
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A LICENSE

Image Classification: Imagenet is distributed under the BSD 3-Clause License, Resnet is distributed
under the Apache License, Cifar10 is distributed under the MIT License.

NLP: Bert/GPT2 (Hugging Face), C4 dataset are distributed under the Apache 2.0 License. The Pile
dataset is distributed under the MIT License.

B EXPERIMENTS SETTINGS AND CONFIGURATIONS

GD on squared loss: We run Gradient Descent on squared loss using synthetic datasets. We train
the optimizer for 100 iterations with a learning rate equals to 0.1. We report the metrics computed
every iteration.

Logistic regression with OpenML datasets: We run logistic regression with commonly used
OpenML datasets such as Aloi (42396), Poker (1595), Connect-4 (1591), and Covertype (150).
We run all experiments using a batch size equal to 64 and AdamW as the optimizer. We tune the
learning rates using a grid search over the range [1e − 4, 1]. We report the metrics computed at the
end of every epoch.

Training Cifar10 on Resnet18: We train the benchmark dataset Cifar10 on Resnet18 using SGDM
and Adamw. For SGDM, we use a learning rate = 0.1 and for AdamW, we use a learning rate
= 0.001. Both optimizers are trained with batch size equal to 128, weight decay equal to 5e − 4,
and cosine learning rate scheduler. In the experiments with constant learning rates, we use the
same optimal configurations as the normal experiments but without the scheduler. We train both
optimizers for 200 epochs and all tracking measures (convexity gap, max smoothness, etc,...) are
reset for the new epoch (this is why we see the max smoothness quantity goes down at various points
in Fig.4). We use full batch to compute the large batch loss (F (x)) and gradient ∇F (x). We report
the metrics computed at the end of every epoch.

Training Imagenet on Resnet18: We train Imagenet on Resnet18 using SGDM with a learning
rate equal to 0.1 and Imagenet with a learning rate equal to 0.001. The weight decay is 1e − 4 and
we employ a learning rate scheduler that decays the learning rate by 10 every 30 epochs for both
optimizers. These are the experiments configurations used in (Yao et al., 2020; Tran & Cutkosky,
2022a). Similar to the Cifar10 experiments, we keep the same configurations except for the learning
rate scheduler for the constant learning rates experiments. We also reset the tracking quantities every
epoch. We use full batch to compute the large batch loss (F (x)) and gradient ∇F (x). We report the
metrics computed at the end of every epoch.

Pre-train Bert using the C4 dataset: We train the ”bert-base-cased” model of HuggingFace (De-
vlin et al., 2018a) from scratch using the C4 dataset. The model has approximately 110 million
trainable parameters. We train the model for 1 million iterations with 10k warm-up steps and a
linear decay scheduler. AdamW is trained with a learning rate of 5e− 5 and SGDM is trained with
a learning rate of 1e− 3. The weight decay is set to be 0.01 for both optimizers. Since the training
never gets through the whole C4 dataset, we do not reset the value of the tracking quantities. For
experiments with constant learning rates, we keep the same configurations but without the scheduler
and the warm-up step. We use a batch size of 100000 to compute the large batch loss (F (x)) and
gradient ∇F (x). We report the metrics computed every 10k iterations.

Pre-train GPT2 using the Pile dataset: We train the GPT2 model of HuggingFace (Devlin et al.,
2018a) from scratch using the Pile dataset. The model has approximately 124 million trainable
parameters. We train the model for 1 million iterations with 10k warm-up steps and a linear decay
scheduler. Both SGDM and AdamW are trained with a learning rat of 1e − 4. The weight decay
is set to be 0.01 for both optimizers. We do not reset the value of the tracking quantities. For
experiments with constant learning rates, we keep the same configurations but without the scheduler
and the warm-up step. We use a batch size of 100000 to compute the large batch loss (F (x)) and
gradient ∇F (x). We report the metrics computed every 10k iterations.

