
Appendix

A Dataset Details

Table 12 shows example theorems and proofs from more data sources. Table 13 shows an example
of the same theorem extracted from different sources. Table 14 gives more detailed statistics of the
dataset. Figure 2 shows the JSON format of an example theorem, whereas Figure 3 shows the data
schema we use to standardize data collected from different sources.

Source Stacks
Theorem Lemma 9.7

Let S be a scheme. Let f : X ! S be locally of finite type with X quasi-compact. Then
size(X) size(S).

Proof We can find a finite affine open covering X =
S

i=1,...n Ui such that each Ui maps into an affine
open Si of S. Thus by Lemma 9.5 we reduce to the case where both S and X are affine. In this
case by Lemma 9.4 we see that it suffices to show
|A[x1, . . . , xn]| max{@0, |A|}.
We omit the proof of this inequality.

Source Textbook: Number Theory
Theorem Proposition 2.1.13

If gcd(a, n) = 1, then the equation ax ⌘ b (mod n) has a solution, and that solution is unique
modulo n.

Proof Let R be a complete set of residues modulo n, so there is a unique element of R that is congruent
to b modulo n.
By Lemma 2.1.12, aR is also a complete set of residues modulo n, so there is a unique element
ax 2 aR that is congruent to b modulo n, and we have ax ⌘ b (mod n).

Table 12: Example theorems and their proofs from the Stacks and Number Theory textbook sources.

Source ProofWiki
Theorem Solution of Linear Congruence/Unique iff Coprime to Modulus

If gcd{a, n} = 1, then ax ⌘ b (mod n) has a unique solution.
Proof From Solution of Linear Congruence: Existence:

the problem of finding all integers satisfying the linear congruence ax ⌘ b (mod n)
is the same problem as:
the problem of finding all the x values in the linear Diophantine equation ax� ny = b.
Let: gcd{a, n} = 1
Let x = x0, y = y0 be one solution to the linear Diophantine equation: ax� ny = b
From Solution of Linear Diophantine Equation, the general solution is:
8k 2 Z : x = x0 + nk, y = y0 + ak
But: 8k 2 Z : x0 + nk ⌘ x0 (mod n)
Hence x ⌘ x0 (mod n) is the only solution of ax ⌘ b (mod n).

Source Textbook: Number Theory
Theorem Units

If gcd(a, n) = 1, then the equation ax ⌘ b (mod n) has a solution, and that solution is unique
modulo n.

Proof Let R be a complete set of residues modulo n, so there is a unique element of R that is congruent
to b modulo n.
By Lemma 2.1.12, aR is also a complete set of residues modulo n, so there is a unique element
ax 2 aR that is congruent to b modulo n, and we have ax ⌘ b (mod n).

Table 13: Example of the same theorem extracted from two different sources.

A.1 Preprocessing Details

ProofWiki. The theorem, definition, and proof contents are contained in a WikiMedia section that
is determined for each page type according to a hand-defined rule. Since the roughly 1,000 other
pages have varying page structures, we use their entire contents instead of a single section’s contents.

15

Source All ProofWiki Stacks Textbook: RA Textbook: NT
Type Attr mean 25%50% 75% mean 25% 50% 75% mean 25%50%75% mean 25%50%75% mean 25%50%75%

Th
eo

re
m

N 32,579 - - - 19,734 - - - 12,479 - - - 298 - - - 68 - - -
Chars 320.0 146 275 433 277.9 93 238 393 388.6 215 331 491 278.2 152 225 355 158.4 98 140 179

Tokens 46.7 21 39 63 38.2 14 32 53 60.6 35 52 76 33.6 19 29 41 23.7 14 21 30
Lines 5.9 2 4 8 3.6 1 3 5 9.7 4 8 12 8.4 4 7 11 4.5 2 4 5
Refs 1.8 0 0 3 2.8 0 3 4 0.2 0 0 0 0.0 0 0 0 0.0 0 0 0

Pr
oo

f

N 32,012 - - - 19,234 - - - 12,479 - - - 235 - - - 64 - - -
Chars 1,123.8 388 770 1,449 1,170.0 444 810 1,470 1,053.1 280 705 1,422 1231.0 442 876 1,634 655.7 327 551 732

