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Abstract

Understanding and creating mathematics using natural mathematical language –
the mixture of symbolic and natural language used by humans – is a challenging
and important problem for driving progress in machine learning. As a step in this
direction, we develop NATURALPROOFS, a multi-domain corpus of mathematical
statements and their proofs, written in natural mathematical language. NATURAL-
PROOFS unifies broad coverage, deep coverage, and low-resource mathematical
sources, allowing for evaluating both in-distribution and zero-shot generalization.
Using NATURALPROOFS, we benchmark strong neural methods on mathematical
reference retrieval and generation tasks which test a system’s ability to determine
key results that appear in a proof. Large-scale sequence models show promise
compared to classical information retrieval methods, yet their performance and
out-of-domain generalization leave substantial room for improvement. NATURAL-
PROOFS opens many avenues for research on challenging mathematical tasks.1

1 Introduction

Solving the problem of understanding and creating mathematics using natural mathematical language
– the mixture of symbolic and natural language used by humans – is a path towards developing agents
capable of reasoning. The mixture of symbolic and natural text, along with the existence of a formal
counterpart, offers a unique setting for studying reasoning that complements research involving
natural language alone or purely within a formal system. Constructing a mathematical proof involves
symbolic manipulation, logical and analogical reasoning, as well as knowledge retrieval. Common
sense and natural language abilities are needed to articulate the proof in a concise, comprehensible
form. Moreover, systems that operate on mathematical text have applications in education and
scientific discovery, while bridging informal and formal mathematics can be a key driver of progress
in automated reasoning [5, 20, 37].

Recently, techniques from natural language processing have driven advances in formalized mathemat-
ics (e.g. Polu and Sutskever [30], Rabe et al. [31], Wu et al. [47]), in which mathematics is written in
a verifiable formal language that resembles source code, such as Mizar [41], Lean [7], or Metamath
[26]. However, this setting does not directly address the informal aspect of human mathematics,
which is conveyed with a mixture of symbolic and natural language [13]. This aspect is crucial,
since advancing human understanding is a goal of mathematics [40], and a significant fraction of
mathematical knowledge is in natural language text [37].

1Dataset and code available at https://github.com/wellecks/naturalproofs.
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Source ProofWiki
Theorem Category of Monoids is Category

Let Mon be the category of monoids.
Then Mon is a metacategory.

Proof Let us verify the axioms (C1) up to (C3) for a metacategory. We have
Composite of Homomorphisms on Algebraic Structure is Homomorphism, verifying (C1).
We have monoid (S, ◦). Now, (C2) follows from
Identity Mapping is Left Identity and Identity Mapping is Right Identity.
Finally, (C3) follows from Composition of Mappings is Associative.
Hence Mon is a metacategory.

Source Textbook: Real Analysis
Theorem Suppose that f is continuous on the closed interval [a, b] and differentiable on the

open interval (a, b), and f(a) = f(b).
Then f ′(c) = 0 for some c in the open interval (a, b).

Proof Since f is continuous on [a, b], f attains a maximum and a minimum value on [a, b] (Theorem
2.2.9). If these two extreme values are the same, then f is constant on (a, b), so f ′(x) = 0 for
all x in (a, b). If the extreme values differ, then at least one must be attained at some point c in
the open interval (a, b), and f ′(c) = 0, by Theorem 2.3.7.

Table 1: Example theorems and their proofs from NATURALPROOFS. Given a theorem, the math-
ematical retrieval task consists of retrieving the references (underlined) that occur in its proof.
NATURALPROOFS contains data from ProofWiki, Stacks, and two textbooks; we show two sources
here and two other sources in Table 12. See Figure 2 and Figure 3 for data format details.

In this paper, we describe NATURALPROOFS, a multi-domain corpus of mathematical statements and
their proofs, written in natural mathematical language. NATURALPROOFS contains broad-coverage
data from ProofWiki,2 deep-coverage data from the Stacks project,3 and low-resource, real-world
data from mathematics textbooks. NATURALPROOFS unifies these sources in a common schema and
is made publicly available as a resource to drive progress on tasks involving informal mathematics,
complementing existing work in this direction (e.g. [11, 12, 43]).

Using NATURALPROOFS, we consider mathematical reference retrieval, an analogue of premise
selection [1, 12]: given a mathematical claim, retrieve the set of references (theorems, lemmas,
definitions) that occur in its proof. This task represents a crucial facet of mathematical reasoning,
in which a mathematician determines the key results that appear in a proof. As a bridge towards
generative tasks using NATURALPROOFS, we consider mathematical reference generation, which
requires additionally recovering the order and number of references in each proof. Progress on either
task could enable educational applications, such as providing a student with hints or guidance.

In addition to standard in-distribution evaluation, the multi-domain nature of NATURALPROOFS
allows for evaluating out-of-distribution, zero-shot generalization. We design an evaluation protocol
that tests a system’s ability to retrieve references for novel theorems in each setting, and benchmark
methods based on large-scale neural sequence models [8, 21], including a strong joint retrieval
method that better refines the top of the ranked list, as well as an autoregressive variant for reference
generation. The neural methods are effective for in-domain retrieval compared to classical techniques,
yet out-of-distribution generalization, leveraging symbolic mathematical content, and fully recovering
a proof’s references remain as fundamental challenges. NATURALPROOFS opens many possibilities
for developing and evaluating machine learning methods on challenging mathematical tasks.

2 Related Work

Machine learning for mathematical theorem proving. A large portion of work integrating machine
learning with mathematical reasoning has focused on formalized mathematics. Early work by Urban
[41] used machine learning for selecting relevant premises in the Mizar mathematical library that
are passed to an automated theorem prover, which was later explored with deep neural networks [1].
Bansal et al. [3] developed the HOList benchmark based on the HOL Light theorem prover, while

2https://proofwiki.org/
3https://stacks.math.columbia.edu/
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Table 2: The reference graph. Nodes are state-
ments and edges are reference links. An edge
pointing from A to B means that the proof for
theorem B refers to statement A. Edges can start
from any type of statement, but they always end
at a theorem. In our tasks, the dataset is split so
that all theorems in the evaluation sets are leaf
nodes in the reference graph.

Source All PWiki Stacks RA NT

T
he

or
em

N 32,579 19,734 12,479 298 68
Tokens 46.7 38.2 60.6 33.6 23.7

Lines 5.9 3.6 9.7 8.4 4.5
Refs 1.8 2.8 0.2 0.0 0.0

Pr
oo

f N 32,012 19,234 12,479 235 64
Tokens 181.5 199.3 155.5 128.9 97.2

Lines 24.9 25.8 23.4 36.1 16.1
Refs 5.6 7.4 3.0 1.6 0.9

D
efi

ni
tio

n N 14,230 12,420 1,687 86 37
Tokens 48.4 45.0 73.2 58.6 32.6

Lines 5.0 4.2 10.7 13.3 5.1
Refs 2.9 3.3 0.4 0.0 0.0

O
th

er

N 1,974 1,006 968 – –
Tokens 212.1 286.1 135.2 – –

Lines 34.4 46.7 21.7 – –
Refs 5.7 9.2 2.0 – –

Table 3: NATURALPROOFS dataset statistics.
Numbers represent mean value, except for "N"
rows which represent count. RA is the Real
Analysis textbook; NT is the Number Theory
textbook. See Table 14 for detailed statistics.

others use the Coq [19, 48], Metamath [44, 42, 30], Isabelle [24], or Lean [14, 49] environments.
These formalized settings differ from NATURALPROOFS, which uses mathematical language as
humans write it. Szegedy [37] argues for leveraging both informal and formal mathematics through
autoformalization. Wang et al. [43] explore translating between informal and formal mathematics,
including via a dataset based on ProofWiki, though their dataset is not made available. Ferreira and
Freitas [11, 12] propose a classification-based natural language premise selection task and a dataset
based on ProofWiki, while NATURALPROOFS covers multiple domains and provides evaluation
and benchmarks for full retrieval and generative tasks. The multiple informal domains, evaluation
protocol, joint retrieval model, and reference generation task distinguish our work from previous
work on ProofWiki and formalized mathematics.

