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Abstract

As machine learning models grow increasingly
competent, their predictions can supplement
scarce or expensive data in various important do-
mains. In support of this paradigm, algorithms
have emerged to combine a small amount of high-
fidelity observed data with a much larger set of
imputed model outputs to estimate some quan-
tity of interest. Yet current hybrid-inference tools
target only means or single quantiles, limiting
their applicability for many critical domains and
use cases. We present QuEst, a principled frame-
work to merge observed and imputed data to de-
liver point estimates and rigorous confidence in-
tervals for a wide family of quantile-based dis-
tributional measures. QuEst covers a range of
measures, from tail risk (CVaR) to population
segments such as quartiles, that are central to
fields such as economics, sociology, education,
medicine, and more. We extend QuEst to multi-
dimensional metrics, and introduce an additional
optimization technique to further reduce variance
in this and other hybrid estimators. We demon-
strate the utility of our framework through exper-
iments in economic modeling, opinion polling,
and language model auto-evaluation.

1. Introduction

As machine learning (ML) models grow increasingly com-
petent, their predictions are being used to simulate or other-
wise represent diverse phenomena across economics (Hor-
ton, 2023), politics (Argyle et al., 2023a), genetics (Jumper
et al., 2021), and other fields, especially when such data is
scarce or expensive to gather. Despite their convenience,
these predictions cannot be trusted as perfect surrogates,
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Figure 1. Small gold-standard (observed) datasets may be noisy,
while model-predicted (imputed) data are often biased. QuEst
combines both to rigorously characterize various distributional
measures, such as the wealth of the top and bottom 25% of house-
holds in a developing nation.

since they often exhibit biases or misalignment with user ob-
jectives. Instead, a promising approach leverages both small,
expensive observed datasets (i.e., true measurements) and
large imputed datasets (i.e., model-predicted values), in or-
der to improve the estimation of important quantities across
various critical domains (Angelopoulos et al., 2023). This
paradigm can be applied, for example, to improve the mea-
surements generated by experiments in biology (Angelopou-
los et al., 2023) or environmental science (Angelopoulos
et al., 2024), or to enhance evaluation reliability in the large
language model (LLM) development cycle (Boyeau et al.,
2024; Eyre & Madras, 2024). A range of existing meth-
ods (Angelopoulos et al., 2023; 2024; Fisch et al., 2024;
Hofer et al., 2024) can produce valid confidence intervals
for quantities such as a mean, quantile, or linear regression
coefficient in this hybrid manner, without any knowledge of
the model that produced the predictions.

Despite their utility, existing frameworks ultimately focus
on a narrow set of quantities, leaving other important as-
pects of a distribution unaddressed. In applications with
societal or high-stakes implications—ranging from wealth
disparity assessments to identifying the most harmful out-
puts of LLMs—understanding the tails or other segments
of a distribution can be crucial (Snell et al., 2022; Deng
et al., 2024; Zollo et al., 2023). For instance, policy-makers
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may be interested in the upper or lower 10% of an income
distribution when studying wealth inequality (Espey et al.,
2015), while LLM safety experts must care about the rare,
highly problematic outputs of an ML system (Ganguli et al.,
2022). By applying to a narrow set of measures, existing
methods cannot offer these key distributional insights.

To address this gap, we introduce QuEst (Quantile-based
Estimation), a framework designed to offer point estimates
and valid confidence intervals on key distributional fea-
tures by combining both observed and imputed data. Specifi-
cally, QuEst estimates a range of quantile-related metrics, in-
cluding tail measures like Conditional Value at Risk (CVaR)
(Rockafellar & Uryasev, 2002) and population-level seg-
ments (e.g., deciles or quartiles). These measures are use-
ful for understanding extreme values, variability, and other
trends in a distribution, and are of particular salience in
human-centric domains such as economics, sociology, edu-
cation, and medicine. Beyond the unidimensional setting,
QuEst also provides an approach for multidimensional mea-
surements, enabling a more nuanced understanding of dis-
tributional properties in real-world scenarios. Finally, we
propose an extension of our method (also applicable to other
similar methods) based on optimizing a weighting function
applied to the imputed data, leading to better estimates and
tighter confidence intervals.

Here, we summarize our contributions:

* We introduce QuEst, a rigorous, theory-grounded
framework to leverage both observed and imputed data
to estimate and provide rigorous confidence intervals
on quantile-based distributional measures.

* We derive a complementary method for estimating
these measures for multi-dimensional quantities, for
example when multiple loss functions are considered
in model evaluation.

* We propose an advanced method for optimizing QuEst
estimates, as well as those from existing methods for
hybrid estimation.

We perform experiments highlighting a wide set of use
cases for our algorithms, showcasing applications in opinion
polling, gene analysis, LLM auto-evaluation, and wealth
modeling with satellite imagery. Through this work, we aim
to enable more informed decision-making in domains with
societal, ethical, or operational importance. By extending
the applicability of prediction-powered frameworks, QuEst
paves the way for richer, more robust, and context-sensitive
evaluations in machine learning and beyond.