Tokens 181.5 57 121 236 199.3 68 134 254 155.5 36 101 211 128.9 50 92 165 97.2 47 87 115
Lines 24.9 8 16 32 25.8 9 18 33 23.4 6 15 31 36.1 14 27 47 16.1 8 13 18
Refs 5.6 2 3 7 7.4 2 5 9 3.0 1 2 4 1.6 0 1 2 0.9 0 1 1

D
efi

ni
tio

n N 14,230 - - - 12,420 - - - 1,687 - - - 86 - - - 37 - - -
Chars 362.3 152 300 491 349.3 131 289 478 459.0 251 380 577 411.8 246 356 509 199.5 118 159 262

Tokens 48.4 18 39 65 45.0 15 35 61 73.2 41 61 91 58.6 33 49 74 32.6 21 28 43
Lines 5.0 1 4 6 4.2 1 3 6 10.7 5 9 13 13.3 8 11 17 5.1 3 4 7
Refs 2.9 0 2 4 3.3 1 3 5 0.4 0 0 1 0.0 0 0 0 0.0 0 0 0

O
th

er

N 1,974 - - - 1,006 - - - 968 - - -
Chars 1,399.8 712 1,1091,680 1,836.5 1,0181,4312,131 945.9 480 802 1,198

Tokens 212.1 101 158 250 286.1 145 206 337 135.2 70 113 168
Lines 34.4 18 28 42 46.7 28 39 49 21.7 10 18 27
Refs 5.7 1 3 7 9.2 4 7 11 2.0 0 1 3

Table 14: NATURALPROOFS dataset statistics (detailed).

In addition to well-formed axiom and corollary statements, the other pages include misformatted
theorem or definition statements that occur as references elsewhere in the corpus.

Stacks and textbooks. The raw data we obtain from Stacks and textbook sources are LATEX source
code. For each data source, we look up with a pre-defined list of environment names, and parse the
contents enclosed in these environments into statements or proofs. Each proof is associated with the
environment that immediately precedes it. As a result, each theorem has at most one proof. Table 15
lists the mapping from LATEX environment name to the data type in the NATURALPROOFS taxonomy.

A few misc notes:

• In Stacks, statements do not have titles, but each has a label with semantic meaning (e.g.
sets-lemma-bound-finite-type for the example in Table 12), so we use it as a pseudo-
title.

• In the Number Theory textbook, proofs are bounded by (\proof, \bbox) instead of
(\begin{proof}, \end{proof}).

Source Stacks
LATEX env Type
theorem theorem
lemma theorem
proposition theorem
definition definition
remark other
remarks other
proof proof

Source Textbook: RA
LATEX env Type
theorem theorem
lemma theorem
corollary theorem
definition definition
proof proof

Source Textbook: NT
LATEX env Type
theorem theorem
lemma theorem
corollary theorem
proposition theorem
definition definition
proof proof

Table 15: Mappings from LATEX environment names to NATURALPROOFS data types for each
data source. As an example, for Stacks, the mapping from lemma to theorem in row 2 means
that an environment enclosed by \begin{lemma} and \end{lemma} is considered a theorem in
NATURALPROOFS.

A.2 ProofWiki categories.

For ProofWiki, we also provide category tags for each statement. ProofWiki contains statements
encompassing a broad coverage of mathematical topics (i.e. categories). In ProofWiki, each category
has zero or more sub-categories, and sub-categories have sub-sub-categories, and so on, forming

16

{

"id": 5480,

"type": "theorem",

"label": "Category of Monoids is Category",

"categories": ["Category of Monoids"],

"toplevel_categories": ["Algebra", "Set Theory", "Abstract Algebra", "Category Theory"],

"recursive_categories": [

"Category Theory",

"Algebra",

"Abstract Algebra",

"Category of Monoids",

"Set Theory",

"Examples of Categories"

],

"title": "Category of Monoids is Category",

"contents": [

"Let $\\mathbf{Mon}$ be the [[Definition:Category of Monoids|category of monoids]].",

"Then $\\mathbf{Mon}$ is a [[Definition:Metacategory|metacategory]]."