Mathematics and language benchmarks. Several datasets evaluate a model’s ability to solve
multiple-choice algebraic word problems [35, 25, 2] or arithmetic problems [36] with varying de-
grees of natural language. Lample and Charton [22] evaluate neural sequence models on symbolic
integration problems, while Hendrycks et al. [16] propose a benchmark based on math competi-
tion problems. NATURALPROOFS focuses on theorem proving rather than calculation, which we
hypothesize evaluates different skills, and may prove useful in bridging formal and informal settings.

Large-scale neural language models. Large-scale unsupervised pretraining of language models has
led to significant advances in many natural language processing domains (e.g. [8, 32, 33, 4]). Recent
work suggests that these models store knowledge in their parameters [29], are capable of reasoning
in mathematical [31, 47] and language [6, 38] domains, and are effective for information retrieval
tasks [27, 28]. These advances motivate our work, which explores mathematical reasoning in natural
language with large-scale language models through a retrieval task.

3 The NATURALPROOFS Dataset

The NATURALPROOFS Dataset is a large-scale, multi-domain dataset for studying mathematical
reasoning in natural language. NATURALPROOFS consists of 32k theorem statements and proofs, 14k
definitions, and 2k other types of pages (e.g. axioms, corollaries). Table 3 shows dataset statistics.

Multi-domain. NATURALPROOFS contains data derived from three domains:
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1. Broad-coverage data that encompasses many mathematical topics (e.g. Set Theory, Analysis).
We source data from ProofWiki (https://proofwiki.org/), an online compendium of
mathematical proofs written by a community of contributors. Table 1 shows a theorem and
its proof from ProofWiki. There are 31 top-level topic categories in this domain (§A.2).

2. Deep-coverage data that focuses on a single topic. We use the Stacks project (https:
//stacks.math.columbia.edu/), a collaborative web-based textbook of algebraic geom-
etry written for graduate students and researchers. See Appendix Table 12 for an example.

3. Low-resource, real-world data that poses generalizability challenges to informal theorem
proving systems. We use two open-source math textbooks with rich theorem-proof structures
and reference links, specifically Introduction to Real Analysis (RA in short) by William F.
Trench and Elementary Number Theory: Primes, Congruences, and Secrets (NT in short)
by William Stein. See Table 1 and Appendix Table 12 for examples from each textbook.

NATURALPROOFS provides a common schema for mathematical statements, proofs, and the refer-
ences that appear in each domain. Its multiple domains provide a challenging evaluation setting for
models and opens opportunities for investigating domain transfer, out-of-distribution generalization,
and methods for low-resource settings. This differs from existing resources that focus only on
ProofWiki [11, 12], and reflects shifts in natural language processing towards multi-domain settings
[45, 18], out-of-distribution generalization [23, 15, 39], and few- or zero-shot generalization in
resource-constrained settings [4, 9].

Structure. Each statement in NATURALPROOFS is either a theorem or a definition. NATURAL-
PROOFS provides the statement’s title, contents, and references. The contents is a list of sequences,
where each sequence contains one line of mixed text and LATEX, with reference links displayed in their
natural language forms. A theorem is associated with one or more proofs when available. A proof
contains a title, contents, and references in the same format as a statement. Finally, we collect other
pages (e.g. axioms, corollaries). A reference is a theorem, definition, or other page that is linked to
within the contents of a statement or proof. Figure 3 shows the data format for theorems, definitions,
and proofs in NATURALPROOFS. All statements and the reference links connecting them form a
reference graph, shown in Table 2. The reference graph can contain cycles, e.g. Pythagoras’s
Theorem and Sum of Squares of Sine and Cosine refer to each other in their proofs.

Data sources and preprocessing. We describe how we retrieve data from each source and give an
overview of preprocessing; for full details see Appendix A.1 and the Jupyter notebooks we release.

• ProofWiki. We download the public ProofWiki XML dump,4 which contains a snapshot of all
pages on ProofWiki. We filter pages according to manual rules (e.g. redirects, files, categories), and
determine page type, title, contents, and references using each page’s WikiMedia data structure.

• Stacks. We pull the Stacks GitHub repo,5 which contains multiple LATEX files for various sub-topics
in algebraic geometry. We extract statements and proofs by LATEX environment names. For example,
the content enclosed by \begin{theorem} and \end{theorem} would be considered a theorem.

• Textbooks. We downloaded the LATEX source of the RA6 and NT7 textbooks, and similarly
extracted statements and proofs by environment names. In both textbooks, every statement is either
a theorem or a definition – there are no statements that fall under "others".

4 NATURALPROOFS Reference Retrieval and Generation Tasks

NATURALPROOFS opens many possible machine learning tasks that involve natural mathematical
language. We consider mathematical reference retrieval: given a theorem x, retrieve the set of
references y that occur in its proof. An example is shown in Table 1, where the task is to retrieve
the underlined references given the title and contents of the theorem Category of Monoids is

4https://proofwiki.org/xmldump/latest.xml. We use the November 12, 2020 version. ProofWiki
is licensed under CC BY-SA 3.0.

5https://github.com/stacks/stacks-project. We use the April 15, 2021 version (commit 4df67b8).
Stacks is licensed under GNU Free Documentation License.

6https://digitalcommons.trinity.edu/mono/7/. Retrieved on April 15, 2021. We did not use the
supplementary materials. This textbook is licensed under CC BY-NC-SA 3.0.

7https://github.com/williamstein/ent. Retrieved on April 15, 2021. We provide a script to down-
load and format the publicly available latex source.
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Split P+S ProofWiki Stacks RA NT
Examples |E| total 25,271 14,698 10,573 167 40

train 21,446 12,424 9,022 – –
valid 1,914 1,139 775 – –

test 1,911 1,135 776 167 40

Refs |R| train 42,056 28,473 13,583 – –
valid 45,805 30,671 15,134 – –

test 45,805 30,671 15,134 384 105

Refs/Ex |y| train 5.9 7.5 3.6 – –
valid 5.6 7.5 2.9 – –

test 5.6 7.4 2.9 2.2 1.5

Table 4: NATURALPROOFS retrieval dataset statistics. P+S refers to the combined dataset from the
ProofWiki and Stacks sources. RA (Real Analysis) and NT (Number Theory) are data from textbook
sources that we use for zero-shot evaluation.

Category. As a proof is ultimately written as an ordered collection of statements with references
often occurring more than once, we also consider mathematical reference generation: generate the
sequence of references that occur in a given theorem’s proof. These tasks represent a crucial aspect
of theorem proving, in which a mathematician determines the key results that appear in a proof. Each
task also enables educational applications, such as providing hints to a student about which previous
results to use, or guidance on how to structure a proof.

Reference retrieval and generation. Each theorem x has a proof containing a sequence of references
y = (r1, . . . , r|y|), where each reference rm ∈ R is either a theorem, definition, or other statement
(see §3). We consider two tasks: retrieval and generation.