2. Background and Related Work

A growing paradigm in data science and applied statistics
seeks to combine a small sample of observed data (i.e., high-
fidelity but expensive ground truth) with a larger sample of
imputed data (i.e., model predictions) for improved estima-
tion of key statistics. The recently introduced Prediction-
Powered Inference (PPI) framework (Angelopoulos et al.,
2023) addresses this challenge for a broad class of inference
problems, provided the target parameter is an M-estimator.
Concretely, M-estimators are statistical parameters express-
ible as the minimizer of an empirical loss function, such
as the sample mean of a loss. PPI leverages a small, gold-
standard dataset (with reliable labels) in tandem with a large,
model-imputed dataset to construct unbiased estimators and
corresponding confidence intervals. In particular, PPI de-
biases the potential systematic errors in the imputed data
via carefully designed correction terms, yielding inference
procedures that enjoy theoretical guarantees without requir-
ing knowledge of the underlying data distribution or the
model that generates the imputations (Angelopoulos et al.,
2024; Fisch et al., 2024). PPI has been successfully applied
to settings like large language model evaluation (Boyeau
et al., 2024; Eyre & Madras, 2024) and survey analysis
(Angelopoulos et al., 2024), showcasing its flexibility in
leveraging large-scale imputed data while maintaining valid
statistical guarantees.

While PPI applies to a wide range of M-estimators (e.g.,
means, regression coefficients, and single-quantile esti-
mates), many important metrics in, e.g., economics, finance,
social science, and risk management, cannot be expressed
as such. In these fields, one often seeks to understand the
tails or shape of a distribution through quantile-based distri-
butional measures (QBDM). A canonical example is the
Conditional Value at Risk (CVaR), used to quantify tail
risk (Rockafellar & Uryasev, 2002) in financial engineering.

Definition 2.1 (Quantile-Based Distributional Measures).
Given a CDF F, a quantile-based distributional measure
for F'is given by

Qu(F) = /0 $()F~ (p)dp, ()

where 1 is a weighting function satisfying v > 0 and
[(p)dp = 1. Here, F~'(p) = inf{z : F(x) > p}is
the general inverse of CDF F, also known as the quantile
function.

By plugging in different weighting functions 1, we can
recover many classic measures; see Table 1 (where VaR ab-
breviates Value-at-Risk). These measures are instrumental
for capturing tail behavior, inequality, or threshold-based
phenomena. In practice, they reveal insights that a mere
mean or single quantile cannot fully characterize. For ex-
ample, in order for an economist to study trends in wealth
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Table 1. Several quantile-based distributional measures and their
corresponding weight functions (see Definition 1). The Dirac delta
function centered at 3 is denoted by dg.

Measure Weighting Function ¢ (p)

Expected Mean 1

3-VaR 5(p)
1
g p=>B
-CVaR =P
p V(p) {O7 otherwise
#’ c ,
Interval VaR — o(p; By, o) = { 217 P [ﬁl. &
0, otherwise

inequality, they might compare the income growth of the
top 20% of earners to that of the bottom 20% (Pew Research
Center, 2020). To understand variety in human development,
a genomics study may consider the 10% of the population
that most strongly expresses some gene (Taylor et al., 2024).
Further, 3-VaR is a central risk measure in finance and port-
folio management, widely used to gauge possible losses in
investment positions. However, current tools are unable to
leverage large pools of model-imputed data to more effi-
ciently estimate these measures.

3. QuEst for Quantile-Based Distributional
Measures

‘We now introduce our QuEst framework, which produces en-
hanced point estimates and confidence intervals for quantile-
based distributional measures (QBDMs) using a combina-
tion of observed and imputed data. We first describe the
setup and notation, and then we present the main QuEst esti-
mators and describe how they correct for model-imputation
bias. Finally, we extend the idea to multiple dimensions,
covering scenarios where practitioners want to quantify mul-
tiple QBDMs (or QBDMs of multiple metrics) simultane-
ously.

3.1. Setup

Consider a general predictive setting adapted from Boyeau
et al. (2024) in which each instance has an input X € X
and an associated observation Y € ). We are given a user-
specified metric of interest, M (-, -) : X x Y +— R, that maps
an input—observation pair (X, Y) to a real value M (X,Y).
M is flexible: for instance, if we want to measure the per-
formance of a predictive model h, then we might define
M(X,Y) = £(h(X),Y) for some loss ¢. Alternatively, if
we simply want to examine the distribution of Y itself (e.g.,
monthly earnings in an economics setting), we can choose
M(X,Y) =Y (treating X as a “dummy” argument). Then,
letting F' denote the true CDF of M (X,Y’), our ultimate
goal is to estimate various QBDMs derived from F'. As

described in Section 2, this might include CVaR, VaR, or
other tail/segment-based measures.

The challenge in many scenarios is that collecting the
ground-truth observations Y (which we call observed data)
can be costly and/or difficult to obtain. However, we of-
ten have access to a large amount of unlabeled data points
{X?}, which can be paired with model-imputed values
571-" = g(X}) generated by some predictive model g. We
assume that each unlabeled input X is drawn from the
same distribution as the labeled inputs X;.

We collect datasets

{(X, YY), and {(X3,Y7)1Y

Jj=b

where n < N, and each Xj, Xj“ is drawn i.i.d. from the
same marginal distribution of inputs. We further define:

* CDF of M(X;,Y;) as F, and the corresponding empir-
ical CDF (built on {M(X;,Y;)}1 ) as F,.

« CDF of M(X;,Y;) as F and the corresponding empir-
ical CDF as Fj,.

+ CDF and empirical CDF of M (X", Y;*) as F* and
Fu.

Our assumption that X; and X are drawn from the same
distribution implies that F'* = = F. Thus, the CDF and em-
pirical CDF of M (X} Y“) can be denoted as F and FN

for short and we use them exchangeably with F“ and FN

3.2. Methods
We focus on estimating a QBDM of F":

/ Y(p p) dp,

where t(-) is a nonnegative weighting function that inte-
grates to 1 (Table 1 lists examples). A naive “classical”
approach would be to simply compute

Qu(Fn) = w< ) F; ' (p) dp,

where F,1(p) is the empirical quantile function of the n
observed values {M(X;,Y;)}™ ;. Unfortunately, with n
relatively small, this estimate can be noisy and unreliable.

