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A TODDLERDIFFUSION METHOD (MORE DETAILS)

A.1 DERIVATIONS

From the forward process, we have:

xt = (1� ↵t)x0 + ↵ty + �t✏t (9)
xt�1 = (1� ↵t�1)x0 + ↵t�1y + �t�1✏t�1 (10)

From equation 10, we get:
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Inserting equation 11 into equation 9, we get:
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The reverse process follows:
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Using Bayes’ rule:
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Plugging equation 9, equation 10, and equation 12 into equation 14, yields:
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Finally, we can apply the DDIM non-Markovian forward processes.
In return, only the x0 coefficient will be affected.

A.2 ARCHITECTURE DETAILS

Figure 11 depicts the details of our architecture. We adopt the LDM architecture, which consists of
two main blocks: 1) VQGAN Encoder-Decoder to convert the image into low-cost latent space. 2)
Unet that responsible for predicting xt�1. Figure 11 shows that the condition y is encoded into xt.
However, it could be optionally concatenated to xt. In addition, shown in orange and green are the �2

and ↵, respectively. Consequently, Figure 12 depicts an abstract flow for the sampling mode, where
we show how our approach works starting from random noise till generating the final RGB image.

A.3 1st STAGE: ABSTRACT STRUCTURE

Sketch FID. A discrepancy exists between the reported conventional FID (RGB-FID), trained on
ImageNet (Deng et al., 2009), and qualitative results, as illustrated in Figure 13. This discrepancy (Ge
et al., 2020) may arise from differences between the training data (RGB images) and the evaluation
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Figure 11: An overview of proposed architecture, dubbed ToddlerDiffusion. The left block demon-
strates the first stage, which generates a sketch unconditionally. Due to our efficient formulation, this
stage operates in the image space on 64⇥ 64 resolution. The right module depicts the third stage,
which generates an RGB image given a sketch only or both sketch and palette.
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Figure 12: An abstract flow for the sampling mode, where we show how our approach works starting
from random noise till generating the final RGB image.

Ours-LinearOurs-LogOurs-BridgeLDM

Method Unet
Parameters

Training
Time

Sampling
Time Noise

Scheduler
Sketch
FID #

RGB
FID #(Min:Sec)# (FPS)"

a) LDM 187 M 4:05 2.2 Linear 126.4 23.5
b) Ours 1.9 M 0:18 53 Bridge 110.5 35.2
c) Ours 1.9 M 0:18 53 Log 61.2 15.6
d) Ours 1.9 M 0:18 53 Linear 58.8 15.1

Figure 13: Benchmarking results for the 1ststage on the CelebA-HQ dataset (Karras et al., 2017).
The training time is calculated per epoch using 4 NVIDIA RTX A6000. The sampling time is
calculated per frame using one NVIDIA RTX A6000 with a batch size equals 32.

data (binary images). To bridge this gap, we introduce Sketch-FID by re-training the inception
model (Szegedy et al., 2015) on a sketch version of the ImageNet dataset. We generate sketches
for ImageNet RGB images using PidiNet (Su et al., 2021) and train the inception model on the
conventional classification task.

Noise Scheduler. In the 1st stage, where our starting point y is a black image (Section 2.1), designing
an appropriate noise scheduler is crucial. The bridge noise scheduler is intuitively unsuitable, as it
eliminates randomness by adding no noise at both edges, fixing the starting point to a black image.
This hypothesis is supported by empirical results in Figure 13, row b, where the model outputs
random patterns. We explored linear and logarithmic schedulers, finding the linear schedule superior,
yielding Sketch-FID scores of 15.19 and 18.47, respectively (Figure 13, rows c-d).

Ours vs. LDM. In Section 2.1, we propose an alternative way to generate sketches by leveraging
LDM (Rombach et al., 2022), as shown in Figure 3, row A. However, this approach deviates from
the nature of sketching. Our proposed formulation, aligned with the topology of sketches (Figure 3,
row C), resulted in significant improvements over LDM in both model complexity and performance,
as depicted in Figure 13. Our formulation (Section 2.1) allows direct operation on the image space
(64 ⇥ 64) and compression of the Unet to a tiny variant without sacrificing performance. Despite
the aggressive compression, our performance is significantly better than LDM, with respective
Sketch-FID scores of 15.19 and 49, using a 41x smaller network.

Sketch Intensity. Controlling the intensity is crucial. Thus, we conducted further analysis, as shown
in Table 3, that probes for best performance, the intensity should follow the data distribution. We refer
to the intensity as the ratio between the white pixels to the black ones in the sketch. The reported FID
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Table 3: Sketch Intensity Analysis.