In the retrieval task, given an input theorem x, a model assigns a score to each reference in R,
inducing a ranked list r̂(1), . . . , r̂(|R|). These ranked references are evaluated against the ground-truth
reference set using standard retrieval metrics such as mean average precision (MAP), recall (REC@k),
and full recovery (FULL@k), which checks whether all references in the proof are in the top-k
predicted rankings. This reflects the goal of fully proving a theorem using a fixed number of results.
For further details, refer to Appendix B.4.

In the generation task, a model produces a variable-length sequence of references (r̂1, . . . , r̂|ŷ|) given
an input x, with the goal of exactly matching the ground-truth reference sequence (r1, . . . , r|y|).
Unlike retrieval, generation requires the model to correctly predict the total number of references, the
number of occurrences of each unique reference, and their orders in the proof.

Input-output examples. Using NATURALPROOFS, we derive examples of the form (x,y), where
x = (x1, . . . , xT ) is a theorem, and y = (r1, . . . , r|y|) is the sequence of references that occur in the
proof of x. For retrieval, we transform each sequence into a set y = {r1, . . . , r|y|}. The set of all
references,R, consists of theorems, definitions, and other statements (see §3). We use theorems with
at least one proof that has at least one reference, resulting in a dataset with roughly 25k examples
and a reference set R with 46k unique references. We partition the dataset into ProofWiki-only,
Stacks-only, and textbook-only datasets. Table 4 summarizes the size, total references, and average
references per example in each dataset.

Training and evaluation splits. We design training and evaluation splits that reflect the real-world
scenario of proving newly seen theorems at evaluation time. This requires careful attention, since
naively sampling evaluation examples would yield evaluation theorems that appear as references in
the training set. To ensure that the theorems in the evaluation set have no overlap with the references
in the training set, we form an evaluation set using a randomly sampled subset of reference graph
leaf nodes, and use the remaining nodes as the training set (Table 2). We use roughly half of the
evaluation set for validation and the other half for testing. Since evaluation theorems are not referred
to in training examples, the reference set for training is smaller than that for evaluation (Table 4).

5 Methods

As benchmark methods for our tasks, we introduce two parallel retrieval methods, and a sequential
retrieval method trained for sequence generation. See Appendix B for further implementation details.
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Figure 1: The pairwise, joint and sequential methods for mathematical reference retrieval.

Parallel retrieval. Given a theorem x, a retrieval model should assign high scores to references in
the proof of x and low scores to all other references, which corresponds to minimizing,

L(x,y) = KL (p∗(R|x)‖pθ(R|x)) (1)

∝ −
∑
r∈y

log
exp (sθ(x, r))∑

r′∈R exp (sθ(x, r′))
+ const, (2)

where each distribution is over reference indices (i.e. in ∆(|R|)), and p∗(r|x) ∝ I[r ∈ y]. The
denominator requires scores sθ(x, r) for all |R| references, making backpropagation too expensive
when a large-scale neural model is used to compute reference representations. As a result we consider
two variants: a pairwise model that approximates Equation 1, and a joint model that computes
Equation 1 but with implicit vector representations of each reference.

Pairwise parameterization. The pairwise model scores a reference r against a theorem x indepen-
dent of other references, sθ(x, r) = f thm

θ1
(x)>gref

θ2
(r). The model is trained to contrast each positive

reference with a set of negative references,

L(x, r,y−) = − log
exp(sθ(x, r))

exp(sθ(x, r)) +
∑

r−∈y− exp(sθ(x, r−))
, (3)

where r is a reference that occurs in the proof of x, and y− is a (small) set of negative refer-
ences. At inference time, every reference is scored against an input theorem x, inducing a ranking
r(1), . . . , r(|R|). The scoring, training, and inference are illustrated in Figure 7 (a-c), respectively.

In practice, we use two instances of BERT [8] and in-batch negatives as in [21]. The pairwise model
represents retrieval methods such as the dense passage retriever [21] and similar methods [27], and
allows for evaluating large-scale sequence models on mathematical reference retrieval.

Joint parameterization. The joint model scores all references in a single pass,

pθ(R | x) = softmax (Rfθ(x)) , (4)

where R ∈ R|R|×d is a reference embedding matrix and fθ(x) ∈ Rd is a neural theorem encoder.
This model has the advantage of computing the loss denominator in Equation 1 over all references
rather than a subset of negatives. However, it must learn implicit representations of each reference
without observing reference contents. To give the model access to representations that were learned
using reference contents, we populate its embedding matrix as,

R =

 gref(r1)
. . .

gref(r|R|)

 , (5)

where gref(x) is from a trained pairwise model. The joint model is illustrated in Figure 7 (d).

Sequential generation and retrieval. Finally, we consider an autoregressive model (Figure 7 (e)),

pθ(r1, . . . , r|y| | x) =

|y|+1∏
t=1

pθ(rt|r<t,x), (6)
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ProofWiki Stacks
mAP R@10 R@100 Full@10 Full@100 mAP R@10 R@100 Full@10 Full@100

Random 0.04 0.00 0.19 0.00 0.00 0.07 0.05 0.60 0.00 0.13
Frequency 3.38 5.90 24.30 0.44 2.29 0.91 1.76 11.27 0.13 2.45

TF-IDF 6.19 10.27 23.09 4.14 9.43 13.64 25.46 47.36 18.94 37.76

BERT (P+S) +pair 13.54 20.10 58.75 6.17 31.28 18.58 34.42 71.80 28.48 65.21
+joint 32.71 37.59 73.72 17.71 48.90 26.88 35.71 72.68 28.99 66.11

BERT (P/S) +pair 16.82 23.73 63.75 7.31 38.50 20.93 37.43 74.21 30.03 66.37
+joint 36.75 42.45 75.90 20.35 50.22 28.32 39.10 73.61 31.96 65.59

Table 5: In-domain performance on the mathematical reference retrieval task (test set). BERT (P/S)
is finetuned on the part of dataset with the same source as the evaluation set, whereas BERT (P+S) is
finetuned on the combined dataset from ProofWiki and Stacks sources. Recall is micro-averaged.

where r|y|+1 is a special 〈eos〉 token denoting the end of the reference sequence. The autoregressive
model is trained to maximize the log-likelihood of ground-truth reference sequences. Unlike the
parallel retrieval models, this model predicts the order and total number of references and can predict
multiple occurrences of each reference. It also adjusts its predictions based on preceding predictions.

For generation, a standard decoding algorithm (e.g. beam search) is used to generate a refer-
ence sequence ŷ = (r̂1, . . . , r̂|ŷ| 〈eos〉). For retrieval, we populate a ranked list using generations
{r̂1, . . . , r̂|ŷ|} followed by references ordered according to the first step’s probabilities, pθ(r1|x).

6 Experiments

First, we benchmark the neural retrieval methods (§5) on mathematical reference retrieval in terms
of their in-domain performance (Table 5) and their out-of-domain performance on an evaluation set
formed from the textbooks in NATURALPROOFS (Table 7). We perform several analyses to better
understand each method’s strengths, weaknesses, and the factors that contribute to their performance.

Experimental setup. For the pairwise model, we use separate instances of bert-base-cased to
parameterize the theorem encoder f thm

θ1
and reference encoder gref

θ2
. We implement the autoregressive

model as a sequence-to-sequence encoder-decoder model. Following Rothe et al. [34], we param-
eterize the encoder and decoder using separate instances of bert-base-cased. This allows for
initializing with pairwise model components. The joint retrieval model is implemented as a one-step
variant of the autoregressive model. Pairwise models are trained for 500k steps (50 epochs for the
autoregressive and joint models), evaluated every 5k steps (or 5 epochs) and the model with the
highest validation mAP is selected for final evaluation. Refer to Appendix B for further details.