Our QuEst framework integrates model-imputed data from
the large unlabeled set to reduce variance in the estimate,
while carefully correcting for potential model bias. Specifi-
cally, we define the following estimator for Q. (F'):

QuN) = AQu(F) + (Qu(Fa) = AQu(F)).
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For any given A, Qw(/\) is an asymptotically unbiased es-
timator of Q. (F') when n, N — oo. Intuitively, a strong
annotator model that produces near-perfect imputations will
result in the first term Q,, (F%) almost exactly recovering
Q. (F). In the second term, we use the observed sample to
measure and remove potential statistical bias: if the imputed
data F), systematically deviates from F},, this correction
term will account for this and rectify the estimate.

Varying A allows us to adapt our reliance on the imputed
data, where A\ = 0 ignores the predictions and recovers the
classical estimator on observed data. By selecting A based
on the quality of the imputed predictions, we can ensure that
our estimator is no worse than Q, (F},) (see Section 3.2.1).
We note that our method is a strict generalization of the
method in (Angelopoulos et al., 2023), since the mean and
the quantile are special cases of QBDMs.!

To analyze our estimator, we must understand its asymp-
totic normality and the corresponding variance. The main
challenge is that Q. (F,) is not in the typical form of
sum of i.i.d. random variables. The method presented
by Angelopoulos et al. (2023) only considers estimators of
this form, known as M-Estimators. Our estimator involves
order statistics of the n observations, since F,; 1(p) is a
quantile. However, we can harness the classic theory of
L-statistics (Aaronson et al., 1996) to rewrite:

Qy(Fn) = i{/nl %/f(p)dp} M

where M(;) is the i-th order statistic of the sorted sam-
ple {M(X1,Y1),..., M(X,,Y,)}. Under some regularity
conditions, we can show that

Vi (Qu(Fn) = Qu(F)) = N(0.03(F))

where — p means convergence in distribution, the func-
tional oy (+) is defined as

o2 (F)2 / / (F (uAv)—F () F () b (F () (F(0)) dud,

and uA\v = min{u, v}. Using similar ideas, we can analyze
(0 () and obtain:

Theorem 3.1. For any fixed )\, under certain regularity
conditions, if n/N — r for some r > 0, we have

Vir(Qu() = QulF)) b N (0, 03 (\, F, F)).
Here, we define the functional py(-,-,-) as
PL(NF,F) 2 N (1+7)03(F) + 02 (F) — 2\ny(F, F)
and 0y (F, F) is the covariance Cov(Qy (F), Qu(F)).

'We also note that our work is the first to introduce optimal X
selection for the quantile, also known as VaR.

The derivation builds on standard asymptotic expansions
for L-statistics (Van der Vaart, 2000), then extends them to
incorporate the imputed CDF F'. The result also shows that
in the limit, Qw()\) is unbiased, but different choices of A
lead to different tradeoffs in variance.

3.2.1. SELECTING THE OPTIMAL .

To minimize variance, we can pick the value of A that solves
. 2 .
min p;, (A, F, F).
N P¢( )

This approach is referred to as power-tuning by Angelopou-
los et al. (2024). In practice, of course, F' and F' are
unknown; we replace them with their empirical versions
F,, F,, Fy to obtain

A = argmin, pi()\,Fn,ﬁmﬁ;\Lf)

where pfp()\7Fn7Fn,F]\‘,) is a consistent estimator of
p5,(\ F, F) of the form:

N1+ 71)05(Fn) + 05 (Fa) — 2Xny(Fo, Fy).

Because pi( -) is quadratic in A, there is a closed-form solu-
tion. In particular:

>

W(Fn’ﬁnl .
(1+ %) o3 (F%)

Under standard regularity conditions, an argument using
Slutsky’s rule shows that we can still apply the central limit
theorem (Theorem 3.1) with A = X .

Summarizing these ideas, we obtain the following corollary
and a blueprint for constructing confidence intervals:

Corollary 3.1. Under certain regularity conditions, if A
converges to a constant, then

Pt (A Fos Fus F) Vi (Qu(N)=Qu(F)) 2 N(0,1).

In other words, we can plug in the estimated 5\, compute an
estimated standard error

o pw(;\,Fn,ﬁn7ﬁX,)
SE = NG ,

and then form a finite-sample (1-«) confidence interval as

Qu(\) £ Z1-a/2 SE,

where 2, _, /7 is the usual two-sided standard normal quan-
tile.
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Crucially, our final asymptotic variance can never exceed
that of the classical estimator Q. (F3,). From Corollary 3.1,
we have

- (nw(Fn;ﬁn)JQ
(1+ %) o3 (F)

so the second (non-negative) term is subtracted off from
the classical variance 012/} (F},). This leads to more precise

confidence intervals whenever the model imputations Y
have nontrivial correlation with Y.

We remark that the user may elect to clip A to [0, 1] to stabi-
lize the final estimator in small, finite samples. The above
analysis still holds since A will still converge to a constant.
We also note that since A enjoys a closed-form solution,
QuEst does not require any hyperparameter selection from
the user.

3.3. Multi-Dimensional QuEst

In many real-world scenarios, it is not enough to estimate a
single QBDM in isolation. Rather, we might simultaneously
want to know the (5%, 95%)-CVaR pair, or we might want
to compute distributional statistics for multiple metrics, such
as different loss functions in model evaluation.

To address this challenge, we extend our method to a multi-
variate version for simultaneously evaluating (1) multiple
QBDMs of the same metric or (2) QBDMs of multiple met-
rics. Here, we will mainly discuss the case of evaluating
multiple QBDMs in tandem, but a similar argument could be
easily extended to estimating QBDMs for several metrics.