Dataset/Intensity 19% 24% 31% 37% 43%
CelebHQ 7.4 7.9 9.2 10.5 12.7

Lsun-Churches 7.8 6.9 8.3 8.9 10.1

FastSAM Color 
Extractor

FastSAM
Color 

Extractor

Figure 14: Palette generation pipeline. First, we employ
FastSAM (Zhao et al., 2023b) to segment the image. Then,
we get the dominant color for each segment.

Figure 15: Ablation study for different input’s types for the 2nd

stage on LSUN-Churches dataset (Yu et al., 2015).

SAMSketch+PalettePalette-1

Edge SAM-SketchSketchRGB

Palette-2

Input Type FID #
a) Edges 9.5
b) Edges + Palette-2 8.4
c) Sketch 8.6
d) Sketch + Palette-1 8.3
e) Sketch + Palette-2 7.1
f) SAM (Colored) 13.1
g) SAM (Edges) 8.1

Table 4: Comparison of the
LDM concatenation mecha-
nism against the schrödinger
bridge (SB) using CelebHQ
dataset.

2nd Stage FID #
Concat 10.04

SB 9.45
SB + Concat 8.10

Table 5: Training objective ablation
study on CelebHQ dataset (Karras et al.,
2017).

Epochs LDM Ours
✏ x0 (xt � x0) x0

50 12.7 15.7 8.5 8.1
100 10.0 14.6 8.4 7.8
200 8.7 15.1 8.2 7.7

scores in Table 3 are the overall FID using all stages, and the intensity numbers are the initial intensity
at t = T . The GT intensity for CelebHQ and Lsun-Churches are 19.2% and 23.5%, respectively.

A.4 2nd STAGE: PALETTE

As depicted in Figure 14, we introduce a more realistic way to have high-quality palettes for free
by first generating the segments from the RGB image using FastSAM (Zhao et al., 2023b). Then, a
simple color detector module is utilized to get the dominant color, e.g., the median color per segment.

A.5 TRAINING AND SAMPLING ALGORITHMS

Algorithm 1 Training Pipeline
1: for i = 1, . . . , N do . Train each stage separately
2: for j = 1, . . . , E do . Train for E epochs
3: for (xi

0, y
i) 2 D do . Loop on the dataset D

4: ✏ 2 N (0, I) . Sampling the noise
5: t 2 U(1, . . . , T ) . Sampling time-step
6: Get xi

0 by applying Eq. 3 . x̃0 based on the stage
7: xt = ↵tx

i

0 + (1 � ↵t)y
i + �

2
t
✏t . Forward process

8: r✓

��x̃i

0 � p✓(x
i
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. Simplified objective

Algorithm 2 Sampling Pipeline
1: xinter = [] . Initialize the list to save intermediate output for each stage
2: y

1 = Zeros((H,W, 1)) . Initialize 1st condition as a black image
3: ✏ 2 N (0, I) . Sampling the noise once
4: for i = 1, . . . , N do . Sequential Sampling
5: xT = y

i + �
2
T
✏T . Run forward process once

6: for t = T, . . . , 1 do . Progressive Sampling
7: Get xt�1 by applying Eq. 6 :xi

0 = p✓(x0|xt) . Reverse process
8: y

i+1 = x
i

0 . Update the condition for the next stage
9: xinter.append(x

i

0) . Store the intermediate outputs for each stage
10: return xinter

A.6 ABLATIONS

1st Stage Representation. In Section 2.2, we explore the versatility of the 3rd stage (detailed
image) by examining six input modalities, detailed in Figure 15. Comparing different contours
representations, namely Edges (using Laplacian edge detector (Wang, 2007)), Sketch (utilizing
PidiNet (Su et al., 2021)), and SAM-Edges (generated by SAM followed by Laplacian edge detector),
we find that Sketch outperforms Edges, as edges tend to be noisier. However, SAM-Edges provides
more detailed contours, yielding superior results. Notably, feeding SAM-Colored leads to significant
performance degradation, likely due to color discrepancies, as observed in SAM in Figure 15. While
SAM-Edges achieves optimal results, its computational intensity renders it impractical. In contrast,
Sketch and Edges are computationally inexpensive. Furthermore, Sketch’s sparse and user-friendly
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nature makes it more suitable for editing, facilitating interpretation and modification than dense, noisy
edges. Consequently, we adopt Sketch as the input modality for subsequent experiments.

