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ABSTRACT

Diffusion models have achieved exceptional results in image synthesis, yet their
sequential processing nature imposes significant computational demands and la-
tency, posing challenges for practical deployment. In this paper, we present High-
light Diffusion: a training-free novel acceleration approach that achieves notica-
ble speedup while retaining generation quality through an attention-guided gen-
eration process. By utilizing cross-attention maps to identify crucial segments
within the image, we selectively compute these highlighted regions during the de-
noising process, bypassing the need for full-resolution computation at every step.
This strategy maintains high-quality outputs while enabling faster, more resource-
efficient diffusion model inference. With minimal loss in generated image qual-
ity—evidenced by only a 0.65 increase in FID score and a 0.02 decrease in CLIP
score, Highlight Diffusion achieved a 1.52× speedup using an NVIDIA RTX 3090
GPU.

SDv1.4

Ours

1.52X 
Speedup

Figure 1: Comparison of the produced Image of Stable Diffusion V1.4 (Top) and Highlight Diffusion
(Bottom)

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2020; Dhariwal & Nichol, 2021; Rombach et al.,
2022) have recently emerged as a highly effective approach to image synthesis, setting new bench-
marks across various tasks. By iteratively transforming random noise into structured data, mod-
els such as Denoising Diffusion Probabilistic Models (DDPM) have demonstrated an excep-
tional ability to generate high-quality images with impressive fidelity and diversity compared to
the GANs (Goodfellow et al., 2020) and VAEs (Kingma, 2013). Despite these advancements, prac-
tical deployment of diffusion models remains constrained by their computational complexity and
high latency, which are byproducts of their large model sizes and inherently sequential nature.

To mitigate these challenges, recent research has focused on accelerating diffusion models through
various techniques, such as reducing the number of diffusion steps through ODE or SDE solvers (Lu
et al., 2022; Liu et al., 2022), direct mapping of noise to data (Song et al., 2023), distillation (Meng
et al., 2023; Huang et al., 2024), enabling parallel sampling (Li et al., 2024; Wang et al., 2024; Chen
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et al., 2024; Shih et al., 2024), and optimizing the inference of neural networks using methods like
pruning (Fang et al., 2023), quantization (Li et al., 2023b), and reusing intermediate features (Ma
et al., 2024; So et al., 2023; Wimbauer et al., 2024).

During the image generation process, diffusion models produce images at resolutions specified by
user-defined parameters. However, there are instances when the generated image contains elements
that may be irrelevant to the original user prompt. This observation led us to a key insight, motivat-
ing the development of a novel approach called Highlight Diffusion—a training-free method that
reduces computational cost and latency at each step. Highlight Diffusion strategically prioritizes
computation in regions that are most relevant to the given prompt, identified by the model during
intermediate steps, while coarsely computing less significant regions. By focusing computational
resources on these critical areas, our approach significantly reduces overall computation per step,
thereby improving the efficiency of the diffusion process without sacrificing image quality.

To achieve this, we concentrated on two critical aspects of diffusion models. First, feature redun-
dancy is an inherent characteristic due to the iterative denoising process, where diffusion models
often exhibit significant similarities in intermediate feature maps across consecutive steps. These
redundant features can be stored and reused for non-highlighted regions, eliminating the need for
repeated computations in these areas.

Second, cross-attention maps are generated in modern text-to-image diffusion models that incor-
porate transformer architectures to guide image generation in accordance with the provided text
prompt. The cross-attention mechanism fuses textual information with intermediate noise, generat-
ing a cross-attention map for each token. These maps capture semantic information of each token
which we validated through extensive experiments. The cross-attention maps, which contain critical
information about each token, are captured during intermediate steps and are used to identify and
highlight regions that require fine-grained computation.

Through this method, Highlight Diffusion effectively reduces computational overhead while main-
taining high-quality image outputs, addressing a key bottleneck in the practical application of diffu-
sion models.

