
Appendix830

For further details, we provide more information in the Appendix, including the evaluated 10 datasets (§A),831

key modules (§B), compared baselines (§C), metrics mathematical formula (§D), system configuration (§E),832

ADGym comparison analysis (§F), the details of proposed TSGym (§G), and additional experimental results833

(§H).834

A Dataset List835

We conduct extensive evaluations on nine standard long-term forecasting benchmarks - four ETT variants836

(ETTh1, ETTh2, ETTm1, ETTm2), Electricity (abbreviated as ECL), Traffic, Weather, Exchange, and ILI,837

complemented by the M4 dataset for short-term forecasting tasks, with complete dataset specifications provided838

in Table A1.839

Table A1: Data description of the 10 datasets included in TSGym.
Task Dataset Domain Frequency Lengths Dim Description

LTF

ETTh1 Electricity 1 hour 14,400 7 Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTh2 Electricity 1 hour 14,400 7 Power transformer 2, comprising seven indicators such as oil temperature and useful load
ETTm1 Electricity 15 mins 57,600 7 Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTm2 Electricity 15 mins 57,600 7 Power transformer 2, comprising seven indicators such as oil temperature and useful load
ECL Electricity 1 hour 26,304 321 Electricity records the electricity consumption in kWh every 1 hour from 2012 to 2014
Traffic Traffic 1 hour 17,544 862 Road occupancy rates measured by 862 sensors on San Francisco Bay area freeways
Weather Environment 10 mins 52,696 21 Recorded every for the whole year 2020, which contains 21 meteorological indicators
Exchange Economic 1 day 7,588 8 ExchangeRate collects the daily exchange rates of eight countries
ILI Health 1 week 966 7 Recorded indicators of patients data from Centers for Disease Control and Prevention

STF M4

Demographic,
Finance,
Industry,
Macro, Micro
and Other

Yearly

19-9933 100000 M4 competition dataset containing 100,000 unaligned time series with varying
lengths and time periods

Quarterly
Monthly
Weakly
Daily
Hourly

B Key Modules840

Modern deep learning for MTSF utilizes several specialized modules to tackle non-stationarity, multi-scale841

dependencies, and inter-variable interactions. In this section, we analyze the design and efficacy of prevalent842

specialized modules adopted in state-of-the-art models (Fig. 1).843

Normalization modules address temporal distribution shifts through adaptive statistical alignment. While844

z-score normalization employs fixed moments, modern techniques enhance adaptability: RevIN [26] introduces845

learnable affine transforms with reversible normalization/denormalization; Dish-TS [15] decouples inter-/intra-846

series distribution coefficients; Non-Stationary Transformer [35] integrates statistical moments into attention847

via de-stationary mechanisms. These methods balance stationarized modeling with inherent non-stationary848

dynamics.849

Decomposition methods, standard in time series analysis, break down series into components like trend and850

seasonality to improve predictability and handle distribution shifts. (1) Time-domain decomposition utilizes851

moving average operations to isolate slowly-varying trends from high-frequency fluctuations that represent852

seasonality (e.g., DLinear [63], Autoformer, FEDformer). (2) Frequency-domain decomposition partitions853

series via Discrete Fourier Transform (DFT), assigning low-frequency spectra to trends and high-frequency854

bands to seasonality, which is applied in the Koopa [34] model.855

Multi-Scale modeling addresses the inherent temporal hierarchy in time series data, where patterns manifest856

differently across various granularities (e.g., minute-level fluctuations vs. daily trends). Pyraformer [32]857

integrates multi-convolution kernels via pyramidal attention to establish hierarchical temporal dependencies.858

FEDformer [69] employs mixed experts to combine trend components from multiple pooling kernels with859

varying receptive fields, where larger kernels capture macro patterns while smaller ones preserve local details.860

TimeMixer [50] extends this paradigm through bidirectional mixing operations - upward propagation refines fine-861

scale seasonal features while downward aggregation consolidates coarse-scale trends. FiLM [68] dynamically862

adjusts temporal resolutions through learnable lookback windows, enabling adaptive focus on relevant historical863

contexts across scales. Crossformer [66] implements flexible patchsize configurations, where multi-granular864

patches independently model short-term fluctuations and long-term cycles through dimension-aware processing.865

Temporal Tokenization strategies, originating from Transformers [51, 33] and now extended to RNNs [30],866

vary by temporal representation granularity: (1) Point-wise methods (e.g., Informer [67], Pyraformer [32])867

process individual timestamps as tokens. They offer temporal precision but face quadratic complexity, requiring868

attention sparsification that may hinder long-range dependency capture. (2) Patch-wise strategies (e.g., PatchTST869

20



[40]) aggregate local temporal segments into patches. Pathformer [10] similarly employs patch-based processing870

via adaptive multi-scale pathways. (3) Series-wise approaches (e.g., iTransformer [33]) construct global variate871

representations, enabling cross-variate modeling but risking temporal misalignment. TimeXer [52] uses hybrid872

tokenization: patch-level for endogenous variables and series-level for exogenous, bridged by a learnable global873

token.874

Temporal Dependency Modeling captures dynamic inter-step dependencies through diverse architectural875

mechanisms, balancing local interactions and global patterns. Recurrent state transitions (e.g., LSTM) model876

sequential memory via gated memory cells; temporal convolutions (e.g., TCN [6]) construct multi-scale receptive877

fields using dilated kernels; attention mechanisms (e.g., Transformers) enable direct pairwise interactions across878

arbitrary time steps. Efficiency-driven innovations include sparse attention (Informer [67]), periodicity-based879

aggregation (Autoformer [57]), and state-space hybrids (Mamba [18]), achieving tractable long-range dependency880

modeling while preserving temporal fidelity.881

Variate Correlation, fundamental to modeling critical correlations in multivariate time series forecasting882

(MTSF), operates through two primary paradigms [43]: (1) Channel-Independent (CI) Strategy: Processes883

channels independently with shared parameters (e.g., PatchTST [40]), ensuring robustness and efficiency but884

ignoring multivariate dependencies, limiting use with strong inter-channel interactions [41].885

(2) Channel-Dependent (CD) Strategy: Integrates channel information via methods like channel-wise self-886

attention (iTransformer [33]) or MLP-based mixing (TSMixer [11]). This allows explicit dependency modeling887

but risks overfitting and struggles with noise in high dimensions.888

C Compared Baselines889

We systematically compare state-of-the-art forecasting models using the 6 architectural modules introduced in890

Section B. Table C2 presents the configuration of each baseline in terms of these modules. The "Notes" column891

provides concise annotations of each model’s key methodological features, allowing for quick identification of892

the technical differentiators among the baselines.893

D Metrics Mathematical Formula894

The metrics used in this paper can be calculated as follows[56]:895
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where m is the periodicity of the data. X, X̂ ∈ RH×C are the ground truth and prediction results of the future896

with H time points and C dimensions. Xi means the i-th future time point.897

E System Configuration898

We conducted all experiments in the same experimental environment, which includes four NVIDIA A100 GPUs899

with 80GB and eight 40GB of memory. We saved overall experimental time by running experiments in parallel.900

F Compared with ADGym901

Compared with ADGym [20], TSGym exhibits the following differences and advantages:902

(1) Broader model structure design choices. ADGym includes only MLP, autoencoder (AE), ResNet, and903

Transformer architectures, while TSGym provides an in-depth decoupling of different attention mechanisms904

within Transformers and incorporates two pre-trained large models: LLMs and TSFM. (2) More diverse data905

processing design choices. ADGym focuses solely on data augmentation and two normalization methods,906

whereas TSGym encompasses series sampling, series normalization, series decomposition, as well as various907

series encoding options. (3) More complex meta-features. The meta-features in ADGym include statistical908

metrics for tabular datasets, while TSGym considers multiple sequence characteristics across different channels909

in multivariate time series, such as distribution drift, sequence autocorrelation, and more. (4) More standardized910
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Table C2: Component Configurations of 27 Baseline Models

Backbone Method Normali-
zation

Decom-
position

Multi-
Scale

Token-
izations

Temporal
Dependency

Variate
Corre-
lation

Notes

RNN
SegRNN[30] SubLast Patch-wise GRU CI Reduces iterations via patch-wise processing and parallel

multi-step forecasting.