Palette Effect. Adding more guidance will offer more editing abilities to the pipeline and enhance
the performance. As shown in Figure 15, rows b and d, when we incorporate the palette into the
contours, i.e., edges and sketch, the performance improved by almost 1 and 1.5, respectively. In
addition, Palette-2 outperforms Palette-1 by 1 FID score. A more detailed analysis of fusing the
stages together and how to mitigate the error accumulation can be found in Appendix A.7.

Concatenation v.s. Schrödinger Bridge. We formulate the generation problem as image-to-image
translation. For instance, generating a palette given sketch or generating the final RGB image given
overlaid palette and sketch. One possible approach is to utilize the conditioning mechanisms offered
by LDM (Rombach et al., 2022), e.g., cross-attention and concatenation. However, these mechanisms
are inefficient as their SNR tends to 0 as t!T . In contrast, our formulation follows the Schrödinger
bridge, which directly incorporates the condition y into xt during the forward process. Accordingly,
the SNR�0 at t = T , which allows reducing training steps from 1K to 50 (Figure 5) and achieving
faster convergence (Figure. 4). Additionally, Table 4 demonstrates a quantitative comparison between
Schrödinger Bridge and concatenation. As shown in Table, 4, the schrödinger bridge (SB) combined
with the concatenation mechanism achieves the best results; however, SB alone is better than using
the naive concatenation.

Training Objectives. Previous work (Rombach et al., 2022) showed that learning the noise ✏ directly
enhances the performance compared to predicting the x0. As, intuitively, predicting the difference
✏t / xt � x0 is easier than predicting the original complicated x0. However, this is not valid in
our case due to the new term y, which makes predicting the difference much harder, as discussed in
Section 2.1. Table 5 shows the same conclusion reported in (Rombach et al., 2022), that predicting the
difference ✏ leads to better performance than x0, where the FID score is 8.7 and 15.1, respectively. On
the contrary, our method achieves almost the same performance regardless of the training objective,
which is expected, as predicting the difference involves predicting x0, Eq. 8.

A.7 HOW TO FUSE DIFFERENT STAGES EFFICIENTLY?

Table 6: Systematic search for the best stopping step s for the
condition truncation.

Metric/Steps (s) 0 10 20 40 80 120 160 200

2nd stage FID # 6.1 7.4 7.9 8.6 9.9 10.4 10.8 11.2
Overall FID # 11.6 10.7 9.5 10.9 11.2 13.5 15.7 18.9

Table 7: Ablation study of the sketch augmentation effect on the overall
performance after fusing the abstract and the detailed stages.

Cutout (DeVries & Taylor, 2017)
Percentage

Dropout
Percentage

2nd Stage
FID #

Overall
FID #

a) 0 0 8.6 16.10
b) 5-10 5-20 9.89 13.94
c) 10-20 20-40 9.77 13.98
d) 20-30 50-70 9.80 13.76
e) 30-40 70-90 11.68 17.99

The reported FID scores for the 1st and the 2nd stages, in Figure 13 and Figure 15, respectively, are
for each stage separately. In other words, in Figure 15, row c, the 2nd stage achieves an 8.6 FID
score when a GT sketch is fed, which is obtained from PidiNet (Su et al., 2021). However, when we
fed the generated sketch from the 1st stage, the performance drastically dropped from 8.6 to 16.1
(almost doubled), as shown in Table 7, row a, due to the domain gap between the generated and
the GT sketches. To fill this gap, we explored two types of augmentations: 1) Cutout and Dropout
augmentation. 2) Condition truncation augmentation.

Cutout and Dropout Augmentation. First, we explored the straightforward augmentation types,
such as Cutout (DeVries & Taylor, 2017) and Dropout augmentations. For the Cutout, we apply a
kernel to randomly blackout patches in the sketch. Additionally, regarding the dropout augmentation,
we randomly convert white pixels to black pixels, interpreted as dropping some white points from the
sketch. As shown in Table 7, generally, augmentation leads to a drop in the 2nd stage performance
while helping fill the gap in the overall performance, as the FID score decreased from 16 to almost
14. However, as shown in rows b-d, gradually increasing the amount of the applied augmentation
does not help much, as the performance remains almost the same. However, the overall accuracy, i.e.,
FID, drops significantly from 14 to 18 when an aggressive augmentation is applied.

