
A Bring-Your-Own-Model Approach for ML-Driven Storage Placement in Warehouse-Scale Computers

Data Processing
Framework

…

Compute Servers

…

Caching Servers

…

Storage Servers (SSD)

…

Storage Servers (HDD)

Other Workloads

Figure 12: Production Setup Overview

A PRODUCTION SETUP

Figure 12 provides an overview of our distributed production setup. This setup includes three dedicated sets of servers
central to storage placement: 1) compute servers, which run data processing frameworks and other workloads; 2) storage
servers, which host HDD and SSD devices; and 3) caching servers, which manage SSD tiering decisions.

B MODEL FEATURES

Our design centers around the intermediate files of data processing frameworks. Section 2.1 introduces the fundamental
concepts of how the data processing framework processes input data records. A distributed framework spawns workers
to execute tasks. A worker is a process that runs on a server. Workers use shuffling to exchange data between them. A
shuffle job is generated when the execution of the workflow reaches a step or operation that necessitates the exchange of
information. As an example, GroupByKey is a common operation across frameworks that generates one or more shuffle jobs.

At a higher level, a job comprises three steps. We assume that each worker possesses a number of data records in their
working memory. In the first step, each worker writes the data they own into raw intermediate files. Accessing the data in
these raw files is inconvenient because they lack a specific order. To address this issue, one or more sorters organize the data
records in these files into sorted intermediate files as part of the second step. In the third step, the workers retrieve their
required data from the sorted intermediate files back into their working memory, concluding the shuffle job. If feasible,
these three steps can be executed concurrently, resulting in temporal overlap.

The I/O density of jobs depends on how these data records are written and read, so we are providing as much internal
job-related information from the framework to the model as possible. Internally, the data a workflow needs to process is
divided into buckets. A bucket is a unit of work that is assigned to a worker. Each bucket contains a set of tasks that are
executed by a single worker. The number of buckets is determined by the data to be shuffled and the number of workers
available. Buckets are used to ensure that work is distributed evenly across workers and that no worker is overloaded.

In the first step of a job, the worker shards the data in each bucket into shards, and each shard is assigned to a writer for
being written to storage. A writer packs data into stripes and writes one stripe at a time. This enables parallel writing and
faster write throughout. The feature we choose, as described in Table 2, reflects how these steps are being executed.

C ADDITIONAL RESULTS

C.1 Evaluations with non-Data-Processing Framework Workloads

Throughout the paper, we focus on workloads written against the same large-scale data processing framework to evaluate
against a wide range of different workloads. We run additional experiments to demonstrate that our prototype and general
approach is not limited to this data processing framework, but can handle any workload that supports our distributed storage
system.

Note that our “bring your own model” approach means that workloads have a large degree of freedom in terms of producing
the predictive category signals that are passed to the storage layer. We demonstrate this flexibility here, by picking diverse
workloads that are entirely well-suited for SSD, or entirely well-suited for HDD (i.e., even a model that predicts the same

A Bring-Your-Own-Model Approach for ML-Driven Storage Placement in Warehouse-Scale Computers

Features Feature Group Description
average TCIO Historical system metrics Average TCIO of the job’s historical executions.
average size Historical system metrics Average peak intermediate file size of the job’s historical executions.
average lifetime Historical system metrics Average job historical lifetime.
average I/O density Historical system metrics Average I/O density of the job’s historical executions.
bucket sizing initial num stripes Allocated resources The initial number of stripes a shard is expected to be divided into.

