
A Qualitative Analysis of Learned Reward

In this section, we present qualitative analysis of the reward learned using GraphIRL. We plot the
reward as defined in Equation 4 for GraphIRL and two baseline IRL methods for three test examples
across three tasks. The tasks we evaluate with are Peg in Box, Push, and Reach. For each task, we use
show two successful episodes and one unsuccessful episode. The length of each episode is 50, and
for each figure we have included, we provide images that align with critical points in the completion
of the task.

1 10 20 30 40 50
Steps

−1.5

−1.0

−0.5

0.0

Re
wa

rd

(a)

(b)

(c)
xArm Peg in Box

GraphIRL (Ours) XIRL TCN

(a) (b) (c)

1 10 20 30 40 50
Steps

−1.5

−1.0

−0.5

0.0

Re
wa

rd

(a)
(b)

(c)

xArm Peg in Box

GraphIRL (Ours) XIRL TCN

(a) (b) (c)

Figure 7: Peg in Box Task Progress: Success. For the Peg in Box task setting, we find that GraphIRL
provides an accurate measurement of task progress. Pictured are video frames (a), (b), (c) which
denote critical points of task progress. Task progress is measured using video frames from a 50-step
evaluation episode.

1 10 20 30 40 50
Steps

−1.5

−1.0

−0.5

0.0

Re
wa

rd

(a)

(b) (c)

xArm Peg in Box

GraphIRL (Ours) XIRL TCN

(a) (b) (c)

Figure 8: Peg in Box Task Progress: Failure. GraphIRL measures positive task progress until the
peg goes into the table, a critical failure point for the task. The physical interaction between the peg
and table is unnatural, and our method succeeds in recognizing this.

13

1 10 20 30 40 50
Steps

−1.5

−1.0

−0.5

0.0

Re
wa

rd

(a)
(b)

(c)
xArm Push

GraphIRL (Ours) XIRL TCN

(a) (b) (c)

1 10 20 30 40 50
Steps

−1.5

−1.0

−0.5

0.0

Re
wa

rd

(a)
(b)

(c)

xArm Push

GraphIRL (Ours) XIRL TCN

(a) (b) (c)

Figure 9: Push Task Progress: Success. The Push task setting is often completed within the first 10
steps of the evaluation episode, and as shown between Steps 1 through 10 in both success examples,
GraphIRL measures high task progress. XIRL and TCN on the other hand, incorrectly show much
lower task progress.

1 10 20 30 40 50
Steps

−1.5

−1.0

−0.5

0.0

Re
wa

rd

(a) (b) (c)

xArm Push

GraphIRL (Ours) XIRL TCN

(a) (b) (c)

Figure 10: Push Task Progress: Failure. GraphIRL’s understanding of object relationships is made
clear in this Push task failure, since without any forward movement of the box object towards the goal,
no positive task progress is made. Other baselines rely on direct visual input of the task, and because
of this, they inaccurately align visual states (a), (b), (c) of the task with positive task progress.

14

1 10 20 30 40 50
Steps

−2.0

−1.5

−1.0

−0.5

0.0

Re
wa

rd

(a)

(b)
(c)

xArm Reach

GraphIRL (Ours) XIRL TCN

(a) (b) (c)

1 10 20 30 40 50
Steps

−2.0

−1.5

−1.0

−0.5

0.0

Re
wa

rd (a)

(b)
(c)

xArm Reach

GraphIRL (Ours) XIRL TCN

(a) (b) (c)

Figure 11: Reach Task Progress: Success. In the Reach task setting, positive task progress is
measured by GraphIRL with forward movement of the end-effector gripper towards the goal location.
The image frames (a), (b), (c) reflect the alignment between measured task progress and visual state
of the task.

1 10 20 30 40 50
Steps

−2.0

−1.5

−1.0

−0.5

0.0

Re
wa

rd

(a) (b) (c)

xArm Reach

GraphIRL (Ours) XIRL TCN

(a) (b) (c)

Figure 12: Reach Task Progress: Failure. Our GraphIRL method measures an approximately linear
task progress in this failure example for Reach. The gripper’s distance to the goal region is indeed
minimized over time, though since it does not get within close-enough distance to the goal, the
measured task progress is lower compared to success examples shown in Figure 11.

