
A Equivariance Property Proofs

Here we write the proofs for the Symmetric and Fixing Properties of our methodology introduced in
Section 3, which are analogous to those of [35]:
Proposition. (Symmetric Property) S( ) 2  equiv, for all  2  ; that is, S maps neural networks
to equivariant neural networks.
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Thus Kg0S( )(x) = S( )(Lg0x).

Proposition. (Fixing Property) equiv = Ran(S); that is, the range of S covers the entire equivariant
subspace.

Proof. By Proposition 1, we have Ran(S) ⇢  equiv. It thus suffices to show equiv ⇢ Ran(S). Take
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where we have used Equation 2 since  2  equiv. Thus,  is a fixed point of S, and so  2

Ran(S).
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B Optimal Meta-Equilibrium Proof

Proposition. Assume G = �. If an agent chooses either the naive approach or the G-OP learning
rule, then choosing either of these is payoff maximizing for the agent’s partner. In addition, both
players choosing either the first approach or the G-OP learning rule is the best possible meta-
equilibrium.

Proof. If an agent ⇡1 has an architecture ⇡1
2 Ran(S) or uses the G-OP learning rule, then they

necessarily have the objective to maximize
1

|G|

X

�2G

J(⇡1
,�(⇡2)),

because either of these choices forces consideration of all � 2 G equally. Since G = �, we have
1

|�|

X

�2�

J(⇡1
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where the expectation is taken with respect to the uniform distribution of �. We have thus derived the
OP objective, and so what we sought so show is a corollary of [22] (Proposition 2 in their paper).

C Averaging Over Very Different Distributions

This passage concerns why if given a policy that acts very differently in different symmetries, which
we then symmetrize with respect to a large group G, the resulting policy would be one that selects
actions approximately uniformly at random.

Consider l categorical distributions µ1, . . . , µl sampled uniformly from the collection of all categorical
distributions over k categories. Denoting µi,j as the probability of the jth category of distribution i, by
symmetry in the categories and by assumption we have that µa,r and µb,s are equally distributed for
all 1  r, s  k, 1  a, b  l. Therefore, by the law of large numbers, 1

l

Pl
i=1 µi,r ⇡

1
l

Pl
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when l is large, for all 1  r, s  k. But since 1
l

Pl
i=1 µi is a probability distribution, this implies

1
l

Pl
i=1 µi,j !

1
k as l becomes large, for all 1  j  k; i.e., 1

l

Pl
i=1 µi approaches the uniform

distribution over k values.

The reader may identify l = |G|, k as the number of legal actions, and each µi as the policy’s action
distribution under symmetry i, where we took each µi uniformly at random to mimic a policy that
acts entirely differently per Dec-POMDP symmetry. While the uniform distribution over actions is
indeed symmetry-equivariant (and invariant), it is not in general useful.

D Hanabi

Hanabi is a cooperative card game that can be played with 2 to 5 people. Hanabi is a popular game,
having been crowned the 2013 “Spiel des Jahres” award, a German industry award given to the
best board game of the year. Hanabi has been proposed as an AI benchmark task to test models of
cooperative play that act under partial information [5]. To date, Hanabi has one of the largest state
spaces of all Dec-POMDP benchmarks.

The deck of cards in Hanabi is comprised of five colors (white, yellow, green, blue and red), and five
ranks (1 through 5), where for each color there are three 1’s, two each of 2’s, 3’s and 4’s, and one 5,
for a total deck size of fifty cards. Each player is dealt five cards (or four cards if there are 4 or 5
players). At the start, the players collectively have eight information tokens and three fuse tokens, the
uses of which shall be explained presently.

In Hanabi, players can see all other players’ hands but their own. The goal of the game is to play
cards to collectively form five consecutively ordered stacks, one for each color, beginning with a card
of rank 1 and ending with a card of rank 5. These stacks are referred to as fireworks, as playing the
cards in order is meant to draw analogy to setting up a firework display4.

4Hanabi (±k) means ‘fireworks’ in Japanese.
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We call the player whose turn it is the active agent. The active agent must conduct one of three
actions:

• Hint - The active agent chooses another player to grant a hint to. A hint involves the active
agent choosing a color or rank, and revealing to their chosen partner all cards in the partner’s
hand that satisfy the chosen color or rank. Performing a hint exhausts an information token.
If the players have no information tokens, a hint may not be conducted and the active agent
must either conduct a discard or a play.

• Discard - The active agent chooses one of the cards in their hand to discard. The identity of
the discarded card is revealed to the active agent and becomes public information. Discarding
a card replenishes an information token should the players have less than eight.

• Play - The active agent attempts to play one of the cards in their hand. The identity of
the played card is revealed to the active agent and becomes public information. The active
agent has played successfully if their played card is the next in the firework of its color to be
played, and the played card is then added to the sequence. If a firework is completed, the
players receive a new information token should they have less than eight. If the player is
unsuccessful, the card is discarded, without replenishment of an information token, and the
players lose a fuse token.

The game ends when all three fuse tokens are spent, when the players successfully complete all five
fireworks, or when the last card in the deck is drawn and all players take one last turn. If the game
finishes by depletion of all fuse tokens (i.e. by “bombing out”), the players receive a score of 0.
Otherwise, the score of the finished game is the sum of the highest card ranks in each firework, for a
highest possible score of 25.