Retrieval metrics. We evaluate with standard retrieval metrics – mean average prevision (mAP) and
recall@k (R@k) – and a Full@k metric measuring whether all true references are retrieved in the
top-k results. We use k = 10 and k = 100 for our evaluation. Refer to Appendix B.4 for definitions.

In-domain performance. The BERT-based retrieval models show strong in-domain performance
compared to the classical TF-IDF and naive baselines in terms of average precision, recall, and
the ability to fully recover all true references within the top-k results, as seen in Table 5. On both
ProofWiki and Stacks, the pairwise models outperform TF-IDF, with improvements that are consistent
across reference types (Appendix Table 17).

Joint parameterization substantially improves over the pairwise models that are the starting point of
joint training. On ProofWiki, the joint model ranks roughly 4 out of every 10 true references within
its top 10 rankings (R@10 42.45) compared to 1 out of 10 for TF-IDF, and an impressive 75% within
its top 100. For roughly half of the theorems, the joint model’s top 100 references contain all of the
references needed to prove the theorem (Full@100 50.22). On Stacks the recall@10 is similar at
roughly 40%, with a higher full recovery rate of 66% for the top 100 results.

The gains from the joint parameterization are most prominent on ProofWiki, e.g. increasing mAP
from 16.82 to 36.75. Joint parameterization particularly excels at refining the top of the ranked
list compared to pairwise parameterization; the percentage improvement in the @10 metrics are
larger than those for @100 metrics. On Stacks, the improvements are more modest: though mAP
improves by 40%, the other metrics are relatively close, suggesting that advances beyond the joint
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Source ProofWiki
Theorem Category of Monoids is Category

Let Mon be the category of monoids.
Then Mon is a metacategory.
Ground-Truth Reference Rank (Pairwise) Rank (Joint)
Metacategory 1 1
Identity Mapping is Left Identity 4 5
Identity Mapping is Right Identity 5 4
Monoid 11 2
Composition of Mappings is Associative 21 8
Identity Mapping is Automorphism 117 64
Composite of Homomorphisms is Homomorphism 261 54

Rank Reference (Pairwise) Reference (Joint)
1 Metacategory Metacategory
2 Monoid Category is Category Monoid
3 Monoid Category Identity Morphism
4 Identity Mapping is Left Identity Identity Mapping is Right Identity
5 Identity Mapping is Right Identity Identity Mapping is Left Identity
6 Category Associative
7 Composition of Morphisms Identity (Abstract Algebra)/Two-Sided Identity
8 Dual Category is Category Composition of Mappings is Associative
9 Identity Morphism Composition of Morphisms
10 Morphism Category Semigroup

Table 6: Retrieval for a representative theorem. Top: predicted ranks for ground-truth references using
the pairwise (left) and its joint (right) BERT models. Bottom: top 10 retrievals from the pairwise
(left) and joint (right) models. A retrieved reference is italicized when it is a ground-truth reference.

Real Analysis Number Theory
mAP R@10 Full@10 mAP R@10 Full@10

TF-IDF 15.79 34.65 27.54 16.42 39.62 30.00
BERT-pair (P) 13.24 24.01 19.16 15.12 41.51 35.00

+joint 11.24 20.97 16.77 15.85 41.51 35.00
BERT-pair (S) 11.56 21.28 14.97 12.58 26.42 20.00

+joint 7.04 11.55 9.58 14.88 26.42 20.00

Table 7: Zero-shot retrieval performance on out-of-domain textbooks.

model are needed. This demonstrates the importance of evaluating on multiple domains: each domain
presents novel challenges for driving advances in modeling. Finally, the BERT models trained on both
ProofWiki and Stacks (BERT (P+S)) show the possibility of training a single multi-domain model,
albeit with lower per-domain performance than the models trained individually on each domain.

Qualitative evaluation. Table 6 shows model predictions for a representative theorem, Category
of Monoids is Category. The pairwise model retrieves three out of seven true references within
its top 50 results, while the joint model retrieves five out of seven. The top 10 results for both models
are comprised of references that are related to category theory, which is the subject of the theorem.
This illustrates the model’s ability to retrieve relevant references, while highlighting its inability to
always perform the fine-grained distinction between a relevant reference and one that occurs in the
ground-truth proof(s). Arguably, such a system is still useful for providing hints to a user, so long as
the user is confident that all of the true references are in a reasonably small set of results.

Out-of-domain performance. While strong in-domain performance drives applications in scenarios
where training data is available, an ambitious goal is building a system with mathematical retrieval
skills that automatically generalize to new resources. To evaluate the retrieval methods in this
zero-shot, out-of-domain setting, we use each textbook from NATURALPROOFS as an evaluation set.
This tests situations where the same theorem is expressed using different language (e.g. Table 13),
generalization across data formats, and whether retrieval ability from in-domain training transfers.

Table 7 shows the results. The pairwise BERT model trained on ProofWiki underperforms TF-IDF
on the Real Analysis textbook, and has comparable performance on the Number Theory textbook.
Joint training did not improve out of domain performance, despite its favorable in-domain impact.
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Sequence Multiset Set

Model EM Edit(↓) BLEU4 BLEU2 Len EM F1 EM F1 BLEU1

St
ac

ks
*-set 51.74 35.70 9.75 47.73 0.97 89.03 97.04 100.0 100.0 94.09

*-multiset 49.42 38.13 9.71 47.71 1.00 100.0 100.0 100.0 100.0 100.0
*-halfseq 0.00 70.49 6.13 12.08 0.30 0.00 56.86 0.65 58.01 16.87

Joint 0.00 98.81 0.00 3.42 2.82 0.00 19.24 0.00 19.65 15.15
Autoregressive 3.87 90.65 0.00 2.59 0.97 4.00 13.14 4.90 15.04 10.06

Pr
oo

fW
ik

i *-set 18.09 58.51 7.18 29.50 0.83 49.96 82.57 100.0 100.0 65.57
*-multiset 19.23 58.09 16.68 52.89 1.00 100.0 100.0 100.0 100.0 100.0
*-halfseq 0.00 58.84 25.88 29.17 0.41 0.00 63.33 4.21 70.26 30.55

Joint 0.00 93.03 0.00 6.88 1.42 0.09 25.30 0.18 30.76 19.27
Autoregressive 3.69 84.30 5.48 11.90 1.18 3.78 25.61 4.65 28.97 20.81

Table 8: In-domain generation results. We show the autoregressive model, a retrieval-only baseline
using the top-5 predictions from the joint retrieval model, and oracle benchmarks for correctly
predicting the first half of the sequence (*-halfseq), the full multiset with randomized order (*-
multiset), and the full set with randomized order (*-set). The best model-based method is in bold.

Training BERT on ProofWiki outperforms training on Stacks, showing that the training domain
impacts out-of-domain generalization. ProofWiki’s broad coverage of mathematics may help the
model generalize better than the deep, single-topic coverage in Stacks.

The BERT models show some evidence of generalizing to out-of-domain mathematical sources,
yet they do not show an advantage over traditional retrieval methods despite strong in-domain
performance. This aligns with recent findings about neural retrieval models in various zero-shot
settings [39]. An exciting research direction is using NATURALPROOFS to develop and evaluate
methods which improve not only in-domain performance, but out-of-domain generalization.