Each stripe contains a couple of data records.
bucket sizing num shards Allocated resources The number of shards the working set is expected to be sharded into.
bucket sizing num worker threads Allocated resources Number of worker threads.
bucket sizing num workers Allocated resources Number of workers in this job.
initial num buckets Allocated resources The initial number of buckets the job uses when it was started.
num buckets Allocated resources The number of buckets the current job actually uses.
records written Allocated resources The number of records to be shuffled for a shuffle job.
requested num shards Allocated resources Number of shards the current working set is requested to be sharded into.
open time dayhour Job timestamp The hour of the job start time.
open time seconds Job timestamp The second of the job start time.
open time weekday Job timestamp The week day of the job start date.
build targetname Execution metadata The target in the build file that is used to build the executable binary.
execution name Execution metadata A user-assigned identifier for the job. Usually set to the binary file name.
pipeline name Execution metadata Name of the pipeline the job belongs to. A pipeline contains multiple jobs.
step name Execution metadata A computer generated step identifier from the workflow’s execution graph.
user name Execution metadata Name of the workflow step that is starting the shuffle job.

Table 2: Feature details.

Features Example Values
build targetname //storage/ /build manager:
execution name com.trigger2.launcher.Main
pipeline name org indicator metrics. -dims prod. .data importer
step name -open-shuffle10
user name GroupByKey-22

Table 3: Feature examples.

category for each file in this workload would perform reasonably well). We use the adaptive ranking algorithm design to first
develop an oracle model based on the workloads’ TCO savings and I/O density, then train a model to assign file categories.

Two methods are implemented and compared for the real-world mixed workloads evaluation: FirstFit and our Adaptive
Ranking. The real-world evaluation is done using a mix of workloads based on our data processing framework (referred to as
“framework workloads”) and conventional workloads (referred to as “non-framework workloads”). Our goal is to understand
how well these mixed workloads work in the real world. In our evaluation, we maintain a 1:1 framework workloads to
non-framework workloads ratio in terms of generated file size footprint.

The following workloads are used for this evaluation:

1. 4 HDD-suitable framework data processing workloads. These are data processing workloads that perform a small
amount of shuffles.

2. 4 SSD-suitable framework data processing workloads. These are large query workloads that perform a large amount
of table joints and therefore need a lot of shuffles.

3. 10 HDD-suitable (low I/O intensity) non-framework workloads. These are ML training workloads with check-
pointing, using the same ML framework that we used for our own models. Since these checkpoint files are kept for
longer than a few hours, they are not suitable for being saved to SSD.

4. 10 SSD-suitable (high I/O intensity) non-framework workloads. These jobs emulate a user workflow that consists
of compressing input data, generating (compressed) temporary files, uploading them to a cloud storage, and deleting
the temporary files. These workloads generate hot and short lived files.

A total of 320 worker servers are used to execute the workloads. The workloads’ combined peak storage usage is 3.8 TiB.
All of the four workloads use gradient-boosted tree category models.

A Bring-Your-Own-Model Approach for ML-Driven Storage Placement in Warehouse-Scale Computers

Figure 13: Prototype mixed workload savings.

Figure 14: Prototype mixed workload application run time savings.

C.1.1 Storage TCO and TCIO Savings

The measured TCO and TCIO of FirstFit and our Adaptive Ranking are compared with the FirstFit baseline’s TCO and
TCIO. The results are shown in Figure 13. We see that we get significant TCO and TCIO savings compared to FirstFit, for
both our framework and non-framework workloads. This demonstrates that our approach is not limited to workloads written
in our data processing framework.

C.1.2 Application-level Performance

We also look into the change of application-level performance introduced by our method. Since our workloads have a fixed
amount of work for each execution, we measure the framework and non-framework workload overall execution time as a
way to understand the application-level performance. The result is shown in Figure 14. We see that the application-level
performance of all workloads improves, in addition to TCO and TCIO savings. Most importantly, no workload shows any
regressions. Recall that such savings are expected but opportunistic (section 3); i.e., since workloads are written against
performance with HDD, our goal is to improve storage costs without degrading application performance relative to this
baseline. Any additional performance savings are on top of these goals.

It should also be noted that the application-level performance change depends highly on application’s workload composition,
most notably the compute to I/O ratio. We select these applications for our evaluation because they are typical in the
workloads we need to handle. Other applications’ performance change could be very different in these scenarios.

C.2 Sensitivity Analysis

We explore the sensitivity of our method under different hyperparameters below.