In particular, we are interested in estimating kK QBDMs
simultaneously, i.e.,

Q(%;k,F):(le (F)vaQ(F)7' o aka (F))T

If we were to simply estimate each quantity separately, then
correct via a naive Bonferroni approach, our confidence
intervals/regions will become overly conservative. Thus, we
need to derive a multi-dimensional central limit theorem.

Our estimator will be

Q(16, M) 2(Quy (M), Qua (Na), -+, Q)™
for any ;s and \}s. We can then offer following theorem:

Theorem 3.2. Suppose Ni’s satisfy that N = A for con-
stant X}’s, under certain regularity conditions, if n/N — r
for some r > 0, we have

V2 (Q(rns Avk) = Qs F)) = N(0,1)

where V is the k x k covariance matrix, where V;; =

Cov(Qu, (Ai), Qu, (3;)).

We provide specific closed form expressions for ‘A/U in Ap-
pendix C.4. These expressions involve calculating new
quantities such as Cov(Qy, (F), Qy,; (Fr)).

In some applications, it may be beneficial to choose each
i by a separate univariate variance-minimization approach,
as in the single-QBDM setting. In others, we may prefer a
single joint objective that balances all k coordinates. One
example is the sum of the asymptotic variances:

k
min Zﬂfm(/\iaanﬁmﬁﬁ)’
=1

Aoy Ak 4
1=

but other utility or risk functions are possible, depending on
the user’s goals.

Thus, by permitting multiple weighting functions
Y1, ..., (and/or multiple metrics M, ..., My), QuEst
can deliver a cohesive picture of multi-dimensional
distributional statistics while retaining valid coverage.
Our experiments in Section 4.2.2 illustrate these multi-
dimensional analyses in the context of LLM evaluation.

4. Experiments

We now evaluate the empirical performance of QuEst across
two categories of tasks: (1) research settings where expen-
sive experimental data is combined with predictions from
an ML model, and (2) LLM auto-evaluation settings where
a large, more expensive LLM supplies a small number of
high-quality labels (treated as “observed”), while a cheaper
model provides predictions (treated as “imputed”) for the
majority of data. In each experiment, we have both observed
and imputed labels for all instances, allowing us to gauge the
estimation error and interval coverage of different methods
with respect to the true quantity.

In each experiment trial, we randomly sample some amount
of observed data, and use a fixed amount of imputed data.
We compare QuEst’s point estimates to those derived using
either of these data sources alone. For the confidence in-
tervals, establishing some baseline still requires our highly
non-trivial CLT derivation. In order to enable some compar-
ison for contextualizing QuEst’s performance, we compare
the confidence intervals when A = 0 to those when A is se-
lected using our algorithm. Once again, we note that QuEst
involves no additional hyperparameters to be tuned or set
by the user. Some details are deferred to Appendix A.

4.1. Improving Measurement in Research

In scientific and industrial research, it is often useful to char-
acterize not only average measurements, but also those that
refer to some segment(s) of the full distribution. Economists,
for example, may want to compare the top 20% vs. bottom
20% of incomes (Pew Research Center, 2020), while ge-
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Figure 2. Experimental results for estimating Interval-VaR and CVaR using three datasets (PovertyMap, GeneExpression, OpinionQA).
Results are averaged over 2000 random data splits, and error bars are included (although too small to observe in most cases). Top:
Estimation error vs. number of observed labels. Bottom: Confidence interval width vs. number of observed labels.

nomics studies may focus on the 10% of the population that
most strongly expresses a certain gene (Taylor et al., 2024).
Such subpopulation measures further exacerbate the scarcity
of expensive gold-standard experimental data, as splitting
a dataset into segments decreases sample size. QuEst ad-
dresses this challenge by mixing scarce gold-standard mea-
surements with abundant but potentially biased model pre-
dictions to provide rigorous estimates and valid confidence
intervals. Here, we showcase relevant example applications
in economics, genomics, and social science.

Experiment Details We perform our initial experiment
using data from 3 publicly available datasets.

PovertyMap is a dataset containing satellite imagery and
socioeconomic data, used for estimating poverty metrics and
wealth distribution across regions, typically in developing
nations (Yeh et al., 2020; Koh et al., 2021). Predictions are
obtained from a pre-trained deep regression model, where
for each satellite image the model predicts a scalar “wealth
index”. Our goal is to estimate and provide confidence
intervals on the average wealth index of the middle third of
households in the distribution, a measure of Interval-VaR.

In GeneExpression, the goal is to predict the level of gene
expression caused by some regulatory DNA (Vaishnav et al.,
2022; Angelopoulos et al., 2023). Predictions are taken from
a transformer sequence model that outputs a gene expression
level from O to 20. For our target measure, we consider the
CVaR, or tail behavior of the 20% of genes with the highest
expression level.

LLMs are increasingly used to simulate and study human
behavior in social science (Argyle et al., 2023b), yet often

exhibit systematic biases and inconsistencies (Dominguez-
Olmedo et al., 2024). Using the OpinionQA dataset, we
show how QuEst can produce more reliable estimates of
public opinion—grounded in limited, high-quality human
labels—Dby rigorously leveraging abundant synthetic LLM-
generated data from Llama-3.1-70B-Instruct. Opinions are
measured on a 0—1 scale, and we target the middle 50%
of the population for estimation, once again a case of the
Interval-VaR.