Condition Truncation Augmentation. As shown in Table 7, the conventional augmentation tech-
niques do not help much. Accordingly, we explored another augmentation variant tailored for the
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diffusion models, i.e., condition truncation (Ho et al., 2022). During training the 2nd stage, we apply
a random Gaussian noise to the fed condition, i.e., the sketch. So now the 2nd stage is trained on
noisy sketches instead of pure ones, which makes it more robust to the variations between the real
sketches and the generated ones from the 1st stage. Typically, we progressively generate the sketch
in T time steps; T ! 0. However, This added noise could be interpreted as we stop the sketch
generation (1st stage) at a particular step s; T ! s. Consequently, we search for it during sampling to
determine which step s works best for the overall performance, as shown in Table 6. In other words,
the 2nd stage is trained on a wide range of perturbed sketches, e.g., pure sketch (s = 0), noisy one
(0 < s < T ), and even pure noise (s = T ). The 1st stage is trained for 200 steps, so s = 200 means
we omit the sketch and feed pure noise. In contrast, s = 0 indicates that we feed the generated sketch
as it is to the 2nd stage. As shown in Table 6, following this truncation mechanism, the fusion of the
two stages is performed more efficiently, where the overall performance drops from 16.1 to 10.6.

A.8 CONDITIONING MECHANISM ERROR VULNERABILITY

In this section, we will compare the two conditioning mechanisms, Concatenation (Concat) and
Schrödinger Bridge (SB), in terms of the error vulnerability.

While SB+Concat shows superior performance in Table 4 for conditional generation—when the input
condition y is the ground truth (GT)—its performance diminishes in the unconditional setup.

In the unconditional setup, y is generated from the previous stage rather than being a perfect GT. This
introduces errors into the generated y, leading to error accumulation, as discussed in Appendix A.7.
Consequently, the model’s performance suffers when relying on concatenation for conditioning. This
is intuitive as y is fed to the network in each denoising step t. Thus, the network emphasizes the y a
lot, making it more vulnerable to error accumulation.

To address this, we use only the Schrödinger Bridge (SB) as the conditioning mechanism for
unconditional generation because of its demonstrated robustness against accumulated errors.

To this end, we tested a compromise approach by applying concatenation for 50% of the steps and
then dropping the condition from concatenation by feeding zeros. The experiment is conducted
on the LSUN-Churches dataset. Table 9 shows that this trick improves performance compared to
concatenation in all steps. However, it still performs worse than using SB alone on generated sketches.

Accordingly, the choice of y-feeding strategy depends on the setup:

• Unconditional generation: Use only the Schrödinger Bridge, as it exhibits superior robust-
ness against noise in the input condition.

• Conditional generation: Use a combination of Concatenation and Schrödinger Bridge, as
shown in Table 3, for optimal results.

Table 8: Human evaluation for the real image editing capabilities
between our method and SEED-X on 100 randomly sampled
images from CelebHQ dataset.

Method FID

SEED-X 2.6
Ours 4.3

Table 9: Comparison between different conditioning mechanisms
regarding error vulnerability on the LSUN dataset.

Method FID

SB 6.6
SB+Concat (100% steps) 10.1
SB+Concat (50% steps) 8.9

A.9 FUTURE WORK

In this section, we will discuss some possible future work that shows the versatility of ToddlerDiffu-
sion and its potential to drive innovation across image, video, and 3D tasks.

Distill the knowledge from substage features for perception tasks. The intermediate outputs from
Toddler Diffusion (e.g., the sketch stage) can be reused as strong geometric priors for perception tasks
by distilling the knowledge into perception networks to enforce geometric or perceptual constraints,
making them structure-aware and geometry-guided aligned (Zhao et al., 2023a).

Reusing Diffusion Features as High- and Low-Frequency Representations. Toddler Diffusion’s
staged outputs inherently capture distinct frequency information, with the sketch stage emphasizing
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low-frequency global structures and geometry and the palette and RGB stages capturing high-
frequency details like textures. These features can be repurposed into a dual-branch network (Bi et al.;
Wei et al., 2024): one branch focusing on low-frequency representations for tasks requiring global
context (e.g., semantic segmentation, object localization) and the other specializing in high-frequency
details for tasks like texture classification, instance segmentation, or boundary refinement. Integrating
this knowledge into VLMs can improve performance and generalization for perception tasks.

Addressing Limitations in T2I Models. A significant challenge for text-to-image (T2I) models
lies in handling complex prompts involving counting or spatial relations (Bakr et al., 2023; Ghosh
et al., 2024). Fixing these issues in the sketch or abstract stage will be easier and simpler due to
its lightweight. In addition, the subsequent stages (e.g., sketch-to-RGB) will remain unaffected
and reusable. This approach allows targeted improvements without retraining/finetuning the entire
pipeline, significantly reducing computational costs.