We find that our method provides a superior and accurate reward signal to the agent compared
to the baseline visual IRL methods. We observe that if a task is being completed successfully or
unsuccessfully in a video, our method can obtain a reward that accurately reflects how close the agent
is to completing the task. Additionally, both XIRL and TCN yield low reward even for successful
episodes due to large distance between the current observation and the representative goal observation
in the embedding space which could be attributed to visual domain shift.

B Additional Implementation Details

Representation Learning. Each MLP in the Spatial Interaction Encoder Network defined in Equation
3.1 is implemented as a 2-layer network with a ReLU activation. The size of the final embedding ψ(·)
is 128 in our experiments. Please see Table 3 for a detailed list of hyperparameters for representation
learning. All the hyperparameters in Table 3 are kept fixed for all tasks considered in this work.

Reinforcement Learning. For X-MAGICAL, we follow Zakka et al. [56] and learn a state based
policy. The state vector has dimensions of 16 and 17 for the Standard and Diverse environments

15

Hyperparameter Value

of sampled frames 90
Batch Size 2
Learning Rate 10−5

Weight Decay 10−5

of training iterations 12000
Embedding Size 128
Softmax Temperature 0.1

Table 3: Hyperparameters for Representation Learning with GraphIRL.

respectively. The Diverse environment state has an additional dimension to represent the size of
blocks. For xArm, we learn an image based policy. Specifically, we use first-person and third-person
cameras to learn a policy from multi-view image data. We extract 84× 84 image from both cameras
and concatenate them channel-wise. We use the network architecture and attention mechanism
proposed in Jangir et al. [20]. Additionally, we apply data augmentation techniques: random ±4
pixel shift [52] and color jitter [17].

Extracting Reward. In order to compute the reward during Reinforcement Learning (RL) training,
we use the locations of objects available in simulation to extract the bounding boxes corresponding to
the current observation. The bounding boxes are used to construct the object representation which is
then passed to the trained Spatial Interaction Encoder Network to get the reward.

Criterion for Success. We use distance threshold to determine the success of an episode. The
thresholds are 5cms, 10cms and 8cms for Reach, Push and Peg in Box respectively. The distance
refers to distance between goal position and end-effector for Reach, and goal position and object
position for Push and Peg in Box.

Baseline Implementation Details. For all the vision-based baselines, we use the hyperparameters,
data augmentation schemes and network architectures provided in Zakka et al. [56]. Readers are
encouraged to read Zakka et al. [56] for more details on the vision-based baselines.

C X-MAGICAL Experiment Details

C.1 Demonstration Data

For collecting demonstration data in the X-MAGICAL Diverse environment, we trained 5 uniquely-
seeded Soft Actor-Critic (SAC) RL policies for 2 million steps for each embodiment using the
environment reward. We collect 1000 successful episode rollouts for each embodiment using the
5 trained policies. In particular, each policy is used to produce 200 episode rollouts for a given
embodiment.

C.2 Diverse Environment

Below, we explain the randomization performed on the blocks in the diverse environment that we use
in our experiments:

• Color: We randomly assign 1 out of 4 colors to each block.

• Shape: Each block is randomly assigned 1 out of 6 shapes.

• Size: The block sizes are also varied. In particular, we generate a number between 0.75 and
1.25 and multiply the default block size by that factor.

• Initial Orientation: The initial orientation of the blocks is also randomized. We randomly
pick a value between 0 to 360 degrees.

• Initial Location: The initial location of the boxes is randomized by first randomly picking
a position for the y-coordinate for all blocks and then randomly selecting x-coordinate
separately for each block. This randomization is also performed in the standard environment.

16

D Additional Results on X-MAGICAL Benchmark

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

0.8
Su

cc
es

s R
at

e
gripper

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

shortstick

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

1.0 mediumstick

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

1.0 longstick

GraphIRL (Ours) XIRL TCN LIFS

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

gripper

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

shortstick

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

1.0 mediumstick

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

1.0 longstick

GraphIRL (Ours) XIRL TCN LIFS

Figure 13: Cross-Embodiment Same-Environment: We further evaluate GraphIRL in the cross-
embodiment same-environment setting (top) Standard Environment (bottom) Diverse Environment,
and it continues to provide competitive success rates akin to those achieved by XIRL. These results
confirm that GraphIRL is a consistent and reliable method for learning from video demonstrations in
visually similar environments.

