043 0.06 0048 0048  0.044 0.095 | 0.04 0.035 0.063 0.031
Best | 0.24 0.238 0256 0.269 0.406 0278 0237 0263 0.282 0251 0238 0248 0247 [0.274 024 0.294 0.238
Exchange | Median| 0537 0.435  0.574 0.602 0.615 0.545 0473 056 0.59 0536 0443 0574 0.557 [0.503 0.401 081 042
XChAnge| JQR |0.445 0366  0.517 0.499 0.164 0.6 0433 0492 0.492 0.604 0302 0.56 0.506 |0.349 0.226 0.822 0.245
Best |1.619 1.561 1.551 1597 1.665 1672 1561 1637 1.642 1603 1629  1.63 1552 [1.878 1715 2269 1.546
gi  |[Median|2953 2851 2761 2731 2451 2949 23889 2791 2728 2.646 3043 2815 2755 |2.622 2705 3.799 2.487
o IQR |1.816 1516  1.661 1.623 0.656 1652 1676 1.746 1.642 155 1747 1.605 1672 |1.069 1.616 1.691 1.694
“Count | 3 15 9 | 0 16 2 7 1 1| 4 17 5 1 |6 5 11 s
(b) Part III — 7 Components (d_model, d_ff, etc.)

d_model ‘ d_ff ‘ Encoder ‘ Training Epochs ‘ Loss Function ‘Leamin Rate Learning
- - layers g Ep g Rate Strategy

dataset stat 256 64 | 1024 256 | 2 3 | 10 20 50 |[HUBER MAE MSE |0.0001 0.001 | null type
Best |0.352 0.35 |0.352 0.35 [0.352 0.35 |0.352 0.351 0.353| 0.359 0.356 035 | 0.35 0.351 |0.355 0.35
ETTm1 Median | 0.462 0.423 |0.462 0.423|0.424 0.451| 0.46 0.433 0.428| 0.437 0.433 0.442| 0.425 0.448 |0.431 0.446
IQR [0.166 0.153|0.166 0.153|0.154 0.156(0.173 0.163 0.15 | 0.113 0.139 0.166| 0.151 0.175 |0.141 0.176
Best |0.256 0.253|0.256 0.253|0.254 0.255|0.256 0.255 0.254| 0.266 0.261 0.253| 0.255 0.253 |0.256 0.253
ETTm2 Median [ 0.395 0.35 [0.395 0.35 | 0.367 0.363|0.352 0.381 0.376| 0.353 045 0.37 | 0.359 0.373 |0.379 0.355
IQR [0.792 0.435|0.792 0.435|0.785 0.535|0.585 0.767 0.607| 0.66 0.681 0.665| 0.575 0.729 | 0.62 0.783
Best |0.401 0.408 |0.401 0.408|0.407 0.401|0.402 0.406 0.406| 0.408 0.401 0.417| 0.401 0.408 |0.402 0.404
ETThl Median | 0.491 0.491[0.491 0.491| 0.49 0.492/0.493 0.49 0.489| 0.489 0.487 0.498| 0.477 0.503 | 0.49 0.493
IQR |0.117 0.134(0.117 0.134|0.114 0.132|0.119 0.156 0.113| 0.137 0.125 0.104| 0.107 0.134 |0.111 0.141
Best |0.338 0.326|0.338 0.326|0.325 0.341|0.336 0.342 0.325| 0.341 0.326 0.336| 0.337 0.325 | 0.337 0.325
ETTh2 Median | 0.474 0.441|0.474 0.441|0.442 0.467 |0.462 0.442 0.447| 0.415 0.425 0.471| 0.446 0.451 |0.461 0.445
IQR | 0.77 0.871| 0.77 0.871]0.902 0.752|1.286 0.806 0.577| 0.59 0.928 0.901| 0.756 0.956 | 0.969 0.739
Best |0.157 0.16 |0.157 0.16 |0.158 0.157|0.159 0.159 0.157| 0.158 0.159 0.157| 0.157 0.158 |0.157 0.158
ECL Median | 0.204 0.207|0.204 0.207|0.209 0.202|0.205 0.205 0.207| 0.208 0.193 0.206| 0.216 0.199 | 0.198 0.213
IQR |0.057 0.056|0.057 0.056|0.058 0.054|0.057 0.056 0.057| 0.055 0.048 0.057| 0.062 0.051 | 0.05 0.06
Best [0.394 04 (0394 04 0.4 0.394|0.401 0.401 0.394| 0418 0.423 0.394| 0.405 0.394 |0.398 0.394
traffic Median | 0.548 0.604 |0.548 0.604 |0.566 0.587| 0.59 0.585 0.562| 0.627 0.62 0.57 | 0.594 0.56 |0.551 0.604
IQR |0.195 0.206|0.195 0.206|0.194 0.197|0.209 0.194 0.19 | 0.144 0.164 0.195| 0.216 0.189 | 0.186 0.212

