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1. Introduction
Generative models are advancing molecular dis-

covery by enabling the design of novel molecules
with desirable properties. This study proposes
a Conditional Variational Autoencoder (CVAE) en-
hanced with foundation model features, which pro-
vide a comprehensive representation of molecu-
lar properties to better learn intricate patterns
and dependencies in molecular data. This leads
to improved reconstruction accuracy of generated
molecules. Additionally, the framework employs
SELFIES encoding to ensure chemically valid out-
puts. Furthermore, we leverage foundation mod-
els to enhance the optimization performance of tra-
ditional chemical encodings, showcasing their ver-
satility and broad applicability in molecular design
tasks.

2. Generation of molecules with specific proper-
ties
SMILES-based CVAEs have long supportedmolec-

ular generation tasks by learning structure-property
relationships [1]. However, SMILES often requires
post-processing to ensure chemical validity. SELF-
IES improve this by guaranteeing chemically valid
outputs, though their primary role is unable to
address deeper learning challenges. Meanwhile,
the integration of foundation model features rep-
resents a major step forward. Models like MACE-
OFF [2] leverage extensive datasets to provide com-
prehensivemolecular representations. Despite their
promise, there is a lack of efforts to incorpo-
rate such features into generative frameworks [3].
In this work, foundation features are embedded
into a SELFIES-based CVAE to significantly enhance
molecular accuracy.

2.1 Methodology
The overview of the proposed CVAE framework is

demonstrated in Fig. 1. Firstly,molecular structures,
initially represented as SMILES, are converted into
SELFIES and subsequently transformed into one-hot
encoded vectors, forming the structural representa-
tion of molecules. Simultaneously, molecular con-
dition and features derived from the MACE foun-
dation model are extracted. These foundation fea-
tures, enrichedwith information about atomic inter-
actions and molecular environments, are concate-
nated with the one-hot encoded SELFIES and con-
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dition vectors to create a comprehensive input rep-
resentation. The encoder processes this input and
maps it into a latent space. The decoder then re-
constructs from the latent representation to produce
chemically valid molecular structures conditioned
on input features. The training objective minimizes
a composite loss function that combines reconstruc-
tion loss to measure fidelity to the input and KL di-
vergence to regularize the latent space.

2.2 Experiments
The method was evaluated on two datasets. QM9

contains small organic molecules, while ESM in-
cludes fewer but more complex molecules. For the
QM9 dataset, the conditions used for generation in-
clude mu, alpha, and cv, while for ESM, the gener-
ation conditions include temperature, viscosity, and
density. For both datasets, 80% was used for train-
ing and 20% for validation. Models with and without
foundation features were compared based on recon-
struction accuracy, validity, and uniqueness. Results
demonstrate that incorporating foundation features
significantly improves allmetrics, with greater gains
observed for the more complex ESM dataset.

Table 1: Experimental results on two datasets across
5 random seeds.

QM9
(w/o
FF)

QM9
(w/ FF)

ESM
(w/o
FF)

ESM
(w/ FF)

Accuracy
(%)

98.5 99.0 70.2 78.2

Validity
(%)

88.4 94.0 94.4 93.6

Uniqueness
(%)

76.0 82.4 62.2 66.4

3. BO for optimization
3.1 Methodology
We leverage foundation model (FM) to enhance

the optimization performance of existing traditional
chemical encodings. Specifically, we concatenate
the features generated by the foundation model and
the traditional chemical encodings for the same
molecule. To reduce dimensionality and remove po-
tential redundancy, we apply Principal Component
Analysis (PCA). The reduced features are then fed
into the Bayesian Optimization (BO) model to opti-

mailto:yoon_ji_wei@i2r.a-star.edu.sg


AI4X 2025, Singapore, 8–11 July 2025

Fig. 1: Overview of the proposed CVAE framework.

mize the target objective.

Fig. 2: Comparison of the proposed method and the
benchmark approach based on the average vis-
cosity results across 100 random seeds. Left: the
average result of the 5 recommended conditions.
Right: the maximum result among the 5 recom-
mended conditions.

3.2 Experiment Setting
We evaluate the proposed method using the ESM

dataset [4], which provides viscosity measurements
for different molecules at various temperatures. In
this experiment, the optimization conditions are the
molecule and temperature, while the optimization
objective is to maximize viscosity. Since the dataset
does not guarantee the presence of the optimal tem-
perature corresponding to the model’s output, we
use the viscosity at the temperature closest to the
optimal temperature for the given molecule in the
dataset as the result corresponding to themodel’s op-
timal temperature output. We use viscosity as the
evaluationmetric. Since the objective is tomaximize
viscosity, higher values indicate better results. Each
experiment consists of 7 rounds of condition opti-
mization (including the initial random conditions),
with 5 reaction conditions recommended in each
round. We evaluated the proposed method and the
baseline method across 100 different random seeds.

3.3 Result
We compare the proposed method, which en-

hances the SOTA chemical encoding Mordred,
against using Mordred alone. For fair comparison,
we apply PCA for dimensionality reduction to the

Fig. 3: Box plot comparison of the proposed method
and benchmark approach. Up: the average re-
sult of the 5 recommended conditions. Down: the
maximum result among the 5 recommended con-
ditions.

features generated by Mordred encoding, ensuring
that bothmethods have the same feature dimension-
ality when input into the BO model. As shown in
Fig. 2, the performance of both methods improves
progressively over the rounds, indicating that both
are effectively identifying better reaction conditions.
With the assistance of foundation model encoding,
the performance surpasses that of using Mordred
encoding alone across all 7 rounds. To provide a
clearer visualization of the results and their variabil-
ity, we also use a box plot to present the outcomes.
As illustrated in Fig. 3, the proposedmethod demon-
strates a significant improvement over Mordred en-
coding.
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