6.1 Reference Generation

Next, we establish a benchmark for recovering the sequence of references occurring in the proof of
each theorem via the reference generation task (§4).

Metrics. We evaluate predicted reference sequences against ground-truth sequences using order-
aware sequence metrics, as well as unordered multiset and set-based metrics. Sequence metrics
include exact match (EM), edit-distance (Edit), standard BLEU4 score which uniformly weights
1-4 gram precision, BLEU2 with only 1-2 gram precision, and average length ratio predicted

true (Len).
Unordered metrics include exact match, F1-score (corpus level), and 1-gram precision BLEU1.

Methods. We use the autoregressive model to generate a reference sequence for each theorem using
beam search. As a retrieval-only baseline, we form a sequence using the joint retrieval model’s top-5
predictions, ordered by retrieval score. To judge performance and provide a benchmark for future
work, we provide three oracle baselines: correctly predicting the first half of the sequence (*-halfseq),
the full multiset of references with random order (*-multiset), and the set with random order (*-set).

Results. Table 8 shows the in-domain generation results. The task is challenging, with the autoregres-
sive model exactly matching the ground-truth sequence roughly 3% of the time. The autoregressive
model improves over the retrieval-only baseline on order-aware metrics, aside from BLEU2 on Stacks.
It does length-prediction reasonably well, with length-ratios of 0.97 and 1.18, yet the multiset and set
metrics indicate that the autoregressive model struggles to correctly predict the correct references,
even after discarding order. The oracle baselines indicate substantial room for future improvement–
for instance, predicting only half of each sequence correctly would move ProofWiki BLEU4 from
5.48 to 25.88. Developing models along the full spectrum from set-based retrieval, to reference
generation, to full proof generation is an exciting use-case for NATURALPROOFS.

6.2 Ablation Studies

Initialization and autoregressive retrieval. As shown in Table 9, the autoregressive model trained
for sequence generation substantially improves over the pairwise retrieval model, yet underperforms
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Init Model mAP
– Pairwise 16.99
– Autoregressive 17.77
f thm Autoregressive 25.07
f thm,R Autoregressive 35.37
– Joint 18.71
f thm Joint 28.95
f thm,R Joint 37.51

Table 9: Initializing with pairwise
components, and autoregressive
retrieval (ProofWiki).

Train Eval
Lang. NatProof PW Stacks

3 7 0.14 0.30
7 3 0.04 0.86
3 3 16.99 21.21

Table 10: Language pretraining
and NATURALPROOFS finetun-
ing (pairwise retrieval, mAP).

Title Content PW Stacks

T
F-

ID
F 7 3 4.97 12.34

3 7 8.10 12.69
3 3 6.33 13.45

B
E

R
T 7 3 16.19 19.12

3 7 24.48 19.15
3 3 16.99 21.21

Table 11: Excluding (7) the title
or content of theorems and refer-
ences (pairwise retrieval, mAP).

the joint model, which is trained specifically for retrieval. Initializing the joint and autoregressive
models using the pairwise model was necessary for achieving high performance; in particular, the
reference information conveyed through the embedding matrix (Equation 5) was crucial.

Language pretraining and NATURALPROOFS training. The BERT model has two learning phases:
pretraining on language data, and finetuning on NATURALPROOFS. As seen in Table 10, relying
on language-pretraining alone without fine-tuning on NATURALPROOFS (top row) led to poor
performance. Conversely, training from scratch on NATURALPROOFS (middle row) was unsuccessful,
suggesting that language pretraining served as an effective initialization for mathematical retrieval.

Title and content ablation. Each theorem statement and reference consists of a title, as well as
contents that is a mixture of symbolic mathematics and natural language. As seen in Table 11,
ProofWiki’s titles contain a large amount of useful information for retrieval– TF-IDF and the pairwise
BERT model performed better with only access to titles. In principal, the title+content model could
learn to ignore the contents if needed, so its lower performance shows a deficiency in the pairwise
model. On Stacks, the model performs best with both sources of information, though the degree of
improvement suggests that leveraging the mathematical content remains as a fundamental challenge.

7 Conclusion

Building agents that understand and create mathematics using natural mathematical language
is a challenging research direction, providing a means for evaluating and developing machine
learning methods capable of symbolic reasoning and natural language understanding. As a step in
this direction, we develop NATURALPROOFS, a multi-domain dataset for studying mathematical
reasoning in natural language. NATURALPROOFS allows for evaluating in-domain performance,
and out-of-domain generalization in broad and deep coverage mathematics, as well as real-world,
low-resource settings. We establish benchmarks for retrieval and generation tasks that represent key
steps in real-world theorem proving, and are tractable, yet challenging, for current large-scale neural
sequence models. NATURALPROOFS opens many promising avenues for future research.

Broader Impacts Statement Our work pertains to use of the natural language in mathematical
theorem proving, and more generally reasoning in artificial intelligence. Although a general reasoning
agent may present negative societal impacts, we do not foresee any immediate negative societal
impact from the domain, dataset, tasks, and study that we present here. Instead, we foresee positive
societal impacts through applications in education and scientific discovery that are enabled by systems
which understand and create natural mathematical content.
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Appendix

A Dataset Details

Table 12 shows example theorems and proofs from more data sources. Table 13 shows an example
of the same theorem extracted from different sources. Table 14 gives more detailed statistics of the
dataset. Figure 2 shows the JSON format of an example theorem, whereas Figure 3 shows the data
schema we use to standardize data collected from different sources.

Source Stacks
Theorem Lemma 9.7

Let S be a scheme. Let f : X → S be locally of finite type with X quasi-compact. Then
size(X) ≤ size(S).

Proof We can find a finite affine open covering X =
⋃

i=1,...n Ui such that each Ui maps into an affine
open Si of S. Thus by Lemma 9.5 we reduce to the case where both S and X are affine. In this
case by Lemma 9.4 we see that it suffices to show
|A[x1, . . . , xn]| ≤ max{ℵ0, |A|}.
We omit the proof of this inequality.

Source Textbook: Number Theory
Theorem Proposition 2.1.13

If gcd(a, n) = 1, then the equation ax ≡ b (mod n) has a solution, and that solution is unique
modulo n.

Proof Let R be a complete set of residues modulo n, so there is a unique element of R that is congruent
to b modulo n.
By Lemma 2.1.12, aR is also a complete set of residues modulo n, so there is a unique element
ax ∈ aR that is congruent to b modulo n, and we have ax ≡ b (mod n).

Table 12: Example theorems and their proofs from the Stacks and Number Theory textbook sources.

Source ProofWiki
Theorem Solution of Linear Congruence/Unique iff Coprime to Modulus

If gcd{a, n} = 1, then ax ≡ b (mod n) has a unique solution.
Proof From Solution of Linear Congruence: Existence:

the problem of finding all integers satisfying the linear congruence ax ≡ b (mod n)
is the same problem as:
the problem of finding all the x values in the linear Diophantine equation ax− ny = b.
Let: gcd{a, n} = 1
Let x = x0, y = y0 be one solution to the linear Diophantine equation: ax− ny = b
From Solution of Linear Diophantine Equation, the general solution is:
∀k ∈ Z : x = x0 + nk, y = y0 + ak
But: ∀k ∈ Z : x0 + nk ≡ x0 (mod n)
Hence x ≡ x0 (mod n) is the only solution of ax ≡ b (mod n).

Source Textbook: Number Theory
Theorem Units

If gcd(a, n) = 1, then the equation ax ≡ b (mod n) has a solution, and that solution is unique
modulo n.