2 RELATED WORKS

Diffusion models have demonstrated significant versatility in a wide range of generative tasks, in-
cluding text-to-image synthesis (Rombach et al., 2022; Podell et al., 2023; Saharia et al., 2022),
image editing & inpainting (Meng et al., 2021; Tumanyan et al., 2023; Kawar et al., 2023), object
detection (Chen et al., 2023), code generation (Singh et al., 2023), text generation (Li et al., 2022;
Gong et al., 2022), and even audio generation (Schneider, 2023). Their ability to capture complex
data distributions and produce high-quality outputs has made them a powerful tool across various
domains. However, despite their generative prowess, diffusion models often face challenges re-
lated to computational efficiency, particularly due to the iterative nature of their sampling process.
Consequently, several recent works have focused on accelerating diffusion models by leveraging
architectural properties and feature redundancy.

Several recent works have explored methods to accelerate diffusion models by leveraging architec-
tural properties and feature redundancy. DeepCache (Ma et al., 2024) capitalizes on the structure
of U-Net and the redundancy present in intermediate feature maps to speed up the reverse diffusion
process. The U-Net architecture consists of two main components: the skip branch and the main
branch. The main branch which responsible for the majority of the computation, processes the full
feature map. By caching and reusing the feature map from the previous timestep, DeepCache by-
passes the costly computations in the main branch and performs only the lighter operations in the
skip branch, resulting in significantly improved latency.

In text-guided diffusion models, the cross-attention layer within the transformer block integrates text
embeddings with the noisy image xt at each timestep t, assigning weights to each pixel based on
how much the prompt influences the image. Prompt-to-Prompt Image Editing (Hertz et al., 2022)
demonstrates how the cross-attention layer can manipulate the spatial layout of an image according
to the semantics of each word in the prompt. By leveraging this property, the method enables text-
based image editing by selectively controlling which parts of the image are modified.
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Figure 2: The intermediate feature map obtained from the previous “Full” computation, along with
the refined binary mask generated at step 10, are pre-cached. Using this binary mask, the active
block indices are identified. These active indices determine which blocks from the input feature
map are gathered and stacked along the batch dimension. Subsequently, convolution operations are
performed only on these selected blocks. The resulting blocks are then scattered back to the inter-
mediate feature map from the previous “Full” computation to produce the final partially computed
output.

Another notable work is SIGE (Li et al., 2023a), proposed by Li et al., which also exploits feature
redundancy for image editing tasks. SIGE utilizes the SBnet (Ren et al., 2018) gather-and-scatter
algorithm, which efficiently handles sparse convolutions to reduce computational overhead. Specif-
ically, SIGE enhances image inpainting and editing by focusing computation only on the regions
defined by the user edits. It gathers blocks of the intermediate feature map corresponding to the
edited regions and passes them through the convolution and attention layers, thereby reducing the
overall computational cost. The processed blocks are then scattered back into the original feature
map, while the unedited regions reuse their previous feature values, maintaining efficiency and en-
suring high-quality results.

3 METHODOLOGY

Our approach builds on unique characteristics of the diffusion model, particularly the observation
of temporal redundancy in intermediate feature maps across consecutive steps. As demonstrated in
Figure 2 we leverage this redundancy by reusing intermediate features from previous steps. To fur-
ther enhance image quality, instead of reusing the entire set of intermediate features, we selectively
recompute only the highlighted regions, identified using cross-attention maps generated at an inter-
mediate step. This selective computation allows our method to reduce latency while maintaining
high image quality, thus offering a more efficient generation process.

3.1 PRELIMINARY

Diffusion models are a class of generative models that create images by iteratively removing noise
from a random sample, xT , which is drawn from an isotropic Gaussian distribution. The generation
process consists of two primary phases:

Forward Process. In the forward process, the model progressively adds Gaussian noise to an image,
effectively transforming it into pure noise over several steps. Mathematically, this can be described
as a sequence of transformations applied to a data point x0. At each step t, noise is added according
to a fixed variance schedule, resulting in a noisy version of the original image xt. The forward
process can be summarized as:
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q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)

where βt represents a variance term at each step, and N denotes the normal distribution.

Reverse Process. The reverse process aims to generate a new image by denoising xT iteratively,
starting from the final noisy sample xT (which is a sample from a Gaussian distribution) back to
x0. At each step, the model predicts the noise component and subtracts it to refine the image. The
reverse process is parameterized by a neural network θ and can be expressed as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I)

where µθ is the mean function predicted by the neural network, and σ2
t is the variance at step t.

The iterative denoising procedure enables diffusion models to generate high-quality images by ef-
fectively learning the reverse of the noisy data transformation.