Mamba[18] Stat Point-wise Selective State
Space Model CD Efficient model selectively propagating information with-

out attention or MLP blocks.

CNN

SCINet[31] Stat TRUE Point-wise Conv1d CD Recursively downsamples, convolves, and interacts with
data to capture complex temporal dynamics.

MICN[49] MA TRUE Point-wise Conv1d CD Combines local features and global correlations using
multi-scale convolutions with linear complexity.

TimesNet[56] Stat TRUE Point-wise Conv2d CD Transforms 1D time series into 2D tensors to capture
multi-periodicity and temporal variations.

MLP

FiLM[68] RevIN TRUE Point-wise Legendre
Projection Unit CD Preserves historical info and reduces noise with Legen-

dre and Fourier projections.

LightTS[65] Patch-wise MLP CD Lightweight MLP model for multivariate forecasting,
using continuous and interval sampling for efficiency.

DLinear[63] MA Point-wise MLP CI/CD Decomposes series into trend and seasonal components,
then applies linear layers for improved forecasting.

Koopa[34] Stat DFT Point-wise,
Patch-wise MLP CD Uses Koopman theory to model non-stationary dynamics,

handling time-variant and time-invariant components.

TSMixer[11] Point-wise MLP CD Simple MLP model efficiently captures both time and
feature dependencies for forecasting.

FreTS[60] Point-wise Frequency-
domain MLP CI/CD Uses frequency-domain MLPs to capture global depen-

dencies and focus on key frequency components.

TiDE[13] Stat Point-wise MLP CI Fast MLP-based model for long-term forecasting, han-
dling covariates and non-linear dependencies.

TimeMixer[50] RevIN MA TRUE Point-wise MLP CI/CD Fully MLP-based model, disentangles and mixes multi-
scale temporal patterns.

Transformer

Reformer[1] Point-wise LSHSelf-
Attention CD Memory-efficient Transformer with locality-sensitive

hashing for faster training on long sequences.

Informer[67] Point-wise ProbSparse-
Attention CD Efficient Transformer with ProbSparse-Attention and a

generative decoder for faster long-sequence forecasting.

TFT[29] Stat Point-wise Self-Attention CD
High-performance, interpretable multi-horizon forecast-
ing model combining recurrent layers for local process-
ing and attention layers for long-term dependencies.

Autoformer[57] MA Point-wise Auto-
Correlation CD Uses Auto-Correlation and decomposition for accurate

long-term predictions.

PyraFormer[32] TRUE Point-wise Pyramid-
Attention CD Captures temporal dependencies at multiple resolutions

with constant signal path length.

NSTransformer[35] Stat Point-wise De-stationary
Attention CD Restores non-stationary information through de-

stationary attention for improved forecasting.

ETSformer[55] DFT Point-wise
Exponential-
Smoothing-
Attention

CD Integrates exponential smoothing and frequency atten-
tion for accuracy, efficiency, and interpretability.

FEDformer[69] MA TRUE Point-wise AutoCorrelation CD Combines seasonal-trend decomposition with frequency-
enhanced Transformer for efficient forecasting.

Crossformer[66] TRUE Patch-wise TwoStage-
Attention CD Captures both temporal and cross-variable dependencies

with two-stage attention.

PatchTST[40] Stat Patch-wise FullAttention CI Segments time series into patches and uses channel-
independent embeddings.

iTransformer[33] Stat Series-wise FullAttention CD Redefines token embedding to treat time points as series-
wise tokens for better multivariate modeling.

TimeXer[52] Stat Series-wise FullAttention CD Enhances forecasting by incorporating exogenous vari-
ables via patch-wise and variate-wise attention.

PAttn[47] Stat Patch-wise FullAttention CI Similar to PatchTST, uses attention-based patching for
efficient forecasting without large language models.

DUET[43] RevIN MA Point-wise FullAttention CI/CD
Enhances multivariate forecasting by using Mixture of
Experts (MOE) for temporal clustering and a frequency-
domain similarity mask matrix for channel clustering.

Table F3: Compared with ADGym, TSGym covers a broader and more in-depth design space, as
well as a more structured and extensive automated selection experiment.

ADGym TSGym
Design Dimensions 13 16
Design Space Size 195,9552 796,2624
Model Architectures MLP,AE,ResNet,FTTransformer MLP,RNN, Transformers, LLM, TSFM
Max of Data Samples 3000 57,600
Meta Feature Dimensions 200 1404
Baseline Methods 7 27

automated selection experiments. Due to time constraints, ADGym limits the sample size to fewer than 3000911

samples, whereas TSGym imposes no such restriction, providing a larger-scale experimental design that leads to912

more solid experimental conclusions.913

In summary, compared with ADGym, TSGym makes significant progress and development in both compo-914

nents benchmarking and automated selection. More details can be seen in table F3.915
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G Details of TSGym916

In this section, we introduce detailed descriptions of the design choices, extracted meta-features and the trained917

meta-predictors.918

G.1 More Details of Design Choices in TSGym.919

We selected competitive components from the key modules of existing state-of-the-art (SOTA) works as our920

design choices. In Appx. B, we introduced the underlying principles of these components according to different921

design dimensions. While most of the individual components have demonstrated their effectiveness through922

ablation studies in their respective original papers, the interactions and synergies among them when combined923

have never been systematically explored. Notably, when assembling complete pipelines from different design924

choices, we automatically exclude incompatible combinations, such as pairing MLP-based architectures with925

diverse series attention modules.926

G.2 Meta-features and Meta-predictors927

Details and the selected list of meta-features. All meta-features in this paper integrate two complementary928

perspectives: (1) static characteristics extracted via TSFEL [42] spanning temporal, statistical, spectral, and929

fractal domains, and (2) dynamic behavioral metrics from TFB [7] to quantify temporal distribution shifts.930

In Section 4.2, we present the results of the meta-predictor trained on meta-features derived from static931

characteristics, which corresponds to the default setting in TSGym. Furthermore, in Fig. G1, we visualize the932

dimension-reduced meta-features across different datasets. In Table H10, we report the performance of the933

meta-predictor under various meta-feature configurations. The following categorizes these features with their934

analytical purposes (see Tables G4–G7 for implementation details):935

• Temporal features (Table G4): Characterize sequential dynamics through trend detection, entropy analysis,936

and change-point statistics, preserving sensitivity to temporal ordering.937

• Statistical features (Table G5): Capture distribution properties via central tendency (mean/median), disper-938

sion (variance/IQR), and shape descriptors (skewness/kurtosis), invariant to observation order.939

• Spectral features (Table G6): Decompose signals into frequency components using Fourier/wavelet trans-940

forms, identifying dominant periodicities and hidden oscillations.941

• Fractal features (Table G7): Quantify multiscale complexity through fractal dimensions and Hurst exponents,942

reflecting self-similarity patterns across temporal resolutions.943

• Shifting Metric: To complement static features, this TFB-derived metric measures temporal distribution drift944

via KL-divergence between adjacent windows. Values approaching 1 indicate severe shifts caused by external945

perturbations or systemic transitions, providing a diagnostic tool for non-stationary dynamics.946

