IM-Loss: Information Maximization Loss for Spiking Neural Networks

Yufei Guo^{*}, Yuanpei Chen^{*}, Liwen Zhang, Xiaode Liu, Yinglei Wang, Xuhui Huang, Zhe Ma[†] Intelligent Science & Technology Academy of CASIC yfguo@pku.edu.cn, rop477@163.com, mazhe_thu@163.com

A Appendix

A.1 Proofs of Zero Conditional Entropy

Proof.

$$I(U; O) = H(O) - H(O|U)$$
 (1)

$$=\sum_{u,o} p(u,o) \log \frac{p(u,o)}{p(u)p(o)}$$
⁽²⁾

$$= \sum_{u,o} p(u,o) \log \frac{p(u,o)}{p(u)} - \sum_{u,o} p(u,o) \log p(o)$$
(3)

$$=\sum_{u,o} p(u)p_{O|U=u}(o)logp_{O|U=u}(o) - \sum_{u,o} p(u,o)logp(o)$$
(4)

$$=\sum_{u} p(u) (\sum_{o} p_{O|U=u}(o) log p_{O|U=u}(o)) - \sum_{o} (\sum_{u} p(u,o)) log p(o))$$
(5)

$$= -\sum_{u} p(u)H(O|U=u) - \sum_{o} p(o)logp(o)$$
(6)

$$= -H(O|U) + H(O) \tag{7}$$

In above equations, p(u), p(o) and p(u, o) are the marginal probability mass functions of the discrete variables U, O and their joint probability mass function. The conditional entropy H(O|U) can be expressed as the below equation according to the Eq.5 and Eq.7.

$$H(O|U) = \sum_{u} p(u) (\sum_{o} p_{O|U=u}(o) log p_{O|U=u}(o))$$
(8)

Since every u is corresponding to a fixed spike 0 or 1, $p_{O|U=u} = 0$ or 1. So we have

$$H(O|U) = \sum_{u} p(u)(0+0+\dots+0) = 0$$
⁽⁹⁾

Then maximizing the mutual information I(U; O) is equivalent to maximizing the information entropy H(O):

[†]Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

^{*}Equal Contributions.

$$\underset{U,O}{\arg\max} I(U;O) = H(O) \tag{10}$$

A.2 Algorithm

The proposed training algorithm of an SNN is presented in Algo.1.

The proposed training argorithm of an SIAN is presented in Argo.1.
Algorithm 1 The proposed training algorithm of an SNN.
Input : Initialized SNN; training dataset; total training epochs, <i>I</i> ; training iterations per epoch, <i>J</i> .
Output: The trained SNN.
1: for all $i = 1, 2,, I$ -th epoch do
2: for all $j = 1, 2, \dots, J$ -th iteration do
3: Forward propagation:
4: Compute classification loss \mathcal{L}_{CE}^{j} .
5: for all $l = 1, 2,, (L - 1)$ -th layers (IM-Loss is not added for the last output layer.) do
6: Compute $\overline{\mathbf{U}}_l$ for <i>l</i> -th layer.
7: end for
8: Compute IM-Loss \mathcal{L}_{IM}^{j} .
9: Compute overall loss \mathcal{L}_{Total}^{j} .
10: Back propagation:
11: Update the $g'(\cdot)$ via ESG:
12: $g'(x) = \frac{1}{2}K(i)(1 - tanh(K(i)(x - V_{th}))^2)$
13: Calculate the gradients w.r.t. W:
14: $\frac{\partial \mathcal{L}_{j_{ctal}}^{T}}{\partial \mathbf{W}} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}_{j_{ctal}}^{T}}{\partial y^{t}} g'(u^{t}) \frac{\partial u^{t}}{\partial \mathbf{W}}$, where y^{t} and u^{t} denote the target output and mem-
brance potential at t -th timestep.
15: Parameters Update
16: Update $\mathbf{W} : \mathbf{W} = \mathbf{W} - \eta \frac{\partial \mathcal{L}_{Total}^{j}}{\partial \mathbf{W}}$, where η is learning rate.
17: end for
18: end for
19: return the trained SNN.