Proof Let R be a complete set of residues modulo n, so there is a unique element of R that is congruent
to b modulo n.
By Lemma 2.1.12, aR is also a complete set of residues modulo n, so there is a unique element
ax ∈ aR that is congruent to b modulo n, and we have ax ≡ b (mod n).

Table 13: Example of the same theorem extracted from two different sources.

A.1 Preprocessing Details

ProofWiki. The theorem, definition, and proof contents are contained in a WikiMedia section that
is determined for each page type according to a hand-defined rule. Since the roughly 1,000 other
pages have varying page structures, we use their entire contents instead of a single section’s contents.

15



Source All ProofWiki Stacks Textbook: RA Textbook: NT
Type Attr mean 25%50% 75% mean 25% 50% 75% mean 25%50%75% mean 25%50%75% mean 25%50%75%

T
he

or
em

N 32,579 - - - 19,734 - - - 12,479 - - - 298 - - - 68 - - -
Chars 320.0 146 275 433 277.9 93 238 393 388.6 215 331 491 278.2 152 225 355 158.4 98 140 179

Tokens 46.7 21 39 63 38.2 14 32 53 60.6 35 52 76 33.6 19 29 41 23.7 14 21 30
Lines 5.9 2 4 8 3.6 1 3 5 9.7 4 8 12 8.4 4 7 11 4.5 2 4 5
Refs 1.8 0 0 3 2.8 0 3 4 0.2 0 0 0 0.0 0 0 0 0.0 0 0 0

Pr
oo

f

N 32,012 - - - 19,234 - - - 12,479 - - - 235 - - - 64 - - -
Chars 1,123.8 388 770 1,449 1,170.0 444 810 1,470 1,053.1 280 705 1,422 1231.0 442 876 1,634 655.7 327 551 732

Tokens 181.5 57 121 236 199.3 68 134 254 155.5 36 101 211 128.9 50 92 165 97.2 47 87 115
Lines 24.9 8 16 32 25.8 9 18 33 23.4 6 15 31 36.1 14 27 47 16.1 8 13 18
Refs 5.6 2 3 7 7.4 2 5 9 3.0 1 2 4 1.6 0 1 2 0.9 0 1 1

D
efi

ni
tio

n N 14,230 - - - 12,420 - - - 1,687 - - - 86 - - - 37 - - -
Chars 362.3 152 300 491 349.3 131 289 478 459.0 251 380 577 411.8 246 356 509 199.5 118 159 262

Tokens 48.4 18 39 65 45.0 15 35 61 73.2 41 61 91 58.6 33 49 74 32.6 21 28 43
Lines 5.0 1 4 6 4.2 1 3 6 10.7 5 9 13 13.3 8 11 17 5.1 3 4 7
Refs 2.9 0 2 4 3.3 1 3 5 0.4 0 0 1 0.0 0 0 0 0.0 0 0 0

O
th

er

N 1,974 - - - 1,006 - - - 968 - - -
Chars 1,399.8 712 1,1091,680 1,836.5 1,0181,4312,131 945.9 480 802 1,198

Tokens 212.1 101 158 250 286.1 145 206 337 135.2 70 113 168
Lines 34.4 18 28 42 46.7 28 39 49 21.7 10 18 27
Refs 5.7 1 3 7 9.2 4 7 11 2.0 0 1 3

Table 14: NATURALPROOFS dataset statistics (detailed).

In addition to well-formed axiom and corollary statements, the other pages include misformatted
theorem or definition statements that occur as references elsewhere in the corpus.

Stacks and textbooks. The raw data we obtain from Stacks and textbook sources are LATEX source
code. For each data source, we look up with a pre-defined list of environment names, and parse the
contents enclosed in these environments into statements or proofs. Each proof is associated with the
environment that immediately precedes it. As a result, each theorem has at most one proof. Table 15
lists the mapping from LATEX environment name to the data type in the NATURALPROOFS taxonomy.

A few misc notes:

• In Stacks, statements do not have titles, but each has a label with semantic meaning (e.g.
sets-lemma-bound-finite-type for the example in Table 12), so we use it as a pseudo-
title.

• In the Number Theory textbook, proofs are bounded by (\proof, \bbox) instead of
(\begin{proof}, \end{proof}).

Source Stacks
LATEX env Type
theorem theorem
lemma theorem
proposition theorem
definition definition
remark other
remarks other
proof proof

Source Textbook: RA
LATEX env Type
theorem theorem
lemma theorem
corollary theorem
definition definition
proof proof

Source Textbook: NT
LATEX env Type
theorem theorem
lemma theorem
corollary theorem
proposition theorem
definition definition
proof proof

Table 15: Mappings from LATEX environment names to NATURALPROOFS data types for each
data source. As an example, for Stacks, the mapping from lemma to theorem in row 2 means
that an environment enclosed by \begin{lemma} and \end{lemma} is considered a theorem in
NATURALPROOFS.

A.2 ProofWiki categories.

For ProofWiki, we also provide category tags for each statement. ProofWiki contains statements
encompassing a broad coverage of mathematical topics (i.e. categories). In ProofWiki, each category
has zero or more sub-categories, and sub-categories have sub-sub-categories, and so on, forming
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{
"id": 5480,
"type": "theorem",
"label": "Category of Monoids is Category",
"categories": [ "Category of Monoids" ],
"toplevel_categories": [ "Algebra", "Set Theory", "Abstract Algebra", "Category Theory" ],
"recursive_categories": [

"Category Theory",
"Algebra",
"Abstract Algebra",
"Category of Monoids",
"Set Theory",
"Examples of Categories"

],
"title": "Category of Monoids is Category",
"contents": [

"Let $\\mathbf{Mon}$ be the [[Definition:Category of Monoids|category of monoids]].",
"Then $\\mathbf{Mon}$ is a [[Definition:Metacategory|metacategory]]."

],
"refs": [

"Definition:Category of Monoids",
"Definition:Metacategory"

],
"ref_ids": [ 22919, 21454 ],
"proofs": [

{
"contents": [

"Let us verify the axioms $(C1)$ up to $(C3)$ for a [[Definition:Metacategory|metacategory]].",
"We have [[Composite of Homomorphisms on Algebraic Structure is Homomorphism]], verifying $(C1)$.",
"We have [[Identity Mapping is Automorphism]] providing $\\operatorname{id}_S$ for every

[[Definition:Monoid|monoid]] $\\left({S, \\circ}\\right)$.",
"Now, $(C2)$ follows from [[Identity Mapping is Left Identity]] and

[[Identity Mapping is Right Identity]].",
"Finally, $(C3)$ follows from [[Composition of Mappings is Associative]].",
"Hence $\\mathbf{Mon}$ is a [[Definition:Metacategory|metacategory]].",
"{{qed}}",
"[[Category:Category of Monoids]]",
"sppgcr1pruam0jkf2euhyvt6y3jpnt0"

],
"refs": [

"Definition:Metacategory",
"Composite of Homomorphisms is Homomorphism/Algebraic Structure",
"Identity Mapping is Automorphism",
"Definition:Monoid",
"Identity Mapping is Left Identity",
"Identity Mapping is Right Identity",
"Composition of Mappings is Associative",
"Definition:Metacategory"

],
"ref_ids": [ 21454, 3852, 418, 19948, 217, 4387, 1494, 21454 ]

}
]

}

Figure 2: NATURALPROOFS JSON for the theorem and proof shown in Table 1. Using the notation in
section 4, an (x,y) example is formed where x is the concatenation of 'title' and 'contents',
and y is a set formed with 'ref_ids' of one of the proofs.

a category graph.8 We recursively scrape the category pages starting from Category:Content
Categories,9 and consider categories directly under Category:Proofs By Topic as top-level
categories. Figure 4 shows the high-level structure of the ProofWiki category graph.