Modular Prompt Handling for T2I Models. Toddler Diffusion can simplify complex text prompts
by decomposing them into modular components mapped to specific stages. For example, a detailed
prompt can be split into geometry-focused instructions for the sketch stage and color-specific details
for the sketch-to-palette stage. In addition, we can add more stages and specific prompts such as depth,
e.g., obj1 closer than obj2. This enables a more focused and interpretable generation, particularly for
long, detailed prompts with intricate requirements.

For instance: Given a complex prompt: "A bustling city street during sunset with a red double-decker
bus on the right, a blue car parked on the left, people walking on the sidewalk, and sunlight casting
long shadows on the ground." will be split into:

• Structure-Focused prompt: "A city street with a double-decker bus on the right, a car parked
on the left, and people walking on the sidewalk."

• Palette-Focused prompt: "The double-decker bus is red, the car is blue, the sky shows a
sunset with shadows on the ground."

Video Generation in Abstract Domains. Generating videos directly in the RGB domain is com-
putationally expensive and prone to inconsistencies. Toddler Diffusion can split the problem into
geometry consistency and stylistic consistency. Specifically, it first generates videos in an abstract
domain (e.g., sketches), ensuring geometric consistency across frames. Then, these sketches can
be refined into RGB frames using another stage, Sketch-to-RGB, conditioned on a reference frame
for color and style consistency. This two-step process simplifies the complex task of maintaining
temporal and stylistic coherence in video generation.

Spatial Decompositionality. An intriguing future direction is to adapt Toddler Diffusion to cascade
generation across spatial dimensions instead of modalities:

• Object-Level Cascading: Generate foreground objects first, followed by backgrounds,
enabling fine-grained control for game development or storyboarding applications.

• Part-Level Cascading: Decompose objects into parts (e.g., car wheels, body, interior) for
industries like automotive design and industrial manufacturing, where precise control at the
component level is critical.

Enhancing 3D Generation. Toddler Diffusion can streamline 3D generation by reusing the sketch
stage for geometry, followed by a depth estimation stage, and finally, lifting 2D geometry into full 3D
representations. This staged approach is particularly valuable for AR/VR scene creation, autonomous
driving simulations, etc. Additionally, we can first generate the layout, followed by another stage that
generates the meshes (Koo et al., 2023).

Integration with NeRFs. The sketch stage can provide strong structural priors for Neural Radiance
Fields (NeRFs), improving 3D scene reconstruction from sparse views. This integration could
accelerate NeRF optimization and enhance generalization in applications like scene editing and
AR/VR reconstruction, where structural integrity is critical.

Intrinsic Image Decomposition. Toddler Diffusion’s staged approach can be extended to tasks like
intrinsic image decomposition, where images are disentangled into reflectance, illumination, and
shading components. This decomposition enables applications like relighting, material editing, and
realistic AR/VR rendering, where physically consistent outputs are crucial.
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B MORE QUALITATIVE RESULTS

B.1 DEMO

Please refer to our demo, which probes our controllability capabilities in performing consistent edits.

Our demo demonstrates a lot of use cases, including:

• (0:00 –> 0:20) [1st stage] Starting from noise generates a sketch by running only the 1st
stage, which is unconditional generation.

• (0:20 –> 0:24) [2nd stage] Starting from a generated sketch generates a palette. This one is
considered an unconditional generation as noise generates the sketch unconditionally.

• (0:24 –> 0:32) [3rd stage] Starting from a generated palette generates an RGB image. This
one is also considered an unconditional generation.

• (0:32 –> 0:44) [Conditional Generation] Starting from the GT sketch, we generate an RGB
image.

• (0:44 –> 1:15) [Editing] We show our sketch-based editing capabilities.
• (1:15 –> 1:46) [Editing] We show our palette-based editing capabilities.