Adaptive Algorithm Parameters. We include all combinations of hyperparameters where TSPILLOVERTCIO 2 {[0.005,
0.03], [0.01, 0.15], [0.05, 0.25]}, look back window time length (seconds) tw 2 {600, 900, 1800}, and admission decision

Figure 15: Adaptive algorithm parameters sensitivity.

A Bring-Your-Own-Model Approach for ML-Driven Storage Placement in Warehouse-Scale Computers

Method TCO Savings Percent Model Top-1 Accuracy
Ours (N = 2) 9.25% 73.4%
Ours (N = 5) 11.1% 55.6%

Ours (N = 15) 12.7% 32.3%
Ours (N = 25) 12.6% 24.2%
Ours (N = 35) 10.8% 21.2%
Best Baseline 10.7% /

Table 4: The TCO savings under different category numbers.

Figure 16: Category change of one workload. From top to bottom, the SSD quota covers 0.01%, 1.0%, 10%, and 50% of
the peak SSD space usage under no SSD quota limit. The green line is the observed SPILLOVERTCIO and the orange line
represents the category admission threshold. The red area at the bottom of each figure is TSPILLOVERTCIO.

effective time tl 2 {600, 900, 1800}. We evaluate the sensitivity of the TCO savings for the same set of workloads in fig. 7.
For each parameter combination, we apply the same parameter settings to all the workloads in the group. In fig. 15, the blue
area in the figure presents the upper bound and lower bound of TCO savings under different SSD capacities across different
hyperparameter combinations. Our solution is not sensitive in terms of hyperparameter selection in the adaptive algorithm.

Sensitivity on Category Numbers. Our evaluation utilizes the 0.1 SSD portion setting with all the algorithm parameters
maintain consistent. It is critical to select an appropriately large number of categories to enable the model to effectively
distinguish the cost across jobs without increasing the model’s capacity for fine-grained category prediction. We present the
impact of category numbers N on end-to-end TCO savings in table 4. A model with smaller category number achieves
higher accuracy but fails to optimize the end-to-end TCO savings due to its limited granularity. Conversely, increasing the
number of categories enhances granularity but at the cost of accuracy, diminishing the TCO savings.

C.3 Adaptive Category Selection Dynamics

To demonstrate the dynamics of our adaptive algorithm, we present the pattern of category threshold change and spill over
percentage in fig. 16. We track the threshold change for 1 week online. Our adaptive category selection algorithm can adjust
the category admission threshold to a higher range when SSD quota is limited and allow more category admissions when
SSD space is plentiful.

D DETAILED RELATED WORKS DISCUSSION

Prior works have shown the viability of machine learning for task property prediction in storage systems. (Hao et al., 2020)
leverages a small neural network to infer SSD performance with fine granularity and help parallel storage applications. The
method learns a binary latency model and pre-calculate an inflection point for each model during a labelling stage. The key
benefit is model simplicity and fine granularity of prediction, enabling more complicated applications online within latency
requirements. (Zhou & Maas, 2021) tackles a problem related to our setting in data placement with methods that leverage

A Bring-Your-Own-Model Approach for ML-Driven Storage Placement in Warehouse-Scale Computers

application-level information and distributed traces in a way inspired by ideas from natural language processing. While the
paper focuses on a specific learning problem of mapping textual metadata to storage-related properties, our work focuses on
the practical designs and deployment of such models.

Other applications of machine learning in storage systems include training one monolithic model for the entire storage
system (not deployable in warehouse-scale setting due to adaptability): applying imitation learning for cache replacement
to approximate an optimal oracle policy (Liu et al., 2020), guiding the placement algorithm model through reinforcement
learning (Kaler & Toshniwal, 2023; Singh et al., 2022); predicting properties in other aspects of data placement: improving a
storage system through optimizing readahead and NFS read-size values with machine learning models (Akgun et al., 2023),
utilizing ML to improve on existing cache replacement strategies (LRU, LFU, etc.) (Vietri et al., 2018), and predicting
future task failures through ML (Chakraborttii & Litz, 2020).