Testing non-smooth measures: We train three different tasks with SGDM and AdamW with and
without random scaling. We use a variant implementation of SGDM, which updates

∆t = β(∆t−1 − ηtgt), xt+1 = xt + st∆t.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

st is sampled i.i.d. from Exp(1) with random scaling turned on, and st ≡ 1 otherwise. This is
equivalent to SGDM with different effective learning rate and momentum constants, and is shown
to have theoretical guarantee (Zhang & Cutkosky, 2024). We use the standard implementation of
AdamW, with the only difference being the inclusion of the additional random scalar.

In the first task, we train the ResNet18 model on the Cifar10 dataset for 200 epochs with batch
size = 128, with a total of roughly 80k iterations. For SGDM, we use a learning rate = 0.01 and
momentum β = 0.99. For AdamW, we use a learning rate = 3e−4, weight decay = 0.1 and default
values b1 = 0.9, b2 = 0.999. For both optimizers, we use linear decay scheduler with 5k warmup
steps.

In the second task, we train the “bert-base-cased” model from scratch on the C4 dataset for 50k
iterations with 5k warmup steps and a linear decay scheduler. For SGDM, we use a learning rate
= 1e − 3 and momentum β = 0.99. For AdamW, we use a learning rate = 5e − 5, weight decay
= 0.01 and default values b1 = 0.9, b2 = 0.999.

In the third task, we train the GPT2 model from scratch on the Pile dataset for 50k iterations with
5k warmup steps and a linear decay scheduler. For SGDM, weuse a learning rate = 0.01 and
momentum β = 0.99. For AdamW, we use a learning rate = 3e − 4, weight decay = 0.1 and
default values b1 = 0.9, b2 = 0.999. In all tasks, the optimizers with random scaling have the same
configuration as its benchmark without random scaling.

Runtime: All experiments are run on 1 NVIDIA v100 GPUs. Cifar10 experiments take 3 hours,
Imagenet experiments take 58 hours, both GPT2 and Bert experiments take about a week to train.

Code: All experiments can be found in the anonymous repository: https://github.com/
Neurips24-Submission14212/Submission14212.

C NOTATIONS AND DEFINITIONS

Below we list all the notations and definitions related to our measurements.

Symbol Description
inst gapt(y) Instantaneous convexity gap in iteration t w.r.t. y, defined in equation 2
avg gapt(y1:t) Unweighted average of inst gapi(yi), defined in equation 3
exp gapt(y1:t) Exponential average of inst gapi(yi), defined in equation 3
convexity ratiot Convexity ratio, defined in equation 6
inst smootht(y) Instantaneous smoothness in iteration t w.r.t. y, defined in equation 4
exp smootht(y1:t) Exponential average of inst smoothi(yi), defined in equation 5
max smootht(y1:t) Maximum over inst smoothi(yi), defined in equation 5
update corrt Update correlation in iteration t, defined in equation 9
update corr RSt Update correlation with random scaling in iteration t, defined in (13)
loss difft Instantaneous loss difference in iteration t, defined in (13)

Table 1: Notations of the key identities measured in our experiments.

D EXTRA EXPERIMENTS RESULTS

In this section, we report some results that we do not have space to include in the main text.

17

https://github.com/Neurips24-Submission14212/Submission14212
https://github.com/Neurips24-Submission14212/Submission14212


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D.1 THE NORM OF THE GRADIENT INCREASES AS THE TRAINING PROGRESSES

Figure 9: The L2− norm of the gradients as the training progresses.

When the objective is non-convex, since finding the global minima is NP-hard, previous works focus
on finding the ϵ−stationary point (Tran & Cutkosky, 2022b; Fang et al., 2018; Arjevani et al., 2020),
which is defined as a point such that the gradient ∥∇F (·)∥ ≤ ϵ. The common assumption is that
an optimizer performs well if it can find points with a small gradient norm, which is expected to
decrease as training progresses. However, as we can see from Fig.9, this is not always the case
in practice. In Cifar10 and Bert experiments,the full-batch gradient norms decrease for ”good”
optimizers (SGDM and AdamW for CIFAR-10, and AdamW for BERT), which supports the theory.
Conversely, in the Imagenet and GPT2 experiments, the gradient norms hardly decrease, even though
the optimizers are still making consistent progress. In fact, in the Imagenet experiments, the norms
actually increase, indicating that we are straying further from the stationary point. This suggests that
the use of ϵ−stationary point as the convergence criterion might not be appropriate in practice.