Details of the trained meta-predictors. For each design choice, we first use the LabelEncoder class from947

scikit-learn to convert it into a numerical class index. This index is then fed into an nn.Embedding layer within948

our model to obtain a dense vector representation. These learned embeddings, along with other meta-features,949

subsequently form the input to the meta-predictor. The meta-predictor is optimized using Pearson loss to learn950

the relative performance ranks of different design choices, thereby emphasizing the linear correlation between951

predicted and actual rankings.952

Moreover, we experimented with different training strategies to guide the meta-predictor in selecting the top-1953

design pipelines.954

(1) +Resample: Constraining the number of combinations from different datasets to be equal when training the955

meta-predictor.956

(2) +AllPL: Training on datasets with varying prediction lengths and transfers this knowledge to a test set with a957

single prediction length.958

(3) We train the meta-predictor using diverse meta features, including those generated by segmenting the datasets959

based on timestamps (Sub), those combining information from different time periods (Whole), and those960

designed to capture distributional shifts (Delta). The symbol "+" denotes the concatenation of multiple meta961

features.962

We report the results of +Resample and +AllPL in Table 4, and the results of diverse meta-features in Table H10.963
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Table G4: Temporal Meta-feature Specifications

Feature Description Functionality

Absolute Energy Computes the absolute energy of the signal. Measures the total energy of the signal, often used to understand signal power
and activity levels.

Area Under the Curve Computes the area under the curve of the signal
computed with the trapezoid rule.

Provides a measure of the overall signal amplitude or ""energy"" over time.

Autocorrelation Calculates the first 1/e crossing of the autocorre-
lation function (ACF).

Measures the correlation of the signal with its own past values, useful for identi-
fying repeating patterns.

Average Power Computes the average power of the signal. Averages the squared values of the signal, capturing its power over time.
Centroid Computes the centroid along the time axis. Indicates the ""center"" or ""balance point"" of the signal in time, providing

insight into its distribution.
Signal Distance Computes signal traveled distance. Measures the total path length covered by the signal over time, capturing the

extent of signal fluctuations.
Negative Turning Computes number of negative turning points of

the signal.
Counts the number of times the signal changes direction from positive to negative.

Neighbourhood Peaks Computes the number of peaks from a defined
neighbourhood of the signal.

Identifies the number of peak points within a specified window, useful for pattern
detection.

Peak-to-Peak Distance Computes the peak to peak distance. Measures the time interval between successive peaks, indicating the period of
oscillations.

Positive Turning Computes number of positive turning points of
the signal.

Counts the number of times the signal changes direction from negative to positive.

Root Mean Square Computes root mean square of the signal. Calculates the square root of the average squared values of the signal, often used
as a measure of signal strength.

Slope Computes the slope of the signal. Measures the rate of change in the signal’s amplitude over time, indicating trends
or shifts.

Sum of Absolute Differ-
ences

Computes sum of absolute differences of the
signal.

Measures the total variation in the signal by summing the absolute differences
between consecutive values.

Zero-Crossing Rate Computes Zero-crossing rate of the signal. Counts how many times the signal crosses the zero axis, indicating its frequency
and periodicity.

Table G5: Statistical Meta-feature Specifications

Feature Description Functionality

Maximum Value Computes the maximum value of the signal. Identifies the highest amplitude or peak value in the signal, useful for determining
extreme values.

Mean Value Computes mean value of the signal. Calculates the average value of the signal, providing insight into its central
tendency.

Median Computes the median of the signal. Finds the middle value of the signal when sorted, offering robustness to outliers.
Minimum Value Computes the minimum value of the signal. Identifies the lowest amplitude or trough value in the signal, useful for detecting

minima.
Standard Deviation Computes standard deviation (std) of the signal. Measures the variation or spread of the signal values, indicating how much the

signal deviates from the mean.
Variance Computes variance of the signal. Quantifies the spread of signal values, related to the square of the standard

deviation.
Empirical Cumulative
Distribution Function

Computes the values of ECDF along the time
axis.

Provides a cumulative distribution function, representing the probability distribu-
tion of the signal values.

ECDF Percentile Computes the percentile value of the ECDF. Extracts specific percentiles from the cumulative distribution, useful for under-
standing the signal’s quantiles.

ECDF Percentile Count Computes the cumulative sum of samples that
are less than the percentile.

Measures the number of samples falling below a given percentile, providing
distribution insights.

ECDF Slope Computes the slope of the ECDF between two
percentiles.

Measures the steepness or rate of change in the cumulative distribution, indicating
distribution sharpness.

Histogram Mode Compute the mode of a histogram using a given
number of bins.

Finds the most frequent value in the signal’s histogram, representing the peak of
the signal’s distribution.

Interquartile Range Computes interquartile range of the signal. Measures the range between the 25th and 75th percentiles, indicating the spread
of the central 50% of the signal values.

Kurtosis Computes kurtosis of the signal. Measures the ""tailedness"" of the signal distribution, indicating the presence of
outliers or extreme values.

Mean Absolute Devia-
tion

Computes mean absolute deviation of the signal. Measures the average deviation of the signal values from the mean, providing an
indication of signal variability.

Mean Absolute Differ-
ence

Computes mean absolute differences of the sig-
nal.

Calculates the average of absolute differences between successive signal values,
reflecting the signal’s smoothness.

Mean Difference Computes mean of differences of the signal. Computes the average of the first-order differences, used to measure overall
signal change.

Median Absolute Devia-
tion

Computes median absolute deviation of the sig-
nal.

Measures the spread of the signal values around the median, offering a robust
measure of variability.

Median Absolute Differ-
ence

Computes median absolute differences of the
signal.

Similar to mean absolute difference but based on the median, used to assess
signal smoothness.

Median Difference Computes median of differences of the signal. Calculates the median of first-order differences, providing insights into signal
trend stability.

Skewness Computes skewness of the signal. Measures the asymmetry of the signal’s distribution, indicating whether it is
skewed towards higher or lower values.
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Table G6: Spectral Meta-feature Specifications

Feature Description Functionality

Entropy Computes the entropy of the signal using Shan-
non Entropy.

Quantifies the uncertainty or randomness in the signal, offering insights into its
complexity.

Fundamental Frequency Computes the fundamental frequency of the sig-
nal.

Identifies the primary frequency at which the signal oscillates, crucial for detect-
ing periodic behaviors.

Human Range Energy Computes the human range energy ratio. Measures the energy in the human audible range, useful for identifying signals
relevant to human hearing.

Linear Prediction Cep-
stral Coefficients

Computes the linear prediction cepstral coeffi-
cients.

Extracts features related to the signal’s frequency components, commonly used
in speech and audio processing.

Maximum Frequency Computes maximum frequency of the signal. Identifies the highest frequency component of the signal, providing insight into
its frequency range.

Maximum Power Spec-
trum

Computes maximum power spectrum density of
the signal.

Measures the peak value in the power spectral density, identifying dominant
frequencies in the signal.

Median Frequency Computes median frequency of the signal. Identifies the frequency that divides the signal’s power spectrum into two equal
halves.

Mel-Frequency Cepstral
Coefficients

Computes the MEL cepstral coefficients. Used to extract features representing the spectral characteristics of the signal,
primarily used in speech analysis.

Multiscale Entropy Computes the Multiscale entropy (MSE) of the
signal, that performs entropy analysis over mul-
tiple scales.

Quantifies the signal’s complexity at different scales, useful for detecting non-
linear temporal behaviors.