Best | 0.22 0.22 | 0.22 0.22 | 0.22 0.22 |0.224 0.22 0.22 | 0.223 0.225 0.22 | 0.222 0.22 |0.221 0.22
weather Median | 0.27 0.26 | 0.27 0.26 | 0.266 0.265|0.268 0.261 0.267 | 0.277 0.255 0.266| 0.261 0.27 |0.263 0.268
IQR |0.052 0.049|0.052 0.049|0.053 0.05 |0.053 0.048 0.051| 0.129 0.039 0.05 | 0.044 0.055 |0.046 0.056
Best |0.237 0.243]0.237 0.243|0.244 0.239|0.244 0.239 0.246| 0.241 0.249 0.241| 0.24 0.238 | 0.244 0.238
Exchange Median | 0.528 0.465|0.528 0.465| 0.5 0.494|0.503 0.494 0.489| 0.494 0.442 0.509| 0.444 0.551 |0.513 0.486
8¢ IQR |0.518 0.407|0.518 0.407|0.495 0.424|0.438 0.408 0.451| 0449 0.412 0468| 038 0.545 |0.495 0.433
Best |1.546 1.632|1.546 1.632|1.564 1.553|1.586 1.553 1.613| 1.582 1.59 1.585] 1.662 1.545 |1.591 1.563
ili Median | 2.737 2.971|2.737 2.971|2.846 2.854| 2.9 2.805 2.85 29 2933 2.801| 3.161 2.636 |2.679 3.203
IQR |1.599 1.732|1.599 1.732|1.635 1.683|1.713 1.611 1.694| 1.677 1.657 1.653| 1.78 1.47 |1.438 1.819

Count | 14 13 | 14 13 | 12 15| 4 11 12| 8 10 9 | 15 12 |15 12
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Figure H2: Overall performance across additional design dimensions in long-term forecasting. The
results (MSE) are based on the 75th percentile across all forecasting horizons.

H.2.1 Design Choices Evaluation Results for Long-term Forecasting Using MSE as the Metric

Spider Chart Analysis. Fig. extends the baseline comparisons presented in Fig. [2| by employing multi-
dimensional spider charts, where each vertex corresponds to a benchmark dataset. Closer proximity to the
outer edge of a vertex indicates better performance of the associated design choice on that particular dataset.
These visual representations offer an intuitive understanding of how different architectural decisions influence
model effectiveness across diverse forecasting domains. Notably, configurations for components including
Series Sampling/Mixing (Fig. , Hidden Layer Dimensions (Fig. [H2d), FCN Layer Dimensions (Fig.
[H2¢), Learning Rate (Fig. @% Learning Rate Strategy (Fig. demonstrate similar spatial patterns
in the radar charts. Specifically, ECL, ILI, and Traffic datasets exhibit consistent parameter preferences across
these components, suggesting intrinsic alignment between their temporal patterns and specific architectural
configurations.

In addition, Fig.[H3]provides a broader evaluation of large-scale time series models, revealing that conventional
architectures still maintain a competitive advantage over LLM-based models, especially in domain-specific
forecasting tasks where structural inductive biases play a crucial role.