B.2 REAL IMAGE EDITING

As explained in Section 2.4, we ensure consistent edits for real images by storing the noise used
during the generation process for later edits. The primary challenge with real image editing is that we
don’t have access to the noise values at each denoising step, as our model didn’t generate the image.
To address this, we employ DDPM-inversion (Huberman-Spiegelglas et al., 2024) to reconstruct the
intermediate noise. As illustrated in Figure 16, we compare our model against SEED-X (Ge et al.,
2024), and our model achieves consistent edits on real reference images better than SEED-X, despite
being trained on much fewer data compared to SEED-X and using smaller architecture. Additionally,
SEED-X fails to perform the edits correctly and keeps the rest of the image unedited, such as the rest
of the face or the background. On the contrary, our method shows great faithfulness to the original
image while performing the edits depicted in the sketch. We have created a small test-set for editing
where we manually designed 100 edits on CelebHQ and generated the corresponding edits for both
our method and SEED-X. Then, we asked annotators (4 annotators) to give a score based on the
aestheticism of the generated image and the adherence to the edit command. As shown in Table 8, the
annotators scores show great preferences to our method over SEED-X where our score is 4.3 while
SEED-X is only 2.6
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Close the man’s mouse

Put wrinkles on his 
forehead

Remove the bangs 
from the woman's hair

Figure 16: Comparison between our approach, ToddlerDiffusion and SEED-X (Ge et al., 2024) in
terms of the real images capabilities.

B.3 CLASS-LABEL ROBUSTNESS

Beyond these quality comparisons, we also conducted a robustness analysis to assess our model’s
behavior when faced with inconsistencies between conditions. Specifically, we deliberately provided
incorrect class labels for the same sketch. This mismatched the sketch (geometry) and the desired
class label (style). Despite the inconsistent conditions, as illustrated by the off-diagonal images in
Figure 17, our model consistently adheres to the geometry defined by the sketch while attempting to
match the style of the misassigned category, demonstrating the robustness of our approach. Successful
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cases are highlighted in yellow, and even in failure cases (highlighted in red), our model avoids
catastrophic errors, never hallucinating by completely ignoring either the geometry or the style.

Tarantula Ptarmigan Spotted 
Salamander

Macaw Kite Bird
Cacatua 
Galerita Tree Frog

Figure 17: Our results on the ImageNet dataset. The first column depicts the input sketch. The
diagonal (green) represents the generated output that follows the sketch and the GT label. The
off-diagonal images show the output given the sketch and inconsistent label. These adversarial labels
show our model’s robustness, where the successful cases are in yellow, and the failure ones are in red.

B.4 EDITING CAPABILITIES

Our approach introduces an interpretable generation pipeline by decomposing the complex RGB
generation task into a series of interpretable stages, inspired by the human generation system (Stevens,
2012; Marr, 2010; 1974). Unlike traditional models that generate the complete image in one complex
stage, we break it into N simpler stages, starting with abstract contours, then an abstract palette, and
concluding with the detailed RGB image. This decomposition not only enhances interpretability but
also facilitates dynamic user interaction, offering unprecedented editing capabilities for unconditional
generation, as shown in Figure 18, Figure 19, Figure 20, and Figure 21.
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Figure 18: Controllability ability of our framework, ToddlerDiffusion. Starting from generated sketch
and RGB image (A), we can remove artifacts or undesired parts, in red, (B), add a new content, in
yellow, (C-D), and edit the existing content, in green, (E-F) by manipulating the sketch.
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Figure 19: Controllability ability of our framework, ToddlerDiffusion. Starting from generated sketch
and RGB image (A), we can remove artifacts or undesired parts, in red, (B), add a new content, in
yellow, (C-D), and edit the existing content, in green, (E-F) by manipulating the sketch.
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Figure 20: Controllability ability of our framework, ToddlerDiffusion. Starting from generated sketch
and RGB image (A), we can remove artifacts or undesired parts, in red, (B), add a new content, in
yellow, (C-D), and edit the existing content, in green, (E-F) by manipulating the sketch.
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Figure 21: Controllability ability of our framework, ToddlerDiffusion. Starting from generated sketch
and RGB image (A), we can remove artifacts or undesired parts, in red, (B), add a new content, in
yellow, (C-D), and edit the existing content, in green, (E-F) by manipulating the sketch.

B.5 SKETCH CONDITIONING (SD-V1.5)

We convert our method to a “sketch2RGB” by omitting the 1st stage to show our controllability
capabilities. By doing this, we can compare our model against the vast tailored sketch-based models
built on top of SD-v1.5. However, these methods have been trained for a long time on large-scale
datasets. Thus, for a fair comparison, we retrain them using CelebHQ datasets for 5 epochs starting
from SD-v1.5 weights. As demonstrated in Figure 22, despite this is not our main focus, our method
outperforms conditioning methods without adding additional modules (Zhang et al., 2023; Zhao
et al., 2024) or adapters (Mou et al., 2024). We compare training-free (Tumanyan et al., 2023; Parmar
et al., 2023) and training-based (Li et al., 2023b; Zhang et al., 2023; Zhao et al., 2024) methods. The
performance is worse than expected for the trained-based methods due to two reasons: 1) We train
all the models for only 5 epochs; thus, some of this method, in contrast to us, needs more epochs to
converge. 2) We apply augmentations to the input sketch, which shows that some of these methods
are vulnerable to sketch perturbations.
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Figure 22: Comparison between our approach, ToddlerDiffusion and training-free (Tumanyan et al.,
2023; Parmar et al., 2023) and training-based (Li et al., 2023b; Zhang et al., 2023; Zhao et al., 2024)
sketch conditioning methods.