3.2 FEATURE REDUNDANCY

In modern diffusion models, the intermediate feature map xt at a given timestep t often exhibits
redundancy with the feature map xt−1 from the consecutive timestep t−1. Similarly, we exploit this
property by reusing parts of the intermediate feature maps that are deemed less important. The cross-
attention map is used to identify the critical regions that require computation, while unimportant
regions simply reuse feature map values from previous timesteps.

However, for every given interval N , the entire feature map is recomputed to capture global features,
ensuring that the image quality remains high. This balance between selective computation and full
recomputation enables efficient yet high-quality image synthesis.

3.3 CROSS ATTENTION MAPS

Cross-attention is an essential component of text-guided diffusion models, enabling the model to
combine the input noisy image xt and the corresponding text embedding τc. During the reverse
diffusion process, the model’s U-shaped network predicts the noise component ϵ based on these
inputs. The cross-attention layer fuses this information by producing attention maps for each token
in the text prompt, guiding the image generation process.

More specifically, the cross-attention layer projects the noisy image xt and the text embedding τc
through learned weight matrices lq , lk, and lv . This process generates the Query, Key, and Value
representations, defined as:

Q = lq(xt)

K = lk(τc)

V = lv(τc)

The cross-attention map is then computed as:

M = Softmax
(
QKT

√
d

)
(1)

where M represents the attention map, and d is the dimension of the key vectors. This map quantifies
the relevance of each token in the text prompt to various image regions.

Collecting Cross-Attention Maps. We configure Highlight Diffusion to collect cross-attention
maps after 20% of the total denoising steps for a good balance between the stability of the attention
maps and reduced latency. We identify that the cross-attention mechanism in a diffusion model
can be broadly divided into two stages. During the first stage, cross-attention primarily plans the
overall structure of each token, starting at the initial denoising steps. This structure is consistently
maintained throughout the entire denoising process. In the second stage, cross-attention gradually
refines fine-grained details, aligning the attention map with the final image to be generated.
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Figure 3: This figure demonstrates how the binary masks generated from cross-attention maps can
sometimes contain white noise, which is irrelevant to the token being targeted for computation. The
refining process eliminates this noise, reducing unnecessary computation and enabling the model to
focus more effectively on the highlighted object.

In our model, we focus on capturing the cross-attention map during the first stage, when the overall
structure is being planned. Due to the requirement of performing full computation before collecting
cross-attention maps, capturing them at later stages can lead to increased latency, even though it may
improve image quality. Our primary objective is to accelerate the image generation process. Cap-
turing attention maps during the structure-planning stage proved sufficient for roughly identifying
regions that could be partially computed. Please refer to the appendix for further details.

Token Selection via Attention Map. In order to select the most important tokens and their corre-
sponding attention maps, we conducted an experiment using the PartiPrompt dataset, focusing on
the animal category. Initially, we applied Part-of-Speech (POS) tagging to extract nouns from the
given prompts, as nouns are typically the most relevant to visual content generation.

For each noun token, we computed the following statistics based on its associated attention map:

1. The sum of all values in the attention map.

2. The maximum value in the attention map.

3. The variance of the attention map.

We conducted this experiment across three different categories. Our results indicated that the token
with the highest variance in its attention map most closely corresponded to the animal mentioned in
the prompt, as classified under the PartiPrompt animal category data.

3.4 REFINING BINARY MASK

After selecting a critical token and its corresponding attention map, we generated a binary mask us-
ing a threshold value hth ∈ {0, 255}. For this experiment, we set hth := 100. However, this method
often results in small white regions as shown in Figure 3 that are considered negligible within the
binary mask, which causes inefficiencies during computation. Specifically, the gather-and-scatter
algorithm assigns block indices to these small negligible regions, unnecessarily increasing the com-
putational cost.

To enhance the accuracy of the binary mask, we employed the cv2.connectedComponents
function to filter out regions with an area smaller than 1000 pixels in a 512×512 resolution im-
age. This threshold corresponds to 0.4% of the total image area and is considered negligible in
contributing meaningfully to the detected objects within the mask.