Power Bandwidth Computes power spectrum density bandwidth of
the signal.

Measures the width of the frequency band where the majority of the signal’s
power is concentrated.

Spectral Centroid Barycenter of the spectrum. Identifies the ""center"" of the signal’s frequency spectrum, used in sound and
audio analysis.

Spectral Decrease Represents the amount of decreasing of the spec-
tra amplitude.

Measures how rapidly the spectral amplitude decreases across frequency, useful
for identifying spectral roll-off.

Spectral Distance Computes the signal spectral distance. Quantifies the difference between the signal’s spectrum and a reference, helpful
in pattern recognition.

Spectral Entropy Computes the spectral entropy of the signal
based on Fourier transform.

Measures the randomness or complexity in the frequency domain of the signal.

Spectral Kurtosis Measures the flatness of a distribution around its
mean value.

Quantifies the tail heaviness of the signal’s frequency distribution, identifying
outliers or abnormal distributions.

Spectral Positive Turn-
ing

Computes number of positive turning points of
the fft magnitude signal.

Counts the points where the signal’s Fourier transform changes direction from
negative to positive.

Spectral Roll-Off Computes the spectral roll-off of the signal. Measures the frequency below which a specified percentage of the total spectral
energy is contained.

Spectral Roll-On Computes the spectral roll-on of the signal. Similar to roll-off but identifies the frequency above which a specified amount
of energy is concentrated.

Spectral Skewness Measures the asymmetry of a distribution around
its mean value.

Measures the skew in the signal’s frequency distribution, highlighting the pres-
ence of spectral biases.

Spectral Slope Computes the spectral slope. Quantifies the slope of the power spectral density, often used to distinguish
between harmonic and non-harmonic signals.

Spectral Spread Measures the spread of the spectrum around its
mean value.

Measures the dispersion or spread of the signal’s spectral energy.

Spectral Variation Computes the amount of variation of the spec-
trum along time.

Quantifies how much the frequency content of the signal changes over time.

Spectrogram Mean Co-
efficients

Calculates the average power spectral density
(PSD) for each frequency throughout the entire
signal.

Averages the power spectral density across all time intervals, capturing the
signal’s overall spectral energy distribution.

Wavelet Absolute Mean Computes CWT absolute mean value of each
wavelet scale.

Measures the average wavelet transform magnitude across scales, useful for
detecting changes in signal frequency.

Wavelet Energy Computes CWT energy of each wavelet scale. Quantifies the energy at each wavelet scale, reflecting the signal’s energy distri-
bution across frequencies.

Wavelet Entropy Computes CWT entropy of the signal. Measures the complexity or unpredictability of the signal at different wavelet
scales.

Wavelet Standard Devi-
ation

Computes CWT std value of each wavelet scale. Measures the variation or spread of the wavelet transform across different scales.

Wavelet Variance Computes CWT variance value of each wavelet
scale.

Quantifies the dispersion of the signal at different wavelet scales.

Table G7: Fractal Meta-feature Specifications

Feature Description Functionality

Detrended Fluctuation
Analysis

Computes the Detrended Fluctuation Analysis
(DFA) of the signal.

Measures long-range correlations and self-similarity in the signal, used for
identifying fractal behavior.

Higuchi Fractal Dimen-
sion

Computes the fractal dimension of a signal using
Higuchi’s method (HFD).

Measures the complexity of the signal’s pattern by calculating its fractal dimen-
sion.

Hurst Exponent Computes the Hurst exponent of the signal
through the Rescaled range (R/S) analysis.

Measures the long-term memory or persistence in the signal, useful for identify-
ing trends and randomness.

Lempel-Ziv Complexity Computes the Lempel-Ziv’s (LZ) complexity
index, normalized by the signal’s length.

Quantifies the randomness or predictability of the signal based on its compress-
ibility.

Maximum Fractal
Length

Computes the Maximum Fractal Length (MFL)
of the signal.

Measures the fractal dimension at the smallest scale of the signal, reflecting its
intricate pattern complexity.

Petrosian Fractal Di-
mension

Computes the Petrosian Fractal Dimension of a
signal.

Measures the signal’s fractal dimension based on its variation across different
scales.
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Table H8: Full results for the long-term forecasting task. All the results are averaged from 4 different
prediction lengths, that is {24, 36, 48, 60} for ILI and {96, 192, 336, 720} for the others.

Models TSGym DUET TimeMixer MICN TimesNet PatchTST DLinear Crossformer Autoformer SegRNN Mamba iTransformer TimeXer
(Ours) [43] [50] [49] [56] [40] [63] [66] [57] [30] [18] [33] [52]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.360 0.384 0.407 0.409 0.384 0.399 0.402 0.429 0.432 0.430 0.390 0.404 0.404 0.407 0.501 0.501 0.532 0.496 0.388 0.404 0.501 0.466 0.414 0.415 0.386 0.400
ETTm2 0.265 0.322 0.296 0.338 0.277 0.325 0.342 0.391 0.296 0.334 0.288 0.334 0.349 0.399 1.487 0.789 0.330 0.368 0.273 0.322 0.356 0.370 0.290 0.332 0.279 0.325
ETTh1 0.425 0.434 0.433 0.437 0.448 0.438 0.589 0.537 0.474 0.464 0.454 0.449 0.465 0.461 0.544 0.520 0.492 0.485 0.422 0.429 0.544 0.504 0.462 0.452 0.446 0.443
ETTh2 0.371 0.406 0.380 0.403 0.383 0.406 0.585 0.530 0.415 0.424 0.385 0.409 0.566 0.520 1.552 0.908 0.446 0.460 0.374 0.405 0.465 0.448 0.382 0.406 0.372 0.399

ECL 0.179 0.275 0.179 0.262 0.185 0.273 0.186 0.297 0.219 0.314 0.209 0.298 0.225 0.319 0.193 0.289 0.234 0.340 0.216 0.302 0.209 0.312 0.190 0.277 0.191 0.286
Traffic 0.434 0.310 0.797 0.427 0.496 0.313 0.544 0.320 0.645 0.348 0.497 0.321 0.673 0.419 1.458 0.782 0.637 0.397 0.807 0.411 0.679 0.380 0.474 0.318 0.509 0.333

Weather 0.229 0.267 0.252 0.277 0.244 0.274 0.264 0.316 0.261 0.287 0.256 0.279 0.265 0.317 0.253 0.312 0.339 0.379 0.251 0.298 0.291 0.315 0.259 0.280 0.243 0.273
Exchange 0.392 0.418 0.322 0.384 0.359 0.402 0.346 0.422 0.405 0.437 0.381 0.412 0.346 0.414 0.904 0.695 0.506 0.500 0.408 0.423 0.714 0.562 0.369 0.410 0.410 0.424

ILI 2.345 1.053 2.640 1.018 4.502 1.557 2.938 1.178 2.140 0.907 2.160 0.901 4.367 1.540 4.311 1.396 3.156 1.207 4.305 1.397 3.729 1.335 2.305 0.974 2.633 1.034