B.6 TEXT + SKETCH CONDITIONING (SD-V1.5)

CelebHQ: We conducted another experiments to condition the model on both text and sketch. To
this end, we have extended the CelebHQ dataset by adding a detailed text description for each image
using Llava-Next v1.6. As Llava generates too long descriptions, we ask GPT-4o to summarize them.
We train the model starting from the SDv1.5 weights for only five epochs. As shown in Figure 23, we
feed the same sketch with different prompts, where the only difference between them is the gender,
then the model generates the RGB images that follow both the sketch and the text conditioning.

Toddler 
Diffusion

The image shows a close-up of a 
human face, who is a male. He 
has short, dark hair and is 
wearing a black hat and his 
eyes are a light color.

The image shows a close-up of a 
human face, who is a female. She

has short, dark hair and is 
wearing a black hat and her eyes 

are a light color.

Toddler 
Diffusion

Gender 
Editing

Figure 23: Text and Sketch conditioning capabilities of our proposed method.
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LionArt: Furthermore, we conducted a more challenging experiment to condition the model on
both text and sketch on a more challenging and diverse dataset, LionArt. To this end, we randomly
sample 1 M images from LionArt and train our model for only 1 epoch starting from SDv1.5 weights.
As shown in Figure 24, our model generates RGB images that adheres to both conditions; the text
prompt and the input sketch.

Maqui Pluot Raspberry 
Smoothie

A French press and a mug 
filled with coffee

Picture of 1959 MG MGA 
Offered by E&R Classics -

PGST

Rainier Cherries with 
White Bowel, 5x7 oil on 

linen panel. Original fine 
art by Carolina Elizabeth

Beautiful nature Norway 
natural landscape aerial 
footage lovatnet lake Live 

Acti on

2021 Indian Scout Scout 
Bobber – ABS at Ford 

Lauderdale

A man wearing a black cap 
with white patterns and a 
light gray shirt, looking 

slightly to the side

Hand Painted Pitcher, 
Pastel Flowers, Made in 
Portugal, Short and Wide

Figure 24: Qualitative results for our Text-conditional generation on LionArt dataset.
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B.7 TEXT CONDITIONING

To show the versatility of our approach, we conducted experiments to show our capabilities in
generating sketches from text on two different datasets: CUB200 and Dress Code dataset. The
Caltech-UCSD Birds-200-2011 (CUB-200-2011) dataset is the most widely-used dataset for fine-
grained visual categorization task. It contains 11,788 images of 200 subcategories belonging to birds.
Due to its importance, DM-GAN extends the dataset to include a text description for each image.
There is no GT paired sketches for each image, thus, we run PidiNet to generate sketch for each RGB
image. Additionally, we show our capabilities on the Dress Code dataset, which is more than 3x
larger than publicly available datasets for image-based virtual try-on and features high-resolution
paired images (1024x768) with front-view, full-body reference models. Like CUB200, the Dress
Code data is an unimodal dataset that only contains RGB images. Fortunately, Ti-MGD extends the
dataset to be a multi-modal dataset by having image-text pairs.

In this setup we have two conditioning mechanisms: 1) The sketch y, which is handled by the forward
process (Eq.2). 2) Cross-attention layer to handle the text condition.

We have trained the 1st stage for 1K epochs as it is very small, only 5 M parameters, and the dataset
scale is very small, thus the 1k epochs takes less than 12 hours using a single A100 GPU. Then, we
train the 2nd stage, 141 Million parameters, for only 200 epochs. In contrast, LDM takes longer to
converges as shown in Figure 4, thus we train it for 400 epochs.

As shown in Table 10 and Table 11, we have achieved better accuracies on both datasets compared to
LDM despite being training for half the epochs. For qualitative results, please refer to Figures 25 and
26.

Table 10: Comparison between our approach and LDM using
text conditioning multi-modal dataset, Dress Code (Baldrati et al.,
2024).