3.5 PARTIAL COMPUTATION WITH SIGE

To partially compute the highlighted regions identified by the refined binary mask, we incorporated
the SIGE method proposed by (Li et al., 2023a). The identified regions, as determined by the refined
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Algorithm 1 Accelerated Diffusion Process Using Highlight Diffusion
Parameters:
xt: Current sample at time step t
t: time step
hc: Conditioning information (e.g., class labels or context)
ϵt: Estimated noise at time step t
M : Cross attention map computed by the full model
B: Refined binary mask derived from M
N : Interval for executing the full model computation
Ft: cached intermediate feature from previous full model computation
Full Model: Original Diffusion Process (convolution performed on entire resolution)
Partial model: Highlight Diffusion Process (partial computation only on the highlighted region
identified by the Binary mask B

Initialize xT ∼ N (0, I) ▷ Sample xt from normal distribution
for t = T, T − 1, . . . , T − 9 do

(ϵt,M) = Full Model(xt, hc, t)
xt−n =

√
αtxt −

√
1− ᾱtϵt + σtz

if t == T − 9 then
B = Binary mask(M) ▷ Process M into binary mask B
Store Ft in cache

end if
end for

for t = T − 10, T − 11, . . . , 1 do
if t mod N == 0 then

ϵt,M ← Full Model(xt, hc, t)
Store Ft in cache

else
ϵt ← Partial Model(xt, hc, t, B, Ft)

end if
xt−n =

√
αtxt −

√
1− ᾱtϵt + σtz

end for
Output: Final sample x0 ▷ Output the final denoised sample

binary mask, are assigned active indices and grouped into equal-sized blocks. These blocks are
gathered along the batch dimension and sub passed through the convolution layers. The computed
blocks are then scattered back into the intermediate features that were cached during the previous
full computation step. This process is similarly applied to the attention layers and is repeated for
all convolution and attention layers within each module of the U-Net architecture. For more details,
please refer to the original paper.

However, performing partial computation for highlighted regions throughout the entire denoising
process results in significantly degraded image quality. To address this, Highlight Diffusion per-
forms full computation at regular intervals, denoted as N , where the entire resolution of the latent
variable xt is computed as in the original Stable Diffusion model. This strategy allows the model to
integrate information from both highlighted and non-highlighted regions, ensuring the preservation
of global semantics and ultimately generating higher quality images.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

The experiment was conducted on NVIDIA GeForce RTX 3090 GPUs. We build upon the pre-
trained Stable Diffusion V1.4 and the weights were acquired from repositories that were opened to
the public. MS-COCO 2014 5k validation set (Lin et al., 2014) was used as prompts for both Sta-
ble Diffusion and Highlight Diffusion. Following previous works, we evaluated our metrics using

6
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Table 1: Quantitative Evaluation of Highlight Diffusion compared to Stable Diffusion V1.4

Model Interval Threshold Latency (s) Speedup ↑
(Averaged) FID ↓ CLIP ↑ PSNR ↑ LPIPS ↓

DDIM (50) - - 7.93 1.00 × 27.67 31.54 8.74 0.84

HLDiffusion
+DDIM (50)

2

80 6.60 1.20 × 27.76 31.54 8.82 0.85
100 6.57 1.21 × 27.86 31.53 8.82 0.85
120 6.26 1.27 × 27.91 31.53 8.82 0.85
150 6.23 1.27 × 27.83 31.54 8.82 0.85

5

80 5.92 1.34 × 28.03 31.53 9.01 0.86
100 5.81 1.36 × 28.14 31.53 9.01 0.86
120 5.40 1.47 × 28.23 31.53 9.01 0.87
150 5.22 1.52 × 28.32 31.52 9.00 0.87

10

80 5.77 1.37 × 32.13 31.28 9.21 0.87
100 5.64 1.41 × 31.32 31.32 9.21 0.87
120 5.16 1.41 × 30.88 31.33 9.20 0.88
150 4.85 1.51 × 30.18 31.37 9.18 0.88

Fretchet Inception Distance (FID) (Heusel et al., 2017), PSNR, LPIPS (Zhang et al., 2018), and
CLIP Score (Hessel et al., 2021). we used clean-FID (Parmar et al., 2022) to calculate FID.

4.2 BASELINES

To the best of our knowledge, no existing research has addressed the partial computation of specific
regions in text-to-image generation tasks. For example, the SIGE engine proposed by Li et al. was
employed exclusively for image inpainting and image-to-image translation, which fundamentally
differs from our approach. Consequently, we establish our baseline using DDIM with a number of
score function evaluations (NFE) of 50 in Stable Diffusion V1.4 for comparison with our model.