1st Count 9 3 0 0 0 1 0 0 0 2 0 0 1

Models PAttn Koopa TSMixer FreTS Pyraformer Nonstationary ETSformer FEDformer SCINet LightTS Informer Transformer Reformer
[47] [34] [11] [60] [32] [36] [55] [69] [31] [65] [67] [48] [1]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.384 0.399 0.367 0.396 0.527 0.512 0.409 0.417 0.695 0.593 0.509 0.467 0.636 0.592 0.438 0.450 0.409 0.412 0.438 0.445 0.969 0.736 0.836 0.678 0.998 0.723
ETTm2 0.291 0.336 0.264 0.327 1.030 0.750 0.336 0.378 1.565 0.876 0.412 0.398 1.381 0.807 0.301 0.348 0.294 0.335 0.432 0.448 1.504 0.878 1.454 0.851 1.856 0.996
ETTh1 0.468 0.454 0.472 0.471 0.615 0.579 0.476 0.464 0.814 0.692 0.610 0.543 0.750 0.651 0.448 0.461 0.520 0.488 0.530 0.505 1.057 0.798 0.930 0.768 0.973 0.739
ETTh2 0.386 0.412 0.388 0.423 2.160 1.220 0.548 0.514 3.776 1.557 0.552 0.505 0.572 0.534 0.427 0.446 0.428 0.440 0.633 0.551 4.535 1.745 2.976 1.369 2.487 1.238

ECL 0.205 0.286 0.219 0.319 0.229 0.337 0.209 0.296 0.295 0.387 0.194 0.296 0.275 0.370 0.225 0.336 0.220 0.323 0.243 0.344 0.369 0.444 0.273 0.367 0.324 0.404
Traffic 0.513 0.328 0.595 0.413 0.599 0.403 0.597 0.377 0.697 0.391 0.642 0.351 1.035 0.584 0.615 0.379 0.654 0.419 0.656 0.428 0.830 0.464 0.708 0.384 0.694 0.380

Weather 0.257 0.280 0.230 0.271 0.242 0.301 0.255 0.299 0.284 0.349 0.289 0.312 0.365 0.424 0.315 0.369 0.256 0.283 0.245 0.295 0.572 0.523 0.599 0.531 0.475 0.472
Exchange 0.365 0.407 0.610 0.516 0.487 0.546 0.442 0.453 1.183 0.855 0.557 0.490 0.361 0.416 0.520 0.502 0.374 0.418 0.486 0.493 1.548 0.997 1.379 0.921 1.612 1.044

ILI 2.359 0.975 2.064 0.912 5.617 1.680 3.447 1.279 4.691 1.442 2.592 1.012 4.046 1.419 3.088 1.214 6.505 1.853 7.078 1.975 5.035 1.539 4.682 1.448 4.211 1.350

1st Count 0 2 0 0 0 0 0 0 0 0 0 0 0
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10
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40

(a) PCA projection of meta-features for 9
long-term forecasting datasets

30 20 10 0 10 20 30 40

20
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0
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20
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(b) PCA projection of meta-features for 6
short-term forecasting datasets

Figure G1: Distributions of meta-features after PCA dimensionality reduction, comparing datasets
for long-term and short-term time series forecasting tasks.

H Additional Experimental Results964

H.1 Comprehensive Benchmarking of TSGym Against State-of-the-Art Methods965

Due to space limitations in the main text, here we provide complete experimental comparisons for both long-966

term and short-term forecasting tasks. Table H.1 details the full long-term forecasting performance across all967

prediction horizons, while Table H.1 presents the comprehensive short-term forecasting results. Following968

standard benchmarking conventions, we highlight top-performing methods in red and second-best results with969

underlined formatting. These extensive evaluations consistently validate TSGym’s competitive performance970

across diverse temporal prediction scenarios. In addition, we investigate the impact of different meta-feature971

configurations through controlled ablation studies. As demonstrated in Table H10, no individual meta-feature972

configuration exhibits consistent superiority across all datasets.973

H.2 Additional Results of Large Evaluations on Design Choices974

To systematically evaluate our architectural decisions, we conduct detailed ablation studies focusing on 17975

component-level analyses, presented separately in Tables H11–H12 for clarity and due to space constraints.976

These comparative experiments assess the performance impact of different design choices for each component977

across nine datasets in the long-term forecasting task. Bolded values indicate the best-performing configuration978

for each dataset, while the summary row highlights the most frequently superior design choices, with red-bolded979
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Table H10: Effects of different meta feature settings on the long-term forecasting task. All metric
values are averaged across different prediction lengths. For more details about meta features, refer to
section G.2.

Models Whole+Sub+Delta Sub Sub+Delta Delta Whole(default) DUET
Metric mse mae mse mae mse mae mse mae mse mae mse mae
ETTm1 0.357 0.383 0.363 0.388 0.354 0.380 0.377 0.405 0.357 0.383 0.407 0.409
ETTm2 0.273 0.329 0.269 0.329 0.266 0.324 0.380 0.389 0.261 0.319 0.296 0.338
ETTh1 0.417 0.429 0.433 0.435 0.418 0.433 0.558 0.496 0.426 0.440 0.433 0.437
ETTh2 0.375 0.407 0.362 0.402 0.360 0.398 1.256 0.744 0.358 0.400 0.380 0.403

ECL 0.172 0.266 0.171 0.269 0.176 0.270 0.182 0.278 0.170 0.265 0.179 0.262
Traffic 0.433 0.309 0.437 0.313 0.432 0.308 0.587 0.368 0.435 0.313 0.797 0.427

Weather 0.239 0.274 0.228 0.266 0.233 0.270 0.263 0.310 0.229 0.268 0.252 0.277
Exchange 0.406 0.429 0.408 0.429 0.404 0.428 0.761 0.622 0.410 0.431 0.322 0.384

ILI 2.401 1.030 3.099 1.195 2.855 1.141 2.814 1.125 2.233 1.015 2.640 1.018

Table H11: Long-term Forecasting Performance of Different Design Choices – Part I (6 Components).
Performance of various configurations for 6 Components across multiple datasets, evaluated using
best MSE, median, and IQR. Bolded entries indicate the best-performing hyperparameter for each
dataset. The last row shows the number of times each configuration achieved the best result, with
red-bolded values highlighting the most frequently superior design.

x_mark multi-
granularity Normalization Decomposition Channel-

independent Tokenization

dataset stat False True False True DishTS None RevIN Stat DFT MA MoEMA None False True inverted-
encoding

series-
encoding

series-
patching

ETTm1

Best 0.352 0.35 0.349 0.352 0.36 0.362 0.351 0.353 0.351 0.352 0.354 0.354 0.354 0.35 0.354 0.352 0.351
Median 0.423 0.452 0.428 0.455 0.528 0.583 0.406 0.405 0.454 0.406 0.45 0.476 0.469 0.389 0.404 0.485 0.384

IQR 0.145 0.179 0.155 0.186 0.212 0.235 0.097 0.097 0.159 0.131 0.169 0.179 0.195 0.107 0.132 0.207 0.092

ETTm2

Best 0.255 0.255 0.254 0.255 0.272 0.277 0.253 0.255 0.257 0.256 0.258 0.256 0.259 0.253 0.259 0.257 0.254
Median 0.367 0.367 0.356 0.406 0.76 1.07 0.297 0.3 0.353 0.381 0.384 0.38 0.408 0.307 0.305 0.452 0.307

IQR 0.579 0.782 0.428 0.947 0.746 1.267 0.045 0.036 0.552 0.769 0.681 0.51 0.871 0.154 0.226 0.963 0.177

ETTh1

Best 0.401 0.408 0.403 0.405 0.44 0.433 0.404 0.402 0.407 0.41 0.405 0.411 0.412 0.401 0.412 0.414 0.401
Median 0.491 0.491 0.484 0.51 0.545 0.632 0.468 0.462 0.494 0.489 0.495 0.486 0.511 0.462 0.478 0.52 0.456

IQR 0.125 0.126 0.098 0.183 0.207 0.371 0.05 0.05 0.141 0.098 0.157 0.118 0.202 0.042 0.062 0.241 0.037

ETTh2

Best 0.326 0.334 0.339 0.326 0.41 0.402 0.325 0.337 0.338 0.327 0.344 0.339 0.327 0.341 0.348 0.325 0.347
Median 0.444 0.467 0.449 0.455 1.188 1.764 0.392 0.397 0.43 0.453 0.547 0.438 0.532 0.394 0.495 0.468 0.388