],

"refs": [

"Definition:Category of Monoids",

"Definition:Metacategory"

],

"ref_ids": [22919, 21454],

"proofs": [

{

"contents": [

"Let us verify the axioms $(C1)$ up to $(C3)$ for a [[Definition:Metacategory|metacategory]].",

"We have [[Composite of Homomorphisms on Algebraic Structure is Homomorphism]], verifying $(C1)$.",

"We have [[Identity Mapping is Automorphism]] providing $\\operatorname{id}_S$ for every

[[Definition:Monoid|monoid]] $\\left({S, \\circ}\\right)$.",

"Now, $(C2)$ follows from [[Identity Mapping is Left Identity]] and

[[Identity Mapping is Right Identity]].",

"Finally, $(C3)$ follows from [[Composition of Mappings is Associative]].",

"Hence $\\mathbf{Mon}$ is a [[Definition:Metacategory|metacategory]].",

"{{qed}}",

"[[Category:Category of Monoids]]",

"sppgcr1pruam0jkf2euhyvt6y3jpnt0"

],

"refs": [

"Definition:Metacategory",

"Composite of Homomorphisms is Homomorphism/Algebraic Structure",

"Identity Mapping is Automorphism",

"Definition:Monoid",

"Identity Mapping is Left Identity",

"Identity Mapping is Right Identity",

"Composition of Mappings is Associative",

"Definition:Metacategory"

],

"ref_ids": [21454, 3852, 418, 19948, 217, 4387, 1494, 21454]

}

]

}

Figure 2: NATURALPROOFS JSON for the theorem and proof shown in Table 1. Using the notation in
section 4, an (x,y) example is formed where x is the concatenation of 'title' and 'contents',
and y is a set formed with 'ref_ids' of one of the proofs.

a category graph.8 We recursively scrape the category pages starting from Category:Content

Categories,9 and consider categories directly under Category:Proofs By Topic as top-level
categories. Figure 4 shows the high-level structure of the ProofWiki category graph.

In the ProofWiki raw data, each statement page is tagged with several categories (the 'categories'
field). In addition, we find the top-level categories (the 'toplevel_categories' field) as well as
exhaustive categories (the 'recursive_categories' field) for each theorem by running flood-fill
on the category graph. Figure 5 and Figure 6 show some statistics of the top-level categories.

8It is not strictly a tree or DAG, because there are several skip connections (e.g. Complex Analysis is both
a top-level category and a sub-category under Analysis) and circular dependencies (e.g. Metric Spaces and
Pseudometric Spaces are sub-category of each other)

9https://proofwiki.org/wiki/Category:Content_Categories

17

https://proofwiki.org/wiki/Category:Content_Categories

Dataset: {

'dataset': {

'theorems': [Statement],

'definitions': [Statement],

'others': [Statement],

'retrieval_examples': [int], // deprecated
},

'splits': {

'train': {

'ref_ids': [int],

'examples': [(int, int)],

// pairs of theorem id and index of proof
},

'valid': {

'ref_ids': [int],

'examples': [(int, int)],

},

'test': {

'ref_ids': [int],

'examples': [(int, int)],

},

},

}

Statement: {

'id': int,

'type': string,

'label': string,

'categories': [string],

'toplevel_categories': [string], // ProofWiki only
'recursive_categories': [string], // ProofWiki only
'title': string,

'contents': [string],

'refs': [string],

'ref_ids': [int],

'proofs': [Proof], // for theorems only
}

Proof: {

'contents': [string],

'refs': [string],

'ref_ids': [int],

}

Figure 3: NATURALPROOFS dataset schema.

Content Categories

...

Definitions

...

Definitions by Topic

...

Definitions/Branch of Mathematics

Definitions/Abstract Algebra

Definitions/Algebra

Definitions/Analysis

...

Definitions/Topology

Proofs

...

Proofs by Topic

Abstract Algebra

Additive Functions

Examples of Additive Functions

Monotone Additive Function is Linear

Additive Groups

...

Zero Elements

Algebra

Analysis

...

Trigonometry

Figure 4: ProofWiki category graph. Nested structure represents sub-categories. Some nesting
omitted here for simplicity.

Figure 5: Frequency of top-level cate-
gories, ProofWiki.

Figure 6: Number of top-level categories
per theorem, ProofWiki.

18

Figure 7: The pairwise, joint and sequential methods for mathematical reference retrieval.

B Implementation Details and Experimental Setup

Model input format. We format each statement (x or r) as, [CLS] title [SEP] content [SEP], and
we truncate the statement when the sequence exceeds the model’s maximum length. Each sequence
is tokenized using the bert-base-cased tokenizer.

B.1 Pairwise model

Models are implemented with transformers [46] and pytorch-lightning
10. The theorem en-

coder f thm
✓1

is parameterized using the bert-base-cased architecture and initialized with its param-
eters. The reference encoder gref

✓2
is also parameterized and initialized with (a separate instance of)

bert-base-cased.