D.2 GRADIENT STANDARD DEVIATION INCREASES

Let us compute the gradient standard deviation as σ := 1
T

∑T
t=1 ∥∇f(xt, zt) − ∇F (xt)∥. Intu-

itively, the optimizer might make rapid progress if the variance (or standard deviation) is small since
it means that our gradient estimate ∇f(xt, zt) is approximating the true gradient well. This is the in-
tuition that leads to the development of a branch of optimization algorithms called variance-reduced
algorithms (Allen-Zhu & Hazan, 2016; Cutkosky & Orabona, 2019; Johnson & Zhang, 2013), Thus,
we would expect that as the optimizer making progresses, the standard deviation also decreases.

Figure 10: Standard deviation of the gradients

However, similar to the gradient norms, the standard deviation also does not decrease in every ex-
periment. It is hard to conclusively justify why this is the case. One possible explanation for this
phenomenon is the existence of multiple minima or low-loss ”valley”. Thus, even though the op-
timizer is deviating from the direction to a low-loss ”valley” indicating by the true gradient, it is
somehow still able to navigate to a different low-loss valley, thus it continues making progress. Fur-
ther, we note that Adam also consistently returns gradient that is closer to the true gradient. It would
be interesting to investigate further to see if this is a property of Adam or of any adaptive method.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D.3 PARAMETERS NORM

We compute the total parameters norm of the model in each experiment. Adam consistently has
larger parameters norm than SGD.

Figure 11: The total L2−norm of Model parameters

D.4 L1−NORM OF THE STOCHASTIC GRADIENTS

Figure 12: L1−norm of the stochastic gradients

We present additional results in the L1-norm of the gradient to complement our L2-norm findings
discussed in Section D.1. An interesting observation is that, although the L2-norm of SGD is con-
sistently larger than that of Adam, this is not the case for the L1-norm (BERT experiments). This
discrepancy suggests that the larger L2-norm in SGD may be attributed to outliers in the gradient
coordinates, which significantly inflate the final norm. In contrast, Adam, with its adaptive learning
rate for each coordinate, effectively minimizes all directions simultaneously, avoiding the issue of
gradient outliers.

D.5 TEST ACCURACY FOR IMAGE CLASSIFICATION

Figure 13: Test Accuracy of Cifar10 and Imagenet trained on ResNet18

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D.6 VALIDATION LOSS OF NLP TASKS

Figure 14: Validation loss of pre-training Bert on C4 and GPT2 on the Pile

D.7 INSTANTANEOUS CONVEXITY GAP FOR DEEP LEARNING TASKS

Figure 15: Instantaneous convexity gap w.r.t. yt = xt−1 of deep learning benchmarks. Non-positive
gap indicates convexity. See Section 3.1 for detailed discussions.

D.8 UPDATE CORRELATION: SHUFFLED VS UNSHUFFLED

Figure 16: Update correlations of pre-training GPT2 on the Pile dataset - one experiment uses shuf-
fled dataset, the other just iterates through the original dataset. Both are trained for 50k iterations.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.9 NON-SMOOTH MEASURES FOR OTHER DEEP LEARNING TASKS

Figure 17: Cumulative sum (symmetric log scale) of update correlation, update correlation with
RS, and loss difference of Bert model trained on C4 dataset (left) and ResNet18 model trained on
CIFAR10 dataset (right). Top row is SGDM and bottom row is AdamW; left column is update with
RS and right column is the benchmark without RS. See Section 4.3 for detailed discussions.

21