Multiple machine learning techniques have also been proposed in broader system problems (Kanakis et al., 2022; Maas,
2020), ranging from resource allocation (Mishra et al., 2018), memory access prediction (Hashemi et al., 2018), offline
storage configuration recommendation (Klimovic et al., 2018), database query optimization (Kraska et al., 2021), to
networking applications (Dong et al., 2018; Abbasloo et al., 2020). Although the nature of these applications is different
from data placement in storage systems, they all show evidence that machine learning can be used in systems and benefits
from domain-specific formulations.

Data Placement in Practice. Though machine learning for systems has been widely explored in different application
domains, the state of the art practical solutions for caching or tiering in storage systems are still mostly heuristic.

Hadoop offers three caching schedulers: FIFO (Pakize, 2014), Capacity (Raj et al., 2012), Fair (Zaharia et al., 2009). Spark
supports FIFO, Fair. For each user, Azure tracks the last-accessed files and make the placement based of the self-tracked
access history (Downie et al., 2023). (Yang et al., 2022) presents a novel adaptive cache admission solutions for Google, of
which we implement a modified version in our comparison.

Very recent works have also started rethinking the best practical solution within the heuristic-based domain. (Yang et al.,
2023b;a) consider a modified FIFO for cache eviction, which achieves good scalability with high throughput on production
traces from Twitter and MSR. (Eytan et al., 2020) revisits the effectivenss of LRU versus FIFO and finds that FIFO exhibits
better overall cost than LRU on production traces, including IBM COS traces. (Zhao et al., 2023) proposes new heuristics
for storage, specifically tailored for machine learning workloads at Meta.

Another noteworthy work presents a solver-based solution for task scheduling in the setting where each task contains a list
of preferred locations identified prior to scheduling. Their approach formulates the problem as a minimum cost maximum
matching problem (Herodotou & Kakoulli, 2021). Although closely related to our work, as discussed in the Section 2 and
Section 3, the method is not directly feasible in our context. The primary challenge in adopting such a solver-based approach
in our setting lies in the lack of jobs’ cost at scheduling time.

E DISCUSSION

Our “bring your own model” idea can be adopted in other deployments and frameworks. The solution flow of our system
is: 1) Setting an optimization objective (TCO savings in our case). 2) Designing a ‘hint’ (workload model output) passed
from each workload from the application layer to the caching layer. Our hint is job importance in terms of TCO savings. 3)
Picking jobs of different categories based on feedback from system utilization.

This BYOM flow remains adaptable to other applications. The key components that vary are the objective function, available
model features, and how system utilization is quantified.

While Table 2 lists specific features used in our model, these features fit into four general categories: historical information,
job start time, execution information, and allocated resource information. The general categorization remains applicable
though the detailed features may vary, allowing for adaptation across different organizations.

	Introduction
	Background
	Storage for Data Processing Frameworks
	SSD/HDD Tiering and its Trade-Offs
	Production Requirements and Limitations
	Google's Production Setup

	Problem Formulation & Baselines
	Oracle: Optimal Solution Based on Solver.
	FirstFit: Static Placement.
	Heuristic: Practical Adaptive Placement.
	ML Baseline: Lifetime Prediction-Based.

	Hybrid Learning Approach
	Features
	Model Design
	Adaptive Category Selection Algorithm

	Evaluation
	Experimental Setup
	Integration in Real Systems [RQ1]
	Overall Savings [RQ2, RQ3]
	Generalizability [RQ4]
	Model Analysis [RQ5]

	Related Works
	Conclusion
	Production Setup
	Model Features
	Additional Results
	Evaluations with non-Data-Processing Framework Workloads
	Storage TCO and TCIO Savings
	Application-level Performance

	Sensitivity Analysis
	Adaptive Category Selection Dynamics

	Detailed Related Works Discussion
	Discussion