4.3 FEATURE REDUNDANCY ANALYSIS

To demonstrate feature redundancy, we compared the resulting intermediate features from each layer
in the U-Net architecture across consecutive time steps. We measured the cosine similarity of each
feature map after flattening it into a one-dimensional tensor. For a total of 50 denoising diffusion
implicit model (DDIM) (Song et al., 2020) steps, most of the changes occurred before step 10 and at
the very last step of the denoising process. Based on these experimental results, we concluded that
performing full computation for the first 10 steps is ideal for high-quality image generation. After
step 10, it is reasonable to cache and reuse the intermediate features, given the minimal changes
observed. Additionally, we set the interval such that it is a divisor of the total steps our our denoising
process, ensuring that full computation is performed at the last step, which also showed a noticeable
difference in our experiments. Please refer to the appendix for further details.

4.4 EXPERIMENTAL RESULTS

We demonstrate the effectiveness of our approach by evaluating the average latency on the MS-
COCO 2014 validation set. Each prompt in this dataset generates a unique cross-attention map,
which leads to a transformed and refined binary mask with a varying percentage of highlighted
regions. Consequently, the generation time of our model differs depending on the specific prompt.
To quantify this, we measure the average latency for generating all 5,000 images in the MS-COCO
2014 validation set and compare it with the time required by the original model with DDIM of 50
steps to generate the same set of images. We conducted experiments to give both quantitative and
qualitative analysis of our model.

Quantitative Analysis As shown in Table 1, we measured the relative speed-up of our model com-
pared to the baseline Stable Diffusion 1.4 in terms of latency, Fréchet Inception Distance (FID), and
CLIP score. For both models, we utilized DDIM with 50 steps. As indicated in the table, our model
achieved up to 1.52× speed-up, with a minor increase of 0.65 in FID and a negligible difference

7
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Methods Speedup ∆FID ↓
FRDiff (So et al. (2023)) 1.40× 0.61

Highlight Diffusion
(Ours)

Interval:5
Threshold: 150 1.52× 0.65

Interval:5
Threshold: 120 1.47× 0.56

Table 2: Acceleration speedups compared to a prior work

of 0.02 in CLIP score. When increasing the interval to 10, the FID score started to degrade signifi-
cantly, without a corresponding improvement in latency. From these results, we infer that our model
can generate images with minimal quality degradation up to an interval of 5. Additionally, increas-
ing the binary mask threshold reduces the area for partial computation, resulting in faster sampling
speeds but at the cost of decreased image quality.

80 100 120 150

2

5

10

Mask threshold

In
te

rv
al

Figure 4: Visualization of different intervals and mask thresholds

Qualitative Analysis As shown in Figure 4, we compare the generated images from both Stable
Diffusion V1.4 and HighLight Diffusion across different intervals. When the interval was set to
10, there was a significant degradation in image quality. The images appeared blurry and failed to
capture high-frequency details of the objects. Additionally, visible boundaries emerged between the
highlighted regions and the rest of the image due to lack of full computation. From both quantitative
and qualitative perspectives, our results indicate that HighLight Diffusion can generate high-quality
images up to an interval of 5.

Comparison to Prior Works We compare the relative speedups using existing diffusion accelera-
tion methods. On our selected reference point (interval of 5 and mask threshold of 150), we observe
FID score degradation of 0.65. As seen in Table 2, similar degradation level in FRDiff (So et al.,
2023) shows a speedup of 1.40× while our work outperforms with a speedup of 1.52×.

8
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5 LIMITATIONS

Our work has several limitations that merit consideration. First, the proposed method is specifically
tailored for diffusion models that rely on text prompts for image generation. As a result, models
that do not utilize text prompts are incompatible with our approach because they do not produce
cross-attention maps—a core component of our technique.

Moreover, our proposed method shows limited merits in instances where a highlighted token cor-
responds to the global structure of the entire image. For example, when the input prompt is “a
kitchen,” our model might identify “kitchen” as the primary token, representing the overall image
structure. In such cases, the corresponding cross-attention map’s spatial structure is spread across
the entire resolution, leading to similar latency to vanilla diffusion pipeline through DDIM. Future
works may include developing methods that polarizes cross-attention maps to evaluate redundant
computation to reduce latency even in these cases.