Box Plots Analysis. The impact of various design choices for each architectural component is further illustrated
through box plots in Fig. [H4]and Fig.[H3] These visualizations complement the spider charts by providing a
statistical perspective on performance variability and robustness across multiple benchmark datasets. Together,
the two forms of analysis offer a comprehensive view of how different configurations affect forecasting accuracy.
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Figure H4: Overall performance across all design dimensions in long-term forecasting. The results
(MSE) are averaged across all forecasting horizons. Due to the significantly different value range and
variability of the ILI dataset compared to other datasets, its box plot is plotted using the right-hand
y-axis, while all other datasets share the left-hand y-axis.
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Figure HS: Overall performance across all design dimensions when using LLMs or TSFMs in
long-term forecasting. The results (MSE) are averaged across all forecasting horizons. Due to the
significantly different value range and variability of the ILI dataset compared to other datasets, its
box plot is plotted using the right-hand y-axis, while all other datasets share the left-hand y-axis.

H.2.2 Design Choices Evaluation Results for Long-term Forecasting Using MAE as the
Metric

For the MAE-based performance evaluation, we analyze the effects of different design choices using both spider
charts and box plots (Fig. [H6| and Fig.[H7). These visualizations complement the MSE-based analysis and
confirm the generalizability of our findings across error metrics. In particular, normalization methods such as
RevIN and Stationary consistently achieve the lowest MAE values, underscoring their effectiveness in mitigating
non-stationarity. Similarly, decomposition strategies exhibit selective benefits: MA-based methods improve
predictions on datasets like ETTh1 and ETTm2, while raw-series modeling remains more effective on ECL and
Traffic, where decomposition tends to degrade performance.

Beyond preprocessing, MAE evaluations further validate the consistency of our architectural insights. Channel-
independent designs retain strong performance across most datasets, except on Traffic and ILI, where localized
dependencies dominate. Tokenization methods show stable ranking across both metrics, with patch-wise encod-
ing consistently outperforming point-wise approaches. Notably, complex architectures such as Transformers
provide only marginal gains over MLPs in certain cases (e.g., Traffic), suggesting that their benefits may not
justify the added complexity. Overall, the alignment between MAE and MSE results reinforces the robustness of
our design principles, demonstrating that the observed patterns are not metric-specific but instead reflect core
relationships between architecture and forecasting performance.
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Figure H6: Overall performance across key design dimensions in long-term forecasting. The results
(MAE) are based on the 75th percentile across all forecasting horizons.
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Figure H7: Overall performance across all design dimensions when using LLMs or TSFMs in
long-term forecasting. The results (MAE) are based on the 75th percentile across all forecasting
horizons.
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Figure H9: Overall performance across all design dimensions when using LLMs or TSFMs in
long-term forecasting. The results (MAE) are averaged across all forecasting horizons.
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Figure H10: Overall performance across all design dimensions in short-term forecasting. The results
(MASE) are based on the 75th percentile across all forecasting horizons.

H.3 Complete Evaluation Results of Short-term Forecasting Using MASE, OWA and sMAPE
as the Metric

For short-term forecasting, we comprehensively evaluate different design dimensions using both spider charts

and box plots. The spider charts—shown in Figure [HI0} Figure[HTT] and Figure [HI2}—visualize performance
across datasets, with each vertex representing a benchmark dataset. Closer proximity to a vertex indicates
stronger performance of a particular design choice in that dataset.

Complementary box plots are provided in Figure [HT3] Figure [HT4] and Figure [HT3] offering a statistical
perspective on the distribution and robustness of performance across evaluation metrics.
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Figure H11: Overall performance across all design dimensions in short-term forecasting. The results
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(OWA) are based on the 75th percentile across all forecasting horizons.

1025 Overall, the relative performance trends observed under MASE, OWA, and sSsMAPE metrics are consistent with
1026 those found in long-term forecasting tasks, reinforcing the generalizability and stability of our architectural

1027 choices.
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Figure H12: Overall performance across all design dimensions in short-term forecasting. The results
(SMAPE) are based on the 75th percentile across all forecasting horizons.

40



100 W Stat

L

K

% 60

H

w0

o I

. g T Flan |
S
& & & & ¢ &
< « N

(a) Series Normalization

&
&

o« &

o &
2
& E

o

(g) Series Attention

-
20 | =3
L5
H
g0
H
- W wd
; o
= =l
o
o N ) Ny N Y
& » & & & &
S K & ¢

(j) Encoder layers

Figure H13: Overall performance across all design dimensions in short-term forecasting. The results
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Figure H15: Overall performance across all design dimensions in short-term forecasting. The results
are based on SMAPE.
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