IQR 0.939 0.732 0.65 1.74 1.657 2.855 0.044 0.048 0.494 1.035 1.105 0.726 1.513 0.189 0.418 1.924 0.217

ECL

Best 0.159 0.157 0.157 0.159 0.159 0.16 0.159 0.157 0.158 0.163 0.161 0.157 0.157 0.163 0.157 0.158 0.164
Median 0.208 0.204 0.204 0.208 0.219 0.229 0.191 0.191 0.206 0.209 0.206 0.202 0.207 0.202 0.194 0.213 0.19

IQR 0.056 0.057 0.058 0.055 0.053 0.059 0.035 0.052 0.065 0.053 0.054 0.056 0.057 0.055 0.051 0.061 0.051

traffic

Best 0.394 0.396 0.398 0.394 0.411 0.441 0.398 0.394 0.398 0.4 0.394 0.4 0.394 0.409 0.399 0.394 0.409
Median 0.555 0.599 0.576 0.581 0.546 0.657 0.542 0.496 0.607 0.575 0.56 0.561 0.568 0.627 0.531 0.6 0.607

IQR 0.19 0.199 0.208 0.183 0.164 0.12 0.207 0.195 0.185 0.19 0.203 0.198 0.196 0.195 0.19 0.191 0.183

weather

Best 0.223 0.22 0.22 0.222 0.225 0.225 0.22 0.224 0.226 0.223 0.22 0.221 0.22 0.22 0.22 0.22 0.223
Median 0.261 0.272 0.259 0.274 0.267 0.301 0.255 0.256 0.265 0.27 0.261 0.263 0.273 0.246 0.247 0.281 0.246

IQR 0.041 0.079 0.047 0.065 0.059 0.21 0.033 0.04 0.047 0.053 0.052 0.055 0.062 0.035 0.034 0.073 0.033

Exchange

Best 0.245 0.237 0.239 0.242 0.24 0.25 0.351 0.337 0.243 0.239 0.246 0.242 0.24 0.238 0.24 0.245 0.238
Median 0.493 0.502 0.462 0.548 0.674 0.93 0.432 0.415 0.472 0.519 0.495 0.507 0.569 0.394 0.415 0.582 0.395

IQR 0.43 0.471 0.434 0.491 0.869 0.855 0.164 0.168 0.386 0.546 0.43 0.466 0.595 0.144 0.253 0.613 0.149

ili

Best 1.596 1.546 1.562 1.576 1.763 2.351 1.584 1.555 1.673 1.599 1.581 1.573 1.545 1.745 1.583 1.548 1.745
Median 2.813 2.883 2.881 2.797 2.785 4.416 2.486 2.493 2.878 2.784 2.859 2.883 2.796 3.043 2.865 2.844 2.819

IQR 1.621 1.698 1.656 1.681 1.152 0.975 0.742 0.764 1.612 1.596 1.701 1.739 1.665 1.693 1.757 1.68 1.442
1st Count 20 7 22 5 1 1 16 9 8 9 5 5 8 19 5 3 19

entries denoting the dominant configurations. This fine-grained analysis offers empirical insights to guide980

component selection in time-series forecasting systems.981
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Table H12: Long-term Forecasting Performance of Different Design Choices – Part II (4 Components)
and Part II (7 Components). Same structure and evaluation metrics as Table H11.

(a) Part II – 4 Components (Backbone, Attention, etc.)

Backbone Attention Feature-Attention Sequence Length

dataset stat GRU MLP Trans-
former

auto-cor-
relation

de-
stationary-
attention

frequency-
enhanced-
attention

null self-
attention

sparse-
attention

frequency-
enhanced-
attention

null self-
attention

sparse-
attention 192 48 512 96

ETTm1

Best 0.352 0.352 0.351 0.359 0.382 0.354 0.35 0.359 0.354 0.356 0.35 0.355 0.36 0.352 0.476 0.349 0.38
Median 0.457 0.411 0.449 0.499 0.455 0.409 0.437 0.486 0.441 0.453 0.408 0.472 0.462 0.386 0.545 0.395 0.423

IQR 0.157 0.179 0.151 0.242 0.087 0.106 0.164 0.189 0.143 0.182 0.146 0.171 0.202 0.106 0.089 0.121 0.082

ETTm2

Best 0.264 0.255 0.256 0.258 0.289 0.265 0.255 0.26 0.267 0.26 0.253 0.26 0.262 0.263 0.293 0.253 0.274
Median 0.407 0.34 0.416 0.663 0.32 0.335 0.356 0.437 0.766 0.534 0.326 0.398 0.389 0.34 0.403 0.341 0.415

IQR 0.565 0.382 0.854 0.9 0.033 0.911 0.441 0.711 1.086 0.906 0.281 0.836 0.86 0.836 0.429 0.922 0.753

ETTh1

Best 0.411 0.402 0.406 0.418 0.471 0.413 0.401 0.432 0.406 0.42 0.401 0.417 0.412 0.422 0.445 0.401 0.435
Median 0.496 0.48 0.502 0.51 0.526 0.475 0.487 0.527 0.504 0.495 0.481 0.505 0.513 0.487 0.498 0.482 0.49

IQR 0.115 0.09 0.167 0.19 0.06 0.07 0.105 0.207 0.214 0.149 0.078 0.137 0.244 0.128 0.114 0.156 0.114

ETTh2

Best 0.327 0.339 0.344 0.356 0.383 0.35 0.325 0.36 0.355 0.347 0.334 0.329 0.346 0.351 0.384 0.325 0.361
Median 0.516 0.427 0.453 0.462 0.41 0.546 0.445 0.589 0.504 0.544 0.421 0.449 0.587 0.422 0.473 0.438 0.531

IQR 0.642 0.617 1.453 2.021 0.03 0.754 0.65 1.345 1.393 2.209 0.305 1.086 1.483 0.64 0.842 1.394 0.721

ECL

Best 0.163 0.163 0.157 0.163 0.165 0.16 0.162 0.158 0.157 0.158 0.158 0.159 0.158 0.162 0.181 0.157 0.169
Median 0.214 0.205 0.201 0.205 0.181 0.207 0.209 0.199 0.195 0.194 0.213 0.199 0.209 0.183 0.241 0.182 0.209

IQR 0.056 0.06 0.054 0.054 0.048 0.055 0.06 0.048 0.052 0.052 0.06 0.051 0.054 0.025 0.044 0.047 0.041

traffic

Best 0.409 0.408 0.394 0.407 0.417 0.401 0.407 0.394 0.399 0.407 0.399 0.394 0.402 0.409 0.515 0.394 0.446
Median 0.585 0.608 0.558 0.576 0.475 0.583 0.596 0.596 0.523 0.539 0.654 0.507 0.537 0.476 0.685 0.453 0.578

IQR 0.179 0.215 0.195 0.208 0.102 0.181 0.198 0.199 0.19 0.149 0.138 0.195 0.163 0.135 0.126 0.181 0.144

weather

Best 0.222 0.221 0.221 0.227 0.21 0.229 0.22 0.226 0.221 0.227 0.22 0.222 0.223 0.227 0.253 0.22 0.239
Median 0.264 0.268 0.266 0.279 0.233 0.264 0.265 0.274 0.25 0.272 0.254 0.27 0.282 0.248 0.286 0.242 0.258