Training. Models are trained for 500,000 steps on one Quadro RTX 8000 GPU. Each batch contains
a maximum of 16,384 (214) tokens. Validation is done every 5,000 steps. The model with the highest
mAP computed on the validation set is selected for final evaluation.

Negatives. We use in-batch negatives as in [21], which computes a score matrix S = TR> 2
RB⇥B on a batch of theorem embeddings T 2 RB⇥d and reference embeddings R 2 RB⇥d, then
defines the loss as

PB
i=1 softmax(S[i, :]), which treats elements on the diagonal of S as positives and

off-diagonal elements as negatives.

Evaluation. The full set of inputs x and the full set of references R are pre-encoded using their
respective trained models (i.e. two instances of BERT). Then the encodings for each possible x, r
pair are used to obtain scalar scores, inducing a ranked list of all |R| references for each input x.

B.2 Autoregressive

We implement the autoregressive model as a sequence-to-sequence encoder-decoder model. Following
Rothe et al. [34], we parameterize the encoder and decoder using BERT models. This allows for
initializing with pairwise model components. Concretely, we implement the architecture using the
transformers EncoderDecoderModel class with bert-base-cased encoder and decoder.

Let f✓1(x) denote the encoder and h✓2(r<t, f✓1(x)) denote the decoder. The decoder has an embed-
ding matrix R 2 R(|R|+2)⇥d, where each row represents a reference or special token hbosi, heosi.
At each step t, given a theorem and sequence of tokens (hbosi, r1, . . . , rt�1), the decoder produces a
next-token distribution p✓(·|x, r<t) = softmax(Rht + b), where ht 2 Rd is the final hidden state
obtained from the decoder h✓2(r<t, f✓1(x)), and b 2 R(|R|+2) is a bias vector.

The model is trained using cross-entropy loss with the ground-truth (x,y) pairs, where y =
(hbosi, r1, . . . , r|y|, heosi) is a reference sequence.

10https://github.com/PyTorchLightning/pytorch-lightning

19

https://github.com/PyTorchLightning/pytorch-lightning

Initialization. Let f thm
✓̃1

and gref
✓̃2

be the theorem and reference encoder from a trained pairwise
model (§B.1). The initialization settings listed in Table 9 are as follows. f thm means initializing the
encoder f✓1’s parameters as ✓1 = ✓̃1, and then updating them during training. R means initializing
and freezing the decoder’s embedding matrix as (omitting the hbosi and heosi rows),

R =

2

4
gref
✓̃2
(r1)
. . .

gref
✓̃2
(r|R|)

3

5 .

Training. Models are trained for 50 epochs on one Quadro RTX 8000 GPU. Each batch contains a
maximum of 16,384 (214) tokens. Validation is done every 5 epochs. The model with the highest
mAP computed on the validation set is selected for final evaluation.

Generation evaluation. Let ŷ ⇠ F(p✓,x) denote decoding a sequence ŷ = (r1, . . . , r|ŷ|, heosi)
given model p✓ and input x, using decoding algorithm F . For the reference generation task (§6.1),
we use beam search with beam size 20, based on a preliminary search over beam size {1,10,20,50}.
For retrieval evaluation only, we use greedy decoding (beam size 1) with a 1-gram repetition mask
since duplicates are not used during retrieval evaluation. For all decoding algorithms, we use the
transformers implementations.

Retrieval evaluation. A retrieval model produces a ranked list r(1), . . . , r(|R|) given an in-
put x. We evaluate our autoregressive model as a retrieval model by producing a ranked list
r(1), . . . , r(|ŷ|), . . . , r(|R|), where the first |ŷ| references come from the model’s generated sequence
ŷ = (r(1), . . . , r|ŷ|) after removing duplicates, and the remaining references are ordered according
to the model’s first-step probabilities, p✓(r1|x, hbosi). In preliminary experiments we found the first
step’s probabilities to perform slightly better than using the last step’s probabilities.

B.3 Joint retrieval

We implement the joint retrieval model as a one-step variant of the autoregressive retrieval model,

p✓(·|x) = softmax(Rht + b), (7)

where ht 2 Rd is the final hidden state obtained from h✓2(hbosi, f✓1(x)), and f✓1 , h✓2 are imple-
mented using the same encoder-decoder architecture as the autoregressive model (§B.2). This was a
design decision made to closely compare the effect of autoregressive vs. joint parameterizations; an
alternative implementation could use an encoder-only model.