In the ProofWiki raw data, each statement page is tagged with several categories (the 'categories'
field). In addition, we find the top-level categories (the 'toplevel_categories' field) as well as
exhaustive categories (the 'recursive_categories' field) for each theorem by running flood-fill
on the category graph. Figure 5 and Figure 6 show some statistics of the top-level categories.

8It is not strictly a tree or DAG, because there are several skip connections (e.g. Complex Analysis is both
a top-level category and a sub-category under Analysis) and circular dependencies (e.g. Metric Spaces and
Pseudometric Spaces are sub-category of each other)

9https://proofwiki.org/wiki/Category:Content_Categories
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Dataset: {
'dataset': {

'theorems': [Statement],
'definitions': [Statement],
'others': [Statement],
'retrieval_examples': [int], // deprecated

},
'splits': {

'train': {
'ref_ids': [int],
'examples': [(int, int)],
// pairs of theorem id and index of proof

},
'valid': {

'ref_ids': [int],
'examples': [(int, int)],

},
'test': {

'ref_ids': [int],
'examples': [(int, int)],

},
},

}

Statement: {
'id': int,
'type': string,
'label': string,
'categories': [string],
'toplevel_categories': [string], // ProofWiki only
'recursive_categories': [string], // ProofWiki only
'title': string,
'contents': [string],
'refs': [string],
'ref_ids': [int],
'proofs': [Proof], // for theorems only

}

Proof: {
'contents': [string],
'refs': [string],
'ref_ids': [int],

}

Figure 3: NATURALPROOFS dataset schema.

Content Categories
...
Definitions

...
Definitions by Topic

...
Definitions/Branch of Mathematics

Definitions/Abstract Algebra
Definitions/Algebra
Definitions/Analysis
...
Definitions/Topology

Proofs
...
Proofs by Topic

Abstract Algebra
Additive Functions

Examples of Additive Functions
Monotone Additive Function is Linear

Additive Groups
...
Zero Elements

Algebra
Analysis
...
Trigonometry

Figure 4: ProofWiki category graph. Nested structure represents sub-categories. Some nesting
omitted here for simplicity.

Figure 5: Frequency of top-level cate-
gories, ProofWiki.

Figure 6: Number of top-level categories
per theorem, ProofWiki.
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Figure 7: The pairwise, joint and sequential methods for mathematical reference retrieval.

B Implementation Details and Experimental Setup

Model input format. We format each statement (x or r) as, [CLS] title [SEP] content [SEP], and
we truncate the statement when the sequence exceeds the model’s maximum length. Each sequence
is tokenized using the bert-base-cased tokenizer.

B.1 Pairwise model

Models are implemented with transformers [46] and pytorch-lightning10. The theorem en-
coder f thm

θ1
is parameterized using the bert-base-cased architecture and initialized with its param-

eters. The reference encoder gref
θ2

is also parameterized and initialized with (a separate instance of)
bert-base-cased.

Training. Models are trained for 500,000 steps on one Quadro RTX 8000 GPU. Each batch contains
a maximum of 16,384 (214) tokens. Validation is done every 5,000 steps. The model with the highest
mAP computed on the validation set is selected for final evaluation.

Negatives. We use in-batch negatives as in [21], which computes a score matrix S = TR> ∈
RB×B on a batch of theorem embeddings T ∈ RB×d and reference embeddings R ∈ RB×d, then
defines the loss as

∑B
i=1 softmax(S[i, :]), which treats elements on the diagonal of S as positives and

off-diagonal elements as negatives.

Evaluation. The full set of inputs x and the full set of references R are pre-encoded using their
respective trained models (i.e. two instances of BERT). Then the encodings for each possible x, r
pair are used to obtain scalar scores, inducing a ranked list of all |R| references for each input x.

B.2 Autoregressive

We implement the autoregressive model as a sequence-to-sequence encoder-decoder model. Following
Rothe et al. [34], we parameterize the encoder and decoder using BERT models. This allows for
initializing with pairwise model components. Concretely, we implement the architecture using the
transformers EncoderDecoderModel class with bert-base-cased encoder and decoder.

Let fθ1(x) denote the encoder and hθ2(r<t, fθ1(x)) denote the decoder. The decoder has an embed-
ding matrix R ∈ R(|R|+2)×d, where each row represents a reference or special token 〈bos〉, 〈eos〉.
At each step t, given a theorem and sequence of tokens (〈bos〉, r1, . . . , rt−1), the decoder produces a
next-token distribution pθ(·|x, r<t) = softmax(Rht + b), where ht ∈ Rd is the final hidden state
obtained from the decoder hθ2(r<t, fθ1(x)), and b ∈ R(|R|+2) is a bias vector.

The model is trained using cross-entropy loss with the ground-truth (x,y) pairs, where y =
(〈bos〉, r1, . . . , r|y|, 〈eos〉) is a reference sequence.

10https://github.com/PyTorchLightning/pytorch-lightning
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Initialization. Let f thm
θ̃1

and gref
θ̃2

be the theorem and reference encoder from a trained pairwise
model (§B.1). The initialization settings listed in Table 9 are as follows. f thm means initializing the
encoder fθ1’s parameters as θ1 = θ̃1, and then updating them during training. R means initializing
and freezing the decoder’s embedding matrix as (omitting the 〈bos〉 and 〈eos〉 rows),

R =

 gref
θ̃2

(r1)

. . .
gref
θ̃2

(r|R|)

 .
Training. Models are trained for 50 epochs on one Quadro RTX 8000 GPU. Each batch contains a
maximum of 16,384 (214) tokens. Validation is done every 5 epochs. The model with the highest
mAP computed on the validation set is selected for final evaluation.

Generation evaluation. Let ŷ ∼ F(pθ,x) denote decoding a sequence ŷ = (r1, . . . , r|ŷ|, 〈eos〉)
given model pθ and input x, using decoding algorithm F . For the reference generation task (§6.1),
we use beam search with beam size 20, based on a preliminary search over beam size {1,10,20,50}.
For retrieval evaluation only, we use greedy decoding (beam size 1) with a 1-gram repetition mask
since duplicates are not used during retrieval evaluation. For all decoding algorithms, we use the
transformers implementations.

Retrieval evaluation. A retrieval model produces a ranked list r(1), . . . , r(|R|) given an in-
put x. We evaluate our autoregressive model as a retrieval model by producing a ranked list
r(1), . . . , r(|ŷ|), . . . , r(|R|), where the first |ŷ| references come from the model’s generated sequence
ŷ = (r(1), . . . , r|ŷ|) after removing duplicates, and the remaining references are ordered according
to the model’s first-step probabilities, pθ(r1|x, 〈bos〉). In preliminary experiments we found the first
step’s probabilities to perform slightly better than using the last step’s probabilities.

B.3 Joint retrieval

We implement the joint retrieval model as a one-step variant of the autoregressive retrieval model,

pθ(·|x) = softmax(Rht + b), (7)

where ht ∈ Rd is the final hidden state obtained from hθ2(〈bos〉, fθ1(x)), and fθ1 , hθ2 are imple-
mented using the same encoder-decoder architecture as the autoregressive model (§B.2). This was a
design decision made to closely compare the effect of autoregressive vs. joint parameterizations; an
alternative implementation could use an encoder-only model.