We run 2000 trials each with varying numbers of randomly
sampled observed data (100, 200, 500, 1000) combined
with 2000 randomly sampled imputed data, and calculate
point estimates and 95% confidence intervals for the target
measure. To evaluate QuEst and baselines, we plot 3 metrics
averaged across all trials: absolute error of point estimates,
width of (valid) confidence intervals, and confidence inter-
val coverage (i.e., the percentage of trials where intervals
contain the true value).

Results and Discussion Figure 2 shows estimation er-
ror and interval width results for estimating Interval-VaR
for PovertyMap and OpinionQA, and CVaR for GeneEx-
pression. QuEst consistently produces better estimates and
tighter confidence intervals than baseline methods across all
three datasets. The benefits over using only observed data
are most pronounced when examples are scarce: on Gene-
Expression, for instance, we see roughly a 50% reduction in
both estimation error and interval width with only 100 gold-
standard examples. Similar gains appear in PovertyMap
and OpinionQA when fewer examples are available, and
using only observed data becomes competitive only once
about 1,000 examples are collected. While the imputed es-
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timate performs reasonably in PovertyMap, it is markedly
worse for GeneExpression and OpinionQA. Taken together,
these results illustrate the dynamics for which our method
is designed: improving estimation when observed data are
limited while avoiding blind reliance on potentially biased
model predictions.

In Appendix Figure 6, we further evaluate the empirical
coverage of our confidence intervals, finding them to be
valid across all datasets. Overall, the results in this section
highlight QuEst’s effectiveness in combining limited human
labels and abundant model predictions to achieve more ac-
curate and reliable quantile-based estimates in important
research work.

QukEst for Individual Quantiles While the previous ex-
periment emphasized quantile-based distributional measures
that cannot be addressed by standard PPI methods, we can
also explore how our proposed QuEst framework behaves
when applied to individual quantiles. Focusing on the sim-
pler task of estimating a single quantile allows us to make
a direct comparison between QuEst and the original PPI
framework (Angelopoulos et al., 2024), which offered a
method for quantile inference under a fixed parameter \. By
contrast, QuEst enables an adaptive selection of A, thereby
potentially reducing variance and leading to more efficient
estimates.

To study the effects of this increased flexibility, we conduct
an experiment examining performance on the 5 = 0.75
quantile on two datasets, GeneExpression and PovertyMap.
We compare estimates and corresponding confidence inter-
vals produced by QuEst against those obtained from PPI.
The results, depicted in Figure 7, show that QuEst’s ability
to adjust A yields lower estimation error overall. The confi-
dence intervals from both methods maintain a similar level
of tightness, and thus in this case the primary improvement
from selecting A stems from QuEst’s enhanced accuracy
rather than smaller confidence intervals.

4.2. QuEst for LLM Auto-Evaluation

A growing trend in large language model (LLM) devel-
opment involves using an LLM to evaluate the outputs of
another (or the same) LLM, a process commonly called
“auto-evaluation” (Zheng et al., 2023; Boyeau et al., 2024).
In practice, developers must choose between an expensive,
higher-quality model for labeling—which yields more re-
liable judgments at a higher cost—or a cheaper, weaker
model that saves money but can offer worse judgments (or
labels). Although many developers default to using the
expensive model, they then face a trade-off between con-
trolling costs (by limiting labeled examples) and tolerating
noisy estimates (by sampling fewer high-quality labels).
With QuEst, developers can rigorously combine a small

set of labels from an expensive model (which in this case
becomes the observed data) with abundant labels from a
cheaper model (imputed data), thus retaining a high-fidelity
anchor for the evaluation while significantly reducing over-
all cost. In the following, we illustrate how QuEst can
effectively manage these trade-offs and yield dependable
distributional assessments of LLM behavior.

4.2.1. RED-TEAMING CHATBOTS FOR TOXICITY

Public-facing LLM applications like chatbots bring partic-
ular concerns above those used in internal or private appli-
cations. Besides factually inaccurate or otherwise incorrect
generations, they must be evaluated for their potential to
produce toxic, abusive, violent, or otherwise offensive or
dangerous material. A collection of methods for LLM red-
teaming has emerged, wherein a collection of adversarial
inputs are created (either by human or LLM(s)) in order
to probe the vulnerability of a model to producing such
undesirable content. Research has shown that within such
a context, the developer must be concerned not only with
reducing the average rates of, e.g., toxic content, but also
must be concerned with the tail of the distribution of worst
responses (Ganguli et al., 2022).

Experiment Details We perform red-teaming on a set of
8 candidate LLMs, where one will be chosen for deploy-
ment as a chatbot (see Appendix A for a list). Prompts are
obtained from the red-teaming split of the Helpful/Harmless
dataset (Ganguli et al., 2022), giving us a set of inputs meant
to elicit potentially toxic behavior. We score the outputs
from each model for toxicity on a scale from O (least toxic)
to 1 (most toxic) with two models: Llama-3.1-70B (ob-
served data), and Llama-3.1-8B (imputed data). The goal
is to estimate the toxicity in the worst 25% of responses.
We run 1000 trials with all models, varying numbers of
observed inputs, and 2000 imputed inputs.

Results and Discussion See Figure 3 for results. On the
left, we examine the performance for one particular model
(Mistral-7B-Instruct-v0.3) and find that QuEst once again
offers consistently lower estimation error than using only
a small set of observed data (imputed estimation error is
very large and thus not included in the plot for clarity). On
the right, we evaluate the effects of performing model se-
lection based on QuEst, as opposed to baseline methods.
Our evaluation metric is rank correlation, which is the av-
erage correlation across trials between the model rankings
produced by each evaluation method and model rankings
based on the true measure. We find that QuEst produces
rankings that are more correlated with the true rankings, and
that these improve with more observed data.