The model is trained using KL-divergence loss, using per-example reference-distributions

p⇤(r|x,y) =
(

1
|y| r 2 y

0 otherwise
,

where y = {r1, . . . , r|y|} is the ground-truth reference set.

We use the same training settings that were used with the autoregressive model (§B.2).

B.4 Retrieval Metrics

For the mathematical reference retrieval task, we evaluate with standard retrieval metrics – mean
average prevision (mAP) and recall@k (R@k) – and a Full@k metric that measures ability to fully
recover all true references within the top-k results. We use k = 10 and k = 100 for our evaluation.

mAP. Suppose for retrieval example (x,y) the model ranks all references as r(1), . . . , r(|R|). The
average precision is computed as

AP =

|R|X

j=1

I[r(j) 2 y]

Pj
k=1 I[r(k) 2 y]

j
.

mAP is the mean of AP across all retrieval examples.

20

R@k. For each retrieval example, the recall@k is

R@k =

Pk
j=1 I[r(j) 2 y]

|y| .

We aggregate recall@k by micro-averaging across retrieval examples.

Full@k. For each retrieval example, the fully-recovering indicator is formally defined as

Full@k =
Y

r2y

I
⇥
r 2 {r(j) | 1 j k}

⇤
.

The overall Full@k metric is thus the mean of this fully-recovering indicator across all retrieval
examples.

C Additional Results

ProofWiki Stacks
mAP R@10 R@100 Full@10 Full@100 mAP R@10 R@100 Full@10 Full@100

Random 0.04 0.00 0.33 0.00 0.00 0.08 0.10 0.43 0.00 0.13
Frequency 3.54 5.99 24.44 0.88 2.28 1.03 1.86 10.86 0.13 2.19

TF-IDF 6.33 10.31 21.82 4.74 8.69 13.45 24.95 48.24 19.61 36.77

BERT-pair (P+S) 13.84 19.31 56.99 8.60 31.96 17.29 33.29 74.14 23.61 63.23
+joint 33.85 37.15 72.25 17.12 48.46 25.12 36.00 74.24 27.35 64.13

BERT-pair 16.99 22.91 62.03 9.22 36.96 21.21 38.00 75.67 28.77 66.19
+joint 37.51 41.39 75.92 20.54 50.75 26.55 39.81 75.71 30.58 66.06

Table 16: In-domain performance on the mathematical reference retrieval task (validation set). BERT
is finetuned on the part of dataset with the same source as the evaluation set, whereas BERT (P+S) is
finetuned on the combined dataset from ProofWiki and Stacks sources. Recall is micro-averaged.

ProofWiki Stacks
All Theorems Definitions Others All Theorems Definitions Others

Frequency 3.54 7.25 5.02 1.49 1.03 1.14 0.33 0.48
TF-IDF 6.33 10.07 2.33 2.19 13.45 12.11 15.51 13.94

BERT 16.99 14.71 13.39 11.06 21.21 19.31 24.39 17.10

Table 17: Retrieval performance (mAP) by reference type (validation set).

Performance by reference type. In Table 17 we break down the in-domain retrieval performance
by reference type. BERT shows a consistent improvement over TF-IDF on all types of references.
On ProofWiki, TF-IDF does much worse on definitions and other types than on theorems, whereas
BERT gives a more balanced performance on different types of references.

D Supplementary Materials

Dataset documentation and intended uses. We use the Dataset Nutrition Labels framework [17]
for dataset documentation. For the Statistics module, please refer to Table 3, Figure 5 and Figure 6.

The NATURALPROOFS dataset is intended to be used by researchers to build or evaluate machines on
predicting references in proofs, generating proofs to mathematical theorems, or other related tasks.
It should not be regarded as source of truth for defining particular mathematical concepts, proving
particular mathematical theorems, or the existence of such proof(s). In that case the user is advised to
consult authoritative mathematical resources.

21

Metadata
Filename proofwiki.json

stacks.json

ra-trench.json

nt-stein.json

Format json

Url https://doi.org/10.5281/zenodo.4632538

Domain natural language processing

Keywords mathematics, theorems, proofs, language

Type
Rows 80,795

Columns 9

Missing none

License CC BY-SA 4.0 (proofwiki.json)
CC BY-NC-SA 4.0 (ra-trench.json)

GFDL 1.2 (stacks.json)
MIT License (ra-stein script)

Released June 2021

Range N/A

Description This dataset is a collection of mathematical
statements and proofs in natural language.