E Experiment Details

Many of the hyperparameter choices are taken from [21, 22]. The main body of the network for each
trained agent consists of 1 fully connected layer with a hidden dimension of 512, 2 LSTM layers of
512 units, and two output heads for value and advantage, respectively. The networks are updated
using the Adam optimizer [26] with learning rate 6.25⇥10�5 and ✏ = 1.5⇥10�5. We use a batchsize
of 128 for training. The replay buffer size is 105 episodes, and is warmed up with 104 episodes before
training commences. We use two GPUs for asynchronous actors to collect rollouts and record to
an experience replay, and one GPU for computing gradients and model updates. The trainer sends
its network weights to all actors every 10 updates and the target network is synchronized with the
online network every 2.5⇥ 103 updates. Training was concluded after 103 epochs, where each model
reached (or near reached) convergence; each epoch consisted of 103 updates. The compute we used
were 3 NVIDIA GeForce RTX 2080 Ti GPUs and 40 CPU cores.

Our complete code for training and symmetrizing agents can be found in our GitHub repo: https://
github.com/gfppoy/equivariant-zsc. This repo is based off the Off-Belief Learning codebase
[23] and the Hanabi Learning Environment (HLE).
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F Comparing LSTM Modification choices

Here we compare the two design choices mentioned in Section 3.1: namely 1) ht =
1
|G|

P
g2G ht,g

and ct =
1
|G|

P
g2G ct,g (averaging); and 2) ht = ht,e and ct = ct,e (identity). Table 3 summarizes

the results of symmetrizing the policies in Section 4.2 at test time using the dihedral group, using either
the averaging or identity schemes. We can see the averaging scheme tends to slightly outperform the
identity, an interesting finding given the counter-intuitive nature of the design choice.

Table 3: Cross-play (XP) scores and bombout rates of various diverse policy types symmetrized at
test time. Agents are symmetrized with respect to the dihedral group, and we compare the averaging
and identity schemes as described above. Each agent is trained with a different seed. Each pair of
agents was evaluated over 5000 games, with the total averages compiled here. The error bars are the
standard error of the mean.

XP Stats SAD IQL OP OBL-L5

W/o symmetrizer 2.52 ± 0.34 10.53 ± 0.78 15.32 ± 0.65 23.77 ± 0.06
ht = ht,e, ct = ct,e 3.41 ± 0.41 13.32 ± 0.68 16.35 ± 0.54 23.88 ± 0.04
ht =

1
|G|

P
g2G ht,g , ct =

1
|G|

P
g2G ct,g 3.61 ± 0.39 13.62 ± 0.65 16.48 ± 0.53 23.89 ± 0.04

G Conditional Action Matrices

Figure 3: Conditional action matrices of SAD, i.e. P (ait | a
j
t�1), unsymmetrized (left) and sym-

metrized at test time (middle is C5-symmetrized and right is D10-symmetrized). The y-axis represents
the action taken at timesetep t and the x-axis shows the proportion of each action as response at
timestep t+ 1. The matrices show the interactions between color/rank hinting and play/discarding.
C1-5 and R1-5 mean hinting the 5 different colors and ranks respectively, and P1-5 and D1-5 mean
playing and discarding the 1st-5th cards in the hand. We selected a random agent, and each plot is
thereby computed by running 1000 episodes of self-play with the agent to compute the statistics.

Figure 4: Conditional action matrices of OP, i.e. P (ait | a
j
t�1), unsymmetrized (left) and symmetrized

at test time (middle is C5-symmetrized and right is D10-symmetrized). The y-axis represents the
action taken at timesetep t and the x-axis shows the proportion of each action as response at timestep
t+ 1. The matrices show the interactions between color/rank hinting and play/discarding. C1-5 and
R1-5 mean hinting the 5 different colors and ranks respectively, and P1-5 and D1-5 mean playing
and discarding the 1st-5th cards in the hand. We selected a random agent, and each plot is thereby
computed by running 1000 episodes of self-play with the agent to compute the statistics.
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Figure 5: Conditional action matrices of G-equivariant agents, i.e. P (ait | a
j
t�1), C5 on left and D10

on right. The y-axis represents the action taken at timesetep t and the x-axis shows the proportion of
each action as response at timestep t + 1. The matrices show the interactions between color/rank
hinting and play/discarding. C1-5 and R1-5 mean hinting the 5 different colors and ranks respectively,
and P1-5 and D1-5 mean playing and discarding the 1st-5th cards in the hand. We selected a random
agent C5-equivariant agent and a random D10-equivariant agent, and each plot is thereby computed
by running 1000 episodes of self-play with each agent to compute the statistics.

H On the High Variance of Cross-Play Scores

Reinforcement learning is notoriously sensitive to hyperparameter settings and seeds, making re-
producibility of results challenging5. Correspondingly, in our experimentation we have found that
average cross-play scores of groups of trained agents can vary greatly from group to group, where
adjusting such hyperparameters as batch size, number of GPUs used for simulation, network architec-
ture and seeds used can all lead to different average cross-play scores. This should be borne in mind
for future research that aims to compare new results with existing baselines.

I Broader Impact

We have found that equivariant networks can effectively solve symmetry breaking and encourage play
suited for cooperative settings. No technology is safe from being used for malicious purposes, which
equally applies to our research. However, fully-cooperative settings target benevolent applications.

5https://media.neurips.cc/Conferences/NIPS2018/Slides/jpineau-NeurIPS-dec18-fb.pdf
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