Finally, we aim to understand when QuEst gives low estima-
tion error, and when it most improves performance over the
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Figure 3. LLM auto-evaluation on a red-teaming toxicity task.
Left: Estimation error for one representative candidate model
as a function of observed labels (the weak model’s predictions
have much higher error, so are omitted for clarity). Right: Rank
correlation with true toxicity ordering across 8 candidate models,
averaged over trials.
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Figure 4. LLM auto-evaluation on a red-teaming toxicity task.
Each point corresponds to one model; the z-axis is the corre-
lation between the “big” and “small” labelers for that model, while
the y-axis captures QuEst’s absolute error (left) or the error ratio
relative to Observed-only (right).

baselines. In the plots in Figure 4, each point corresponds
to one of the 8 candidate LLMs. For both plots, the x-axis
is the correlation between observed and imputed labels for
that particular candidate LLM (i.e., how well the small la-
beller’s scores match the large labeller). In the left plot,
the y-axis is the average error of the QuEst estimate as a
percentage of the true error value. On the right, the y-axis
shows the average error ratio between the QuEst estimate
and the observed estimate. We see in general that QuEst esti-
mates improve, including relative to the baseline, as labeller
correlation increases.

4.2.2. EVALUATING NEWS SUMMARIZATION ACROSS
MULTIPLE METRICS

News aggregation services may provide article summaries
produced by a local LLM as a feature for their users to
quickly scan for relevant content. It is paramount that these
summaries meet some minimum level of quality; LLMs may
produce summaries that are confusing, irrelevant, or incon-

Table 2. Results of estimating the [0,0.2] interval VaR across three
separate scores averaged over 50 trials.

Estimation Type Classical Volume QuEst Volume % Change
Univariate 1.57e-2 1.04e-2 -34%
Multivariate 5.55e-3 5.17e-3 -7%
Estimation Type  Classical MSE QuEst MSE % Change
Multivariate 1.17e-2 1.08e-2 -1%

Summarization Evaluation Confidence Regions

@ Multivariate QuEst
@ Multivariate A=0

0.86
4 True Value

0.80
0.74

0.67

Consistency Interval VaR, B €[0, 0.2]

0.55
0.78 0.80 0.82 0.84 0.86 0.88

Coherence Interval VaR, B €[0, 0.2]

Figure 5. Visualization of a two-dimensional 90% confidence re-
gion defined using different estimation methods. When simulta-
neously estimating two different QBDMs, QuEst yields a smaller
confidence region than using the observed data alone.

sistent with the summarized article (Zhang et al., 2024), and
this can erode a user’s trust in the platform. In this circum-
stance, the developer must ensure that the worst summaries
achieve a reasonable score on average across three different
criteria. Accounting for stochasticity, the developer will
also want to ensure the LLM exceeds this threshold with
high probability, requiring a confidence region.

Experiment Details We derive news articles from the
XSum dataset (Narayan et al., 2018). Summaries are gener-
ated using Qwen2-7B-Instruct. We score the outputs from
each model for coherence, relevance, and consistency on a
scale from O (worst) to 1 (best) with two models: Llama-
3.1-70B (observed data), and Llama-3.1-8B (imputed data).

We estimate the average coherence, relevance, and consis-
tency amongst the bottom 20% of reviews for each criterion.
In addition to a point estimate, we construct a 90% confi-
dence region defined over the three criteria. We perform this
estimation with both classical estimation and QuEst, and
construct the region using the cube defined by the three uni-
variate confidence intervals (univariate) or by the covariance
matrix (Multivariate). Volume and MSE calculations are av-
eraged over 50 trials. We examine a low label setting where
only 100 observed examples and 10,000 imputed examples
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are available.

Results and Discussion QuEst yields not only superior
point estimates in comparison to classical estimation in
terms of MSE, but it also produces 90% confidence re-
gions with lower volume (Table 2). The smallest three-
dimensional confidence region is achieved by multivariate
QuEst, underpinning QuEst’s improved utility when esti-
mating multiple quantities of interest at once. Figure 5
visualizes this effect: we can observe multivariate QuEst
yielding a confidence region with lower area than multivari-
ate classical estimation.

5. Extension: Generalizing 1)

Our QuEst framework, as described in Section 3, already
provides robust quantile-based estimates and confidence
intervals that were not attainable with existing tools for
integrating observed and imputed data. However, further
variance reduction, and therefore a reduction in error and
confidence interval width, is possible by applying a different
weighting function to the imputed data (@/;) than the QBDM
being measured (). By generalizing the weighting function
Ytoa parameterized function, we can flexibly adapt the
imputed data term for the estimator to our finite sample to
maximize variance reduction.

We demonstrate that applying the adaptive weighting func-
tion z/? this way still yields an asymptotically unbiased esti-
mator. This extension not only strengthens QuEst’s perfor-
mance in limited-data settings, but also offers a theoretical
foundation for extending hybrid inference techniques to
more complex, high-dimensional problems.

5.1. Method

We modify our earlier estimator Qw (A) to the more general
form Q(l/), 1), defined by

Q92 Qu(FR) — Qu(F)  +

Adaptive function 1[)

Qw (F n)
——
Target QBDM weighting 1)
@)

Our adaptive weighting function t applies only to the im-
puted data, while the weighting function ¢/ associated with
our target QBDM is still applied to the observed data. Note
that this is a strict generalization of our previous estima-
tor: if we choose 1) = A, then C?(z/}7 z/?) reduces to our
original Qw (A). Crucially, the new estimator also remains
asymptotically unbiased.

For simplicity, we let P/(-) = v¢(-)2 7 (-), where ¢(-)
is a multi-dimensional vector of basis functions and £ is a
tuning parameter vector that we will optimize.