It collects data from multiple sources,
encompassing broad-coverage of all math

topics, deep-dive with a selected topic, and
low-resource scenarios. The dataset provides

theorems, proof(s) to each theorem when
applicable, and in-proof references to other

mathematical statements.

Provenance
Source
ProofWiki

(https://proofwiki.org/)
Stacks

(https://stacks.math.columbia.edu/)
Textbook: Real Analysis

(https://digitalcommons.trinity.edu/mono/7/)
Textbook: Number Theory

(https://wstein.org/ent/)

Author
Name Sean Welleck et al.
Email wellecks@uw.edu

Variables
id A unique ID for this statement.

type The type of this statement;
either theorem, definition, or other.

label A string description of this statement.

categories A list of topics that this statement
pertains. For ProofWiki data only.

title A descriptive title of this statement.

contents The content of this statament or
proof, written in LATEX.

refs A list of labels of statements that this
statement or proof refers to in its content.

ref_ids IDs for items in refs.

proofs A list of proofs for this theorem.
May be empty.

Table 18: Dataset Nutrition Labels for NATURALPROOFS.

Dataset URL. The NATURALPROOFS dataset is hosted at https://doi.org/10.5281/zenodo.
4632538. Additional instructions and resources are provided in the Github repo https://github.

com/wellecks/naturalproofs.

Author statement and license. We bear all responsibility in case of violation of rights. We confirm
that the data sources we use are licensed to permit redistribution with modification for non-commercial
purposes.

Hosting, licensing, and maintenance plan. The dataset is hosted and maintained through Zen-
odo [10],11 and the code is hosted by GitHub. The code is released under the MIT license. The
dataset is released under per-file licenses: CC BY-SA 4.0 (proofwiki.json), CC BY-NC-SA 4.0
(ra-trench.json), GFDL 1.2 (stacks.json), MIT License (ra-stein script). Zenodo meta-
data is openly available under the CC0 license, and all open content is openly accessible through
open APIs.12

Links to access the dataset and its metadata. The NATURALPROOFS dataset is hosted at https:
//doi.org/10.5281/zenodo.4632538. Additional instructions and resources are provided in the
Github repo https://github.com/wellecks/naturalproofs.

11https://zenodo.org/
12https://about.zenodo.org/

22

https://doi.org/10.5281/zenodo.4632538
https://proofwiki.org/
https://stacks.math.columbia.edu/
https://digitalcommons.trinity.edu/mono/7/
https://wstein.org/ent/
wellecks@uw.edu
https://doi.org/10.5281/zenodo.4632538
https://doi.org/10.5281/zenodo.4632538
https://github.com/wellecks/naturalproofs
https://github.com/wellecks/naturalproofs
https://doi.org/10.5281/zenodo.4632538
https://doi.org/10.5281/zenodo.4632538
https://github.com/wellecks/naturalproofs
https://zenodo.org/
https://about.zenodo.org/

Data format. We store the dataset as JSON files. The dataset can be read using common JSON
libraries (e.g. the built-in json module in Python) and following the dataset schema in Figure 3.

Long-term preservation. We ensure this by uploading the dataset to the Zenodo dataset repository.

Explicit license. The code is released under the MIT license. The dataset is released under per-file
licenses: CC BY-SA 4.0 (proofwiki.json), CC BY-NC-SA 4.0 (ra-trench.json), GFDL 1.2
(stacks.json), MIT License (ra-stein script). Zenodo meta-data is openly available under
the CC0 license, and all open content is openly accessible through open APIs.

Structured metadata. We release the metadata along with the dataset on Zenodo.

Persistent dereferenceable identifier. https://doi.org/10.5281/zenodo.4632538.

Reproducibility. We ensure this by releasing our code on GitHub, which includes instructions to
reproduce the evaluation numbers in the paper.

23

https://doi.org/10.5281/zenodo.4632538

	Introduction
	Related Work
	The NaturalProofs Dataset
	NaturalProofs Reference Retrieval and Generation Tasks
	Methods
	Experiments
	Reference Generation
	Ablation Studies

	Conclusion
	Dataset Details
	Preprocessing Details
	ProofWiki categories.

	Implementation Details and Experimental Setup
	Pairwise model
	Autoregressive
	Joint retrieval
	Retrieval Metrics

	Additional Results
	Supplementary Materials