6 CONCLUSION

In this paper, we introduce HighLight Diffusion, a novel, training-free acceleration technique for
text-to-image diffusion models. Our method leverages the unique characteristics of diffusion mod-
els, such as feature redundancy and the cross-attention mechanism. HighLight Diffusion utilizes
cross-attention maps to identify and highlight significant regions, which are then partially computed,
while reusing cached features for non-highlighted regions. Our research primarily focuses on reduc-
ing latency for individual time steps. This approach achieves a speed-up of up to 1.52× compared to
the original Stable Diffusion V1.4 with DDIM in the image generation process, with minimal degra-
dation in image quality. We believe that our work opens new possibilities for accelerating diffusion
models and advancing research in this area.

9
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A APPENDIX

A.1 EXPLORING FEATURE REDUNDANCY

For this experiment, we used Stable Diffusion V1.4 with DDIM 50 steps. In our approach, we
extracted the intermediate features computed by each TimestepEmbedSequential module
within the U-Net at each timestep. We then compared these intermediate features at timestep t with
the corresponding features from the subsequent timestep t− 1. To quantify the similarity, we mea-
sured the cosine similarity between these intermediate features and plotted the results, as illustrated
in Fig. 5. In this figure, each graph corresponds to a different TimestepEmbedSequential
module, while the bottom-right graph integrates all the results to provide an aggregated view of the
cosine similarity across layers and timesteps. Our results indicate that there is a significant change
in the intermediate features for all layers before step 10 and at the very last step of the denois-
ing process. This finding led us to perform full computation for the first 10 steps and then utilize
cached features to perform partial computation for the remaining steps within the specified intervals
parameter.

Figure 5: Shows the cosine similarity of intermediate features of each layer. As exhibited, the
difference between feature maps are significant before step 10 and at the very last step.

A.2 EXPLORING BINARY MASK GENERATION FROM CROSS-ATTENTION MAPS

In this section, we explore additional methods (choosing sum and maximum values as reference
for attention token) for generating binary masks from cross-attention maps. The results of various
mask generation techniques are visualized in Figure 6. Our experiments reveal that using the sum
or maximum values as the attention token reference often produces suboptimal attention masks
that fail to adequately cover critical regions. We hypothesize that this limitation contributes to the
degradation in generation quality, as supported by the experimental results presented in Table 3.
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Baseline 
output

Baseline
output

Variance 
(Token: boat)

Max
(Token: Pink)

Sum
(Token: grass)

Prompt: "A pink boat in 
harbor of a larger city."

Variance 
(Token: cow)Prompt: “Black and 

brown cows are grazing
in tall grass."

Cross 
attention

map

Binary 
Mask Output

Figure 6: Visualization of Different intervals and mask thresholds

Table 3: Effect of Mask Generation Methods
Model Interval Threshold Speed (s) Speedup ↓ FID ↓ CLIP ↑

SDv1.4 - - 7.93 1.00 × 27.67 31.54
HLDiffusion (var) 5 100 5.81 1.36 × 28.14 31.53
HLDiffusion (max) 5 100 5.73 1.41 × 29.36 31.53
HLDiffusion (sum) 5 100 5.97 1.47 × 28.98 31.53

A.3 ANALYZING THE RELATIONSHIP BETWEEN MASK SIZE AND LATENCY

To better understand the correlation between mask size in Highlight Diffusion and the resulting
speedup, we examine the relationship between the total number of blocks gathered from binary
masks and the average latency per step, as shown in Figure 7. While the theoretical expectation
suggests a strictly proportional relationship—given that the number of multiply-accumulate opera-
tions (MACs) is proportional to the number of blocks—our observations reveal a minimum latency
of 30ms, even for a block size of 1. This suggests diminishing returns when using very small masks,
indicating that there is a lower bound to the latency, beyond which further mask reduction offers
limited speed improvements. Future work may investigate the source of this limitation, identifying
potential bottlenecks that constrain the efficiency gains at smaller mask sizes.

Figure 7: Per-step latency plotted against the number of blocks gathered from the binary masks
during the diffusion process.

A.4 SAMPLES
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Figure 8: DDIM 50 steps for MS-COCO.Samples from Baseline (upper line). Samples from High-
Light Diffusion (lower line)
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