Following the arguments in Section 3, for any fixed &, if
n/N — r forr > 0, then

Vi(Q,ve) — Qu(F)) > N(0,0%(6, F, F)),

where pi (&, F, F) is a suitable functional (see the Ap-
pendix C for details). We show that a consistent empirical
version of variance p, (€, Fy, Fy,, Fy) satisfying

p12/;(€7FnaFn7F;\l}) *>7l p12[1(€7F7F)

is always a convex function of £&. Hence, we can mini-
mize pfb (&, Fn, F,, F]\‘,) with respect to £ to achieve better
variance reduction. Since n is typically small (limited gold-
standard observed data), we aim to avoid a separate data
split. The following theorem shows that, with a mild regu-
larization term, the resulting solution still satisfies a central
limit theorem without any additional sample splitting.

Theorem 5.1. Under certain regularity conditions, we have

P (65 Py B, )/ (Qu (9, 00¢) — Qu(F)) 2 N(0,1),

where

) S @
§ = axging g3 (€, Fa, B F) + Sl
and « is any fixed positive constant.

We remark that o > 0 can be made arbitrarily small and is
included only to ensure a unique solution &, facilitating the
central limit theorem result.

5.2. Experiment

For a proof-of-concept, we implement this extended version
of QuEst (referred to as QuEst-Opt) and evaluate its perfor-
mance in estimating QBDMs in Appendix B. Our empirical
results indicate that QuEst-Opt performs favorably relative
to the simpler QuEst variant (with power-tuned \) when the
observed sample size is small.

6. Conclusion

We propose QuEst, a framework for producing enhanced
estimates and valid confidence intervals for quantile-based
distributional measures by leveraging both observed and
imputed data. QuEst shows consistent improvements over
baselines in our experiments, producing better point esti-
mates and tighter confidence intervals across applications
from genomics to LLM evaluation. Future work might con-
sider a more rigorous characterization of the conditions un-
der which our QuEst framework and other related methods
are likely to aid in estimation, including how large the pool
of unlabeled data for imputation must be, or what level of
correlation between observed and imputed data is necessary
in order to see performance gains.
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A. Additional Experiment Details

Below are additional details for our experiments. Our code will be made public upon release of this paper.

A.1. PovertyMap

PovertyMap is a dataset containing satellite imagery and socioeconomic data, used for estimating poverty metrics and
wealth distribution across regions (Yeh et al., 2020; Koh et al., 2021). Further, there is a shift from training to test distribution,
where test data comes from a separate set of countries. Each satellite image in the dataset is labelled with some scalar
wealth index; we use 5000 random datapoints from the full test set for our experiments. Our predictions are obtained from a
pre-trained deep regression model, with the domain-robustness technique from Eyre et al. (2023) applied after training. We
scale all observed and imputed data to be in the range [0,1], based on the maximum and minimum values observed.

A.2. GeneExpression

In GeneExpression, the goal is to predict the level of gene expression caused by some regulatory DNA (Vaishnav et al.,
2022; Angelopoulos et al., 2023). Predictions are taken from a transformer sequence model that outputs a gene expression
level from O to 20. We derive this data from the code repository released with Angelopoulos et al. (2023).2, and use 5000
random samples for our experiments.

A.3. OpinionQA

LLM:s are increasingly used to simulate and study human behavior in social science (Argyle et al., 2023b), yet often exhibit
systematic biases and inconsistencies (Dominguez-Olmedo et al., 2024). Using the OpinionQA dataset, we show how QuEst
can produce more reliable estimates of public opinion—grounded in limited, high-quality human labels—by rigorously
leveraging abundant synthetic LLM-generated data from Llama-3.1-70B-Instruct. In the OpinionQA dataset, each person
has answered a different subset of Pew polling questions. Opinions are measured on a 0—1 scale, and we target the middle
50% of the population for estimation.

For the target opinion question on which we wish to estimate the quantile-based measure, we use the following: “Do you
think same-sex marriages being legal in the U.S. is generally good or bad for our society?”

The answer options are [*Very good for society’, ’Somewhat good for society’, ’Neither good nor bad for society’, ’Somewhat

bad for society’, ’Very bad for society’, 'Refused’], which we assign to float values from O to 1, evenly spaced.

Generating Response Predictions Responses are generated with Llama-3.1-70B-Instruct. We make predictions for all
persons in the dataset that have real answers to this question, which is 10151 total. In order to make a prediction for each
person, we include 20 in-context examples using other question/answer pairs from the same person. The in-context examples
are chosen based on the embedding similarity of the target question to other questions that person has answered. We also
include any demographic information that is available for the given person, although some persons include more of this than
others.

A.4. Toxicity

For our adversarial prompts, we use 20000 prompts randomly sampled from the red-teaming split of the Anthropic RLHF
dataset (Ganguli et al., 2022).> Our 8 candidate LLMs used to produce responses are taken from the Huggingface model
repository:*

* Phi_3_mini_4k_instruct

e Mistral 7B _Instruct_v0.2

* Mistral_7B_Instruct_v0.3

e Llama_2_7b_chat_hf

https://github.com/aangelopoulos/ppi_py
*https://huggingface.co/datasets/Anthropic/hh-rlhf
4https ://huggingface.co/models
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¢ Meta_LLlama_3_8B_Instruct
Llama_3.1_8B_Instruct

L]

e gemma_2 9b_it

* Qwen2_7B_Instruct

Responses are generated with a temperature of 0.75, using the system prompt: “You are a helpful assistant. Answer the
question as fully as possible.”