IQR 0.049 0.047 0.054 0.065 0.018 0.047 0.049 0.043 0.06 0.048 0.048 0.044 0.095 0.04 0.035 0.063 0.031

Exchange

Best 0.24 0.238 0.256 0.269 0.406 0.278 0.237 0.263 0.282 0.251 0.238 0.248 0.247 0.274 0.24 0.294 0.238
Median 0.537 0.435 0.574 0.602 0.615 0.545 0.473 0.56 0.59 0.536 0.443 0.574 0.557 0.503 0.401 0.81 0.42

IQR 0.445 0.366 0.517 0.499 0.164 0.6 0.433 0.492 0.492 0.604 0.302 0.56 0.506 0.349 0.226 0.822 0.245

ili

Best 1.619 1.561 1.551 1.597 1.665 1.672 1.561 1.637 1.642 1.603 1.629 1.63 1.552 1.878 1.715 2.269 1.546
Median 2.953 2.851 2.761 2.731 2.451 2.949 2.889 2.791 2.728 2.646 3.043 2.815 2.755 2.622 2.705 3.799 2.487

IQR 1.816 1.516 1.661 1.623 0.656 1.652 1.676 1.746 1.642 1.55 1.747 1.605 1.672 1.069 1.616 1.691 1.694
1st Count 3 15 9 0 16 2 7 1 1 4 17 5 1 6 5 11 5

(b) Part III – 7 Components (d_model, d_ff, etc.)

d_model d_ff Encoder
layers Training Epochs Loss Function Learning Rate Learning

Rate Strategy
dataset stat 256 64 1024 256 2 3 10 20 50 HUBER MAE MSE 0.0001 0.001 null type

ETTm1

Best 0.352 0.35 0.352 0.35 0.352 0.35 0.352 0.351 0.353 0.359 0.356 0.35 0.35 0.351 0.355 0.35
Median 0.462 0.423 0.462 0.423 0.424 0.451 0.46 0.433 0.428 0.437 0.433 0.442 0.425 0.448 0.431 0.446

IQR 0.166 0.153 0.166 0.153 0.154 0.156 0.173 0.163 0.15 0.113 0.139 0.166 0.151 0.175 0.141 0.176

ETTm2

Best 0.256 0.253 0.256 0.253 0.254 0.255 0.256 0.255 0.254 0.266 0.261 0.253 0.255 0.253 0.256 0.253
Median 0.395 0.35 0.395 0.35 0.367 0.363 0.352 0.381 0.376 0.353 0.45 0.37 0.359 0.373 0.379 0.355

IQR 0.792 0.435 0.792 0.435 0.785 0.535 0.585 0.767 0.607 0.66 0.681 0.665 0.575 0.729 0.62 0.783

ETTh1

Best 0.401 0.408 0.401 0.408 0.407 0.401 0.402 0.406 0.406 0.408 0.401 0.417 0.401 0.408 0.402 0.404
Median 0.491 0.491 0.491 0.491 0.49 0.492 0.493 0.49 0.489 0.489 0.487 0.498 0.477 0.503 0.49 0.493

IQR 0.117 0.134 0.117 0.134 0.114 0.132 0.119 0.156 0.113 0.137 0.125 0.104 0.107 0.134 0.111 0.141

ETTh2

Best 0.338 0.326 0.338 0.326 0.325 0.341 0.336 0.342 0.325 0.341 0.326 0.336 0.337 0.325 0.337 0.325
Median 0.474 0.441 0.474 0.441 0.442 0.467 0.462 0.442 0.447 0.415 0.425 0.471 0.446 0.451 0.461 0.445

IQR 0.77 0.871 0.77 0.871 0.902 0.752 1.286 0.806 0.577 0.59 0.928 0.901 0.756 0.956 0.969 0.739

ECL

Best 0.157 0.16 0.157 0.16 0.158 0.157 0.159 0.159 0.157 0.158 0.159 0.157 0.157 0.158 0.157 0.158
Median 0.204 0.207 0.204 0.207 0.209 0.202 0.205 0.205 0.207 0.208 0.193 0.206 0.216 0.199 0.198 0.213

IQR 0.057 0.056 0.057 0.056 0.058 0.054 0.057 0.056 0.057 0.055 0.048 0.057 0.062 0.051 0.05 0.06

traffic

Best 0.394 0.4 0.394 0.4 0.4 0.394 0.401 0.401 0.394 0.418 0.423 0.394 0.405 0.394 0.398 0.394
Median 0.548 0.604 0.548 0.604 0.566 0.587 0.59 0.585 0.562 0.627 0.62 0.57 0.594 0.56 0.551 0.604

IQR 0.195 0.206 0.195 0.206 0.194 0.197 0.209 0.194 0.19 0.144 0.164 0.195 0.216 0.189 0.186 0.212

weather

Best 0.22 0.22 0.22 0.22 0.22 0.22 0.224 0.22 0.22 0.223 0.225 0.22 0.222 0.22 0.221 0.22
Median 0.27 0.26 0.27 0.26 0.266 0.265 0.268 0.261 0.267 0.277 0.255 0.266 0.261 0.27 0.263 0.268

IQR 0.052 0.049 0.052 0.049 0.053 0.05 0.053 0.048 0.051 0.129 0.039 0.05 0.044 0.055 0.046 0.056

Exchange

Best 0.237 0.243 0.237 0.243 0.244 0.239 0.244 0.239 0.246 0.241 0.249 0.241 0.24 0.238 0.244 0.238
Median 0.528 0.465 0.528 0.465 0.5 0.494 0.503 0.494 0.489 0.494 0.442 0.509 0.444 0.551 0.513 0.486

IQR 0.518 0.407 0.518 0.407 0.495 0.424 0.488 0.408 0.451 0.449 0.412 0.468 0.38 0.545 0.495 0.433

ili

Best 1.546 1.632 1.546 1.632 1.564 1.553 1.586 1.553 1.613 1.582 1.59 1.585 1.662 1.545 1.591 1.563
Median 2.737 2.971 2.737 2.971 2.846 2.854 2.9 2.805 2.85 2.9 2.933 2.801 3.161 2.636 2.679 3.203

IQR 1.599 1.732 1.599 1.732 1.635 1.683 1.713 1.611 1.694 1.677 1.657 1.653 1.78 1.47 1.438 1.819
1st Count 14 13 14 13 12 15 4 11 12 8 10 9 15 12 15 12
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Figure H2: Overall performance across additional design dimensions in long-term forecasting. The
results (MSE) are based on the 75th percentile across all forecasting horizons.

H.2.1 Design Choices Evaluation Results for Long-term Forecasting Using MSE as the Metric982

Spider Chart Analysis. Fig. H2 extends the baseline comparisons presented in Fig. 2 by employing multi-983

dimensional spider charts, where each vertex corresponds to a benchmark dataset. Closer proximity to the984

outer edge of a vertex indicates better performance of the associated design choice on that particular dataset.985

These visual representations offer an intuitive understanding of how different architectural decisions influence986

model effectiveness across diverse forecasting domains. Notably, configurations for components including987

Series Sampling/Mixing (Fig. H2a), Hidden Layer Dimensions (Fig. H2d), FCN Layer Dimensions (Fig.988