Method FID

LDM 10.7
Ours 9.1

Table 11: Comparison between our approach and LDM using text
conditioning multi-modal dataset, CUB200 (Zhu et al., 2019).

Method FID

LDM 12.2
Ours 10.8

30



Published as a conference paper at ICLR 2025

A-line print, long 
print dress, 
printed brown 

dress

Red knee lenght
shorts, red mid 
rise, red pleat 
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shift

Long solid black
sleeveless, 
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black maxi dress

Blue and has long 
sleeves, blue 

stripe shirtdress, 
knee length

Pink pleat-front 
pants, Pink pull-
on pants, Pink 

shorts

Long floral print 
dress, red floral 
print, v-necked

printed wrap dress

Asymmetric 
neckline, black 
and white long 

dress

Body con tube 
dress, long brown 
halter dress, 

sleeveless ribbed 
dress

Black zip dress, 
black zip mock 
neck sweater 

dress, long sleeve 
short black dress

Beige stripes, 
cream dress, long 
striped dress

Black one-shoulder 
flounce, black 

ruffle dress, cold 
shoulder black 

dress

Blue and has long 
sleeves, blue 

long-sleeve midi 
dress, long 

sleeved blue dress

Blue sheer flounce 
dress, flared 
sleeves, long 

loose blue dress

One shoulder, red 
maxi dress, solid 
red long dress

Knee length dress, 
long sleeved black 
and white dress

Figure 25: Qualitative results for our Text-conditional generation on Dress Code dataset (Baldrati
et al., 2024). The first column is the input text prompt, second column is the generated sketch, last
column is the generated RGB image.
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This blue and 
black bird has a 
blue breast and a 

small bill

The bird submerges 
in water and is 

large with an even 
greyish black 

coloring

A bird with a 
slightly downward 
curved bill which 
has a white point 
coming off of it

A small blue bird 
with a sharp beak, 

standing on a 
natural surface

A small bird with 
gray and white 

plumage

A dark-colored 
bird perched on a 
thin branch, with 
a clear blue sky

A small, dark-
feathered bird 

perched on a tree 
trunk

A white gull with 
a yellow beak, 
black legs, and 
grayish wings

A small Ovenbird 
with olive-green 
upperparts, and a 
distinctive eye-

ring

A small bird with 
dark gray, white, 
and red plumage, 
featuring a dark 

cap.

Black bird with a 
glossy, sleek 
plumage, with a 
pointed beak, 

slightly open, and 
long tail feathers

A light gray gull 
with an orange 

beak

A dark-colored 
bird in flight, 
captured over a 

gray water

A brown water bird 
with a sleek body, 
floating on water.

A glossy blackbird 
with iridescent 

feathers 
reflecting shades 
of green and blue

A striking red-
headed woodpecker 
with a white belly, 
black-and-white 
patterned wings

Figure 26: Qualitative results for our Text-conditional generation on CUB200 dataset (Zhu et al.,
2019). The first column is the input text prompt, second column is the generated sketch, last column
is the generated RGB image.

B.8 FREE-HAND SKETCH CONDITIONAL GENERATION SAMPLES

Figure 27 depicts more qualitative results for our conditional generation pipeline, where we first
generate the sketch using drawing tools and then use the generated sketch to generate the RGB image.
Despite the sketch being too bad and sparse, our model still generates high-quality images.
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Successful 
Cases

Successful 
Cases Failure Cases

Figure 27: Qualitative results for our unconditional generation.
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B.9 QUALITATIVE RESULTS FOR OUR SKETCH-CONDITIONAL GENERATION

In addition to our unconditional generation, our framework can be used as a conditional generation
pipeline, where the user can omit the first stage and directly fed a reference sketch. As shown
in Figure 28, given the reference sketch, we run only the second stage, which is responsible for
generating the RGB image given a sketch. Compared to the generated images in Figure 27, the
generated images in Figure 28 are much better as the reference sketches are much better than the
generated ones. This observation is aliened with our discussion regarding the gap between the two
stages. Therefore, improving the quality of the generated sketches will directly reflect on the overall
images quality.

Successful 
Cases

Successful 
Cases Failure Cases

Figure 28: Qualitative results for our sketch-conditional generation.
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C FAILURE CASES

The last column of Figure 27 and Figure 28 depicts failure cases, where the generated RGB is
following the sketch but generates unrealistic image. Intuitively, the failure cases are more apparent
in the unconditional generation due to the generated sketches quality.
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