To complement our cross-embodiment cross-environment results from the main paper, we also report
results for X-MAGICAL in the cross-embodiment same-environment setting. As shown in Figure 13,
we outperform TCN and LIFS by significant margins and achieve comparable results to XIRL. These
results reflect the effectiveness of GraphIRL when learning in a visually similar environment with
visually different agents.

E Appendix E: xArm Experiment Details

E.1 Description of Environment Rewards

In this section, we define the environment rewards for xArm environments that were compared against
GraphIRL in robot manipulation experiments under Section ??. We define pg, po, and pe as the
positions of the goal, object and robot end-effector respectively. The reward for Push is defined as
||po − pg||2, for reach it becomes ||pe − pg||2 and finally for Peg in Box, the reward is ||po − pg||2.
Note that the distances are computed using 2-d positions in the case of Reach and Push and 3-d
positions in the case of Peg in Box.

E.2 Demonstration Data

We use data from [39] for Push. We collect 256 and 162 demonstrations respectively for Reach
and Peg in Box. For Reach, we use 18 visually distinct goal position markers i.e. 3 different shapes
and each shape with 6 different colors in order to ensure visual diversity. Reach demonstrations
have minimum, average and maximum demonstration lengths of 1.76 seconds, 4.51 seconds and
9.23 seconds respectively. For Peg in Box, we use 4 visually distinct objects. In this case, the
minimum, average and maximum demonstration lengths are 1.73 seconds, 4.74 seconds and 11.7
seconds respectively. For both Reach and Peg in Box, the goal and object positions are also varied
across demonstrations to diversify trajectories. Please see https://sateeshkumar21.github.
io/GraphIRL/ for examples of collected demonstrations.

17

https://sateeshkumar21.github.io/GraphIRL/
https://sateeshkumar21.github.io/GraphIRL/

0 100 200 300 400
Steps (thousands)

0.0

0.2

0.4

0.6

Su
cc

es
s R

at
e

MuJoCo Pusher

GraphIRL (Ours) XIRL TCN LIFS Env. Reward

Figure 14: MuJoCo State Pusher Task Progress: Success GraphIRL provides a reward signal
that is both better than all other vision-based baselines and nearly as good as the task-specific
environment reward. This indicates that the reward learned from GraphIRL could be used across
multiple environments of the same task, showing strong generalization capabilities.

F Additional Results on Robot Manipulation in Simulation

We also experiment with the MuJoCo State Pusher environment used by Schmeckpeper et al. [39]
and Zakka et al. [56]. However, we make two changes, (1) Instead of using a fixed goal position,
we use a randomized goal position and learn a goal-conditioned policy and (2) we do not use the
sparse environment reward and instead only use the learned rewards for GraphIRL and learning-based
baselines. Figure 14 presents our results, we note that GraphIRL achieves slightly lower success rate
than the task-specific environment reward (e.g. GraphIRL 0.455 vs Environment Reward 0.6133).
Further, all vision-based baselines perform significantly lower than GraphIRL (e.g. GraphIRL 0.455
vs XIRL 0.125 and TCN 0.005). For all learning-based methods, we use the data from Schmeckpeper
et al. [39] as training demonstrations similar to Push experiments conducted in Section ??.

3rd-Person Camera

Egocentric Camera

(a)

Egocentric Camera

3rd-Person Camera

(b)

(c) (d)

Figure 15: Real Robot Setup. In (a) and (b), we provide images of our real-world environment for
the Peg in Box task. We use a static third-person camera and an egocentric camera which moves with
the arm while completing the task. Pictured in (c) and (d) are single image frames captured by our
third-person and egocentric cameras.

18

G Robot Setup

We use a Ufactory xArm 7 robot for our real robot experiments. As shown in Figure 15, we use a fixed
third-person camera and an egocentric camera that is attached above the robot’s gripper. Example
images of the egocentric and third-person camera feeds passed to the RL agent are shown in Figure
15 (c) and Figure 15 (d).

19

	Qualitative Analysis of Learned Reward
	Additional Implementation Details
	X-MAGICAL Experiment Details
	Demonstration Data
	Diverse Environment

	Additional Results on X-MAGICAL Benchmark
	Appendix E: xArm Experiment Details
	Description of Environment Rewards
	Demonstration Data

	Additional Results on Robot Manipulation in Simulation
	Robot Setup