H2e), Learning Rate (Fig. H2h), and Learning Rate Strategy (Fig. H2i) demonstrate similar spatial patterns989

in the radar charts. Specifically, ECL, ILI, and Traffic datasets exhibit consistent parameter preferences across990

these components, suggesting intrinsic alignment between their temporal patterns and specific architectural991

configurations.992

In addition, Fig. H3 provides a broader evaluation of large-scale time series models, revealing that conventional993

architectures still maintain a competitive advantage over LLM-based models, especially in domain-specific994

forecasting tasks where structural inductive biases play a crucial role.995

Box Plots Analysis. The impact of various design choices for each architectural component is further illustrated996

through box plots in Fig. H4 and Fig. H5. These visualizations complement the spider charts by providing a997

statistical perspective on performance variability and robustness across multiple benchmark datasets. Together,998

the two forms of analysis offer a comprehensive view of how different configurations affect forecasting accuracy.999
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Figure H3: Overall performance across all design dimensions when using LLMs or TSFMs in
long-term forecasting. The results (MSE) are based on the 75th percentile across all forecasting
horizons.
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(a) Series Normalization
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(b) Series Decomposition
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(c) Series Sampling/Mixing
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(d) Channel Independent
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(e) Sequence Length
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(f) Series Embedding
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(g) Network Type
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(h) Series Attention
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(i) Feature Attention
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(j) Hidden Layer Dimensions
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(k) FCN Layer Dimensions
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(l) Encoder layers
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(o) Learning Rate Strategy
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Figure H4: Overall performance across all design dimensions in long-term forecasting. The results
(MSE) are averaged across all forecasting horizons. Due to the significantly different value range and
variability of the ILI dataset compared to other datasets, its box plot is plotted using the right-hand
y-axis, while all other datasets share the left-hand y-axis.
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(b) Series Decomposition
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(c) Sequence Length
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(e) Hidden Layer Dimensions
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(f) FCN Layer Dimensions
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(g) Epochs
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(k) Timestamp
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Figure H5: Overall performance across all design dimensions when using LLMs or TSFMs in
long-term forecasting. The results (MSE) are averaged across all forecasting horizons. Due to the
significantly different value range and variability of the ILI dataset compared to other datasets, its
box plot is plotted using the right-hand y-axis, while all other datasets share the left-hand y-axis.

H.2.2 Design Choices Evaluation Results for Long-term Forecasting Using MAE as the1000

Metric1001

For the MAE-based performance evaluation, we analyze the effects of different design choices using both spider1002

charts and box plots (Fig. H6 and Fig. H7). These visualizations complement the MSE-based analysis and1003

confirm the generalizability of our findings across error metrics. In particular, normalization methods such as1004

RevIN and Stationary consistently achieve the lowest MAE values, underscoring their effectiveness in mitigating1005

non-stationarity. Similarly, decomposition strategies exhibit selective benefits: MA-based methods improve1006

predictions on datasets like ETTh1 and ETTm2, while raw-series modeling remains more effective on ECL and1007

Traffic, where decomposition tends to degrade performance.1008

Beyond preprocessing, MAE evaluations further validate the consistency of our architectural insights. Channel-1009

independent designs retain strong performance across most datasets, except on Traffic and ILI, where localized1010

dependencies dominate. Tokenization methods show stable ranking across both metrics, with patch-wise encod-1011

ing consistently outperforming point-wise approaches. Notably, complex architectures such as Transformers1012

provide only marginal gains over MLPs in certain cases (e.g., Traffic), suggesting that their benefits may not1013

justify the added complexity. Overall, the alignment between MAE and MSE results reinforces the robustness of1014

our design principles, demonstrating that the observed patterns are not metric-specific but instead reflect core1015

relationships between architecture and forecasting performance.1016
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Figure H6: Overall performance across key design dimensions in long-term forecasting. The results
(MAE) are based on the 75th percentile across all forecasting horizons.
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Figure H7: Overall performance across all design dimensions when using LLMs or TSFMs in
long-term forecasting. The results (MAE) are based on the 75th percentile across all forecasting
horizons.
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(c) Series Sampling/Mixing
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(d) Channel Independent
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(e) Sequence Length

EC
L

ET
Th

1
ET

Th
2

ET
Tm

1
ET

Tm
2

Ex
cha

ng
e

tra
ffic

wea
the

r ili
0.0

0.2

0.4

0.6

0.8

1.0

M
AE

 V
al

ue

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
AE

 V
al

ue
 fo

r i
li

Inverted Encoding
Positional Encoding
Series Patching

(f) Series Embedding
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(j) Hidden Layer Dimensions
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(k) FCN Layer Dimensions
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(l) Encoder layers
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(m) Epochs
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(o) Learning Rate Strategy
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Figure H8: Overall performance across all design dimensions in long-term forecasting. The results
(MAE) are averaged across all forecasting horizons.
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(a) Series Normalization

ET
Th

1
ET

Th
2

Ex
cha

ng
e ili

0.0

0.1

0.2

0.3

0.4

M
AE

 V
al

ue

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
AE

 V
al

ue
 fo

r i
li

DFT
MA
MoEMA
Without Decomp.

(b) Series Decomposition
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(c) Sequence Length
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(d) Network Type
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(e) Hidden Layer Dimensions
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(f) FCN Layer Dimensions
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(g) Epochs
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(h) Learning Rate
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(i) Learning Rate Strategy
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(j) Loss Function
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Figure H9: Overall performance across all design dimensions when using LLMs or TSFMs in
long-term forecasting. The results (MAE) are averaged across all forecasting horizons.
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Figure H10: Overall performance across all design dimensions in short-term forecasting. The results
(MASE) are based on the 75th percentile across all forecasting horizons.

H.3 Complete Evaluation Results of Short-term Forecasting Using MASE, OWA and sMAPE1017

as the Metric1018

For short-term forecasting, we comprehensively evaluate different design dimensions using both spider charts1019

and box plots. The spider charts—shown in Figure H10, Figure H11, and Figure H12—visualize performance1020

across datasets, with each vertex representing a benchmark dataset. Closer proximity to a vertex indicates1021

stronger performance of a particular design choice in that dataset.1022

Complementary box plots are provided in Figure H13, Figure H14, and Figure H15, offering a statistical1023

perspective on the distribution and robustness of performance across evaluation metrics.1024
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Figure H11: Overall performance across all design dimensions in short-term forecasting. The results
(OWA) are based on the 75th percentile across all forecasting horizons.

Overall, the relative performance trends observed under MASE, OWA, and sMAPE metrics are consistent with1025

those found in long-term forecasting tasks, reinforcing the generalizability and stability of our architectural1026

choices.1027
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Figure H12: Overall performance across all design dimensions in short-term forecasting. The results
(SMAPE) are based on the 75th percentile across all forecasting horizons.
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(a) Series Normalization
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(b) Series Decomposition
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(c) Series Sampling/Mixing
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(d) Channel Independent
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(f) Network Type
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(g) Series Attention

Hou
rly

Daily

Wee
kly

Mon
thl

y

Qua
rte

rly
Yea

rly
0

5

10

15

20

m
as

e 
Va

lu
e

256
64

(h) Hidden Layer Dimensions
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(i) FCN Layer Dimensions
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(j) Encoder layers
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Figure H13: Overall performance across all design dimensions in short-term forecasting. The results
are based on MASE.
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(a) Series Normalization
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(b) Series Decomposition
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(c) Series Sampling/Mixing
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(d) Channel Independent
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(f) Network Type
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(h) Hidden Layer Dimensions
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(i) FCN Layer Dimensions
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(j) Encoder layers
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Figure H14: Overall performance across all design dimensions in short-term forecasting. The results
are based on OWA.
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(a) Series Normalization
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(b) Series Decomposition
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(c) Series Sampling/Mixing
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(d) Channel Independent
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(e) Series Embedding
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(f) Network Type
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(h) Hidden Layer Dimensions
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(i) FCN Layer Dimensions
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(j) Encoder layers
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(k) Learning Rate
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Figure H15: Overall performance across all design dimensions in short-term forecasting. The results
are based on SMAPE.
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