The model is trained using KL-divergence loss, using per-example reference-distributions

p∗(r|x,y) =

{
1
|y| r ∈ y

0 otherwise
,

where y = {r1, . . . , r|y|} is the ground-truth reference set.

We use the same training settings that were used with the autoregressive model (§B.2).

B.4 Retrieval Metrics

For the mathematical reference retrieval task, we evaluate with standard retrieval metrics – mean
average prevision (mAP) and recall@k (R@k) – and a Full@k metric that measures ability to fully
recover all true references within the top-k results. We use k = 10 and k = 100 for our evaluation.

mAP. Suppose for retrieval example (x,y) the model ranks all references as r(1), . . . , r(|R|). The
average precision is computed as

AP =

|R|∑
j=1

I[r(j) ∈ y]

∑j
k=1 I[r(k) ∈ y]

j
.

mAP is the mean of AP across all retrieval examples.
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R@k. For each retrieval example, the recall@k is

R@k =

∑k
j=1 I[r(j) ∈ y]

|y|
.

We aggregate recall@k by micro-averaging across retrieval examples.

Full@k. For each retrieval example, the fully-recovering indicator is formally defined as

Full@k =
∏
r∈y

I
[
r ∈ {r(j) | 1 ≤ j ≤ k}

]
.

The overall Full@k metric is thus the mean of this fully-recovering indicator across all retrieval
examples.

C Additional Results

ProofWiki Stacks
mAP R@10 R@100 Full@10 Full@100 mAP R@10 R@100 Full@10 Full@100

Random 0.04 0.00 0.33 0.00 0.00 0.08 0.10 0.43 0.00 0.13
Frequency 3.54 5.99 24.44 0.88 2.28 1.03 1.86 10.86 0.13 2.19

TF-IDF 6.33 10.31 21.82 4.74 8.69 13.45 24.95 48.24 19.61 36.77

BERT-pair (P+S) 13.84 19.31 56.99 8.60 31.96 17.29 33.29 74.14 23.61 63.23
+joint 33.85 37.15 72.25 17.12 48.46 25.12 36.00 74.24 27.35 64.13

BERT-pair 16.99 22.91 62.03 9.22 36.96 21.21 38.00 75.67 28.77 66.19
+joint 37.51 41.39 75.92 20.54 50.75 26.55 39.81 75.71 30.58 66.06

Table 16: In-domain performance on the mathematical reference retrieval task (validation set). BERT
is finetuned on the part of dataset with the same source as the evaluation set, whereas BERT (P+S) is
finetuned on the combined dataset from ProofWiki and Stacks sources. Recall is micro-averaged.

ProofWiki Stacks
All Theorems Definitions Others All Theorems Definitions Others

Frequency 3.54 7.25 5.02 1.49 1.03 1.14 0.33 0.48
TF-IDF 6.33 10.07 2.33 2.19 13.45 12.11 15.51 13.94

BERT 16.99 14.71 13.39 11.06 21.21 19.31 24.39 17.10

Table 17: Retrieval performance (mAP) by reference type (validation set).

Performance by reference type. In Table 17 we break down the in-domain retrieval performance
by reference type. BERT shows a consistent improvement over TF-IDF on all types of references.
On ProofWiki, TF-IDF does much worse on definitions and other types than on theorems, whereas
BERT gives a more balanced performance on different types of references.

D Supplementary Materials

Dataset documentation and intended uses. We use the Dataset Nutrition Labels framework [17]
for dataset documentation. For the Statistics module, please refer to Table 3, Figure 5 and Figure 6.

The NATURALPROOFS dataset is intended to be used by researchers to build or evaluate machines on
predicting references in proofs, generating proofs to mathematical theorems, or other related tasks.
It should not be regarded as source of truth for defining particular mathematical concepts, proving
particular mathematical theorems, or the existence of such proof(s). In that case the user is advised to
consult authoritative mathematical resources.
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Metadata
Filename proofwiki.json

stacks.json
ra-trench.json
nt-stein.json

Format json

Url https://doi.org/10.5281/zenodo.4632538

Domain natural language processing

Keywords mathematics, theorems, proofs, language

Type
Rows 80,795

Columns 9

Missing none

License CC BY-SA 4.0 (proofwiki.json)
CC BY-NC-SA 4.0 (ra-trench.json)

GFDL 1.2 (stacks.json)
MIT License (ra-stein script)

Released June 2021

Range N/A

Description This dataset is a collection of mathematical
statements and proofs in natural language.

It collects data from multiple sources,
encompassing broad-coverage of all math

topics, deep-dive with a selected topic, and
low-resource scenarios. The dataset provides

theorems, proof(s) to each theorem when
applicable, and in-proof references to other

mathematical statements.

Provenance
Source
ProofWiki

(https://proofwiki.org/)
Stacks

(https://stacks.math.columbia.edu/)
Textbook: Real Analysis

(https://digitalcommons.trinity.edu/mono/7/)
Textbook: Number Theory

(https://wstein.org/ent/)

Author
Name Sean Welleck et al.
Email wellecks@uw.edu

Variables
id A unique ID for this statement.

type The type of this statement;
either theorem, definition, or other.

label A string description of this statement.

categories A list of topics that this statement
pertains. For ProofWiki data only.

title A descriptive title of this statement.

contents The content of this statament or
proof, written in LATEX.

refs A list of labels of statements that this
statement or proof refers to in its content.

ref_ids IDs for items in refs.

proofs A list of proofs for this theorem.
May be empty.

Table 18: Dataset Nutrition Labels for NATURALPROOFS.

Dataset URL. The NATURALPROOFS dataset is hosted at https://doi.org/10.5281/zenodo.
4632538. Additional instructions and resources are provided in the Github repo https://github.
com/wellecks/naturalproofs.

Author statement and license. We bear all responsibility in case of violation of rights. We confirm
that the data sources we use are licensed to permit redistribution with modification for non-commercial
purposes.

Hosting, licensing, and maintenance plan. The dataset is hosted and maintained through Zen-
odo [10],11 and the code is hosted by GitHub. The code is released under the MIT license. The
dataset is released under per-file licenses: CC BY-SA 4.0 (proofwiki.json), CC BY-NC-SA 4.0
(ra-trench.json), GFDL 1.2 (stacks.json), MIT License (ra-stein script). Zenodo meta-
data is openly available under the CC0 license, and all open content is openly accessible through
open APIs.12

Links to access the dataset and its metadata. The NATURALPROOFS dataset is hosted at https:
//doi.org/10.5281/zenodo.4632538. Additional instructions and resources are provided in the
Github repo https://github.com/wellecks/naturalproofs.

11https://zenodo.org/
12https://about.zenodo.org/
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Data format. We store the dataset as JSON files. The dataset can be read using common JSON
libraries (e.g. the built-in json module in Python) and following the dataset schema in Figure 3.

Long-term preservation. We ensure this by uploading the dataset to the Zenodo dataset repository.

Explicit license. The code is released under the MIT license. The dataset is released under per-file
licenses: CC BY-SA 4.0 (proofwiki.json), CC BY-NC-SA 4.0 (ra-trench.json), GFDL 1.2
(stacks.json), MIT License (ra-stein script). Zenodo meta-data is openly available under
the CC0 license, and all open content is openly accessible through open APIs.

Structured metadata. We release the metadata along with the dataset on Zenodo.

Persistent dereferenceable identifier. https://doi.org/10.5281/zenodo.4632538.

Reproducibility. We ensure this by releasing our code on GitHub, which includes instructions to
reproduce the evaluation numbers in the paper.
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