Scoring Responses for Toxicity Auto-evaluation relies on the use of scoring models to evaluate a model of interest. To
evaluate QuEst as a method to balance the cost and efficacy of auto-evaluation, we score all model responses to adversarial
prompts with a powerful LLM that is expensive to operate (Llama_3.1_70B_Instruct), as well as a less powerful and
relatively inexpensive LLM (Llama_3.1_8B_Instruct). The scoring models are prompted with a template that contains a
prompt-response pair from our generations, as well as instructions to evaluate the toxicity of a response with a single token
out of two suggestions (e.g., (safe/unsafe), (yes/no)). We then compute the probabilities of the positive and negative
responses from the model’s output logits for the first output token and compute the toxicity ¢ as

unsafe_token_prob

unsafe_token_prob + safe_token_prob

. The template for our toxicity scoring prompt is presented below. The unsafe categories we input are identical to those used
in the prompt template of the Llama-Guard family of LLMs, which are specifically tuned for toxicity. Note that we do not
use these models as scoring models as their logits tend to saturate, resulting in highly polar (poorly calibrated) scores.

You will be given one conversation between a User and an Agent that contains
potentially unsafe content.

Your task is to check if there is unsafe content in the Agent messages in the
conversation according to our safety policy with the below categories.

<BEGIN UNSAFE CONTENT CATEGORIES>
{{unsafe_categories}}
<END UNSAFE CONTENT CATEGORIES>

Please make sure you read and understand these instructions carefully.
Please keep this document open while reviewing, and refer to it as needed.

<BEGIN CONVERSATION>
{{conversation}}
<END CONVERSATION>

Provide your safety assessment for the Agent in the above conversation in the
form below. Your response should be a SINGLE WORD, either ’{{safe_indicator}}’

if the response is safe or ’{{unsafe_indicator}}’ if it is unsafe.

SAFETY ASSESSMENT:

A.5. News Summarization

We derive news articles from the XSum dataset (Narayan et al., 2018).> We use 20000 randomly sampled articles. Summaries
are generated using Qwen2_7B _Instruct with a temperature of 0.75 and the prompt: “You are a helpful assistant used to
summarize news articles. Summarize the input article succinctly in 1-3 sentences, ensuring that your summary is relevant,
coherent, and faithful to the original article. Only output the summary, do not repeat or confirm the instruction.”

Shttps://huggingface.co/datasets/EdinburghNLP/xsum
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Scoring Summaries We score our model-generated summaries on the three predominant metrics in the literature: logical
coherence, consistency with the source text, and relevance to the reader. We use a modified version of G-Eval (Liu et al.,
2023), a highly tuned evaluation prompt for scoring summaries with LLMs. As in the toxicity experiments, we use
Llama_3.1_70B _Instruct as our gold standard model and Llama_3.1_8B_Instruct as our inexpensive model. Our prompt
template for the relevance metric is presented below, with the templates for other metrics differing in their descriptions of
the metric and evaluation steps.

You will be given one summary written for a news article.
Your task is to rate the summary on one metric.

Please make sure you read and understand these instructions carefully.
Please keep this document open while reviewing, and refer to it as needed.

Evaluation Criteria:

Relevance ({{low_score}}—-{{high_score}}) - selection of important content from
the source. The summary should include only important information from the
source document. Penalize summaries which contain redundancies and excess
information.

Evaluation Steps:

1. Read the summary and the source document carefully.

2. Compare the summary to the source document and identify the main points of
the article.

3. Assess how well the summary covers the main points of the article, and how
much irrelevant or redundant information it contains.

4. Assign a score for Relevance on a scale of {{low_score}} to {{high_score}},
where {{low_score}} is the lowest and {{high_score}} is the highest based
on the Evaluation Criteria.

Now, evaluate the following document for Relevance:
Source Text: {{source_text}}
Summary: {{summary}}

Provide your Relevance score as a SINGLE NUMBER ({{low_score}}-{{high_score}})
in the below form.

Evaluation Form (scores ONLY) :
Relevance:

Additional Implementation Details In Section 3.2, we propose a technique for fitting the A parameter so as to minimize
asymptotic variance. We remark that in our applications, we sometimes will clip A to enforce it within a range, for example,
[0, 1], to obtain more stable performance. Our theoretical results still hold since A will still converge to a constant.

B. Additional Experiment Results

Figure 6 features coverage results for PovertyMap, GeneExpression, and OpinionQA. Given that we calculate 95%
confidence intervals with QuEst in these experiments, we examine whether they contain the true quantity at least this often.
Our empirical results empirically validate our confidence intervals.
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Figure 6. Coverage results across 3 datasets and using different numbers of observed data.
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Figure 7. Experimental results for estimating VaR from three datasets (PovertyMap, GeneExpression, OpinionQA). Top: Estimation error
vs. number of observed labels. Bottom: Confidence interval width vs. number of observed labels.

B.1. QuEst Extension Experiments

To examine the potential benefits of directly optimizing a parameterized weighting function to estimate QBDMs, we construct
a pathological case where a single correction for variance is unlikely to suffice: a dataset that exhibits heteroskedasticity,
i.e. variance whose magnitude changes with data values. We sample 50000 linearly-spaced values from 1 to v, jitter these
values by randomly adding or subtracting a number between 0 and §. We then add heteroskedasticity by first scaling data
points proportionally to their absolute value, then normalizing all values to [0, 1]. We use a basis function that maps each
point on the CDF to a combination of 30 sinusoids (similar to the positional embedding used in LLMs), and optimize a
30-dimensional vector to rectify the embedded CDF. Each experimental result is averaged over 100 trials with differing
random seeds.

Figure 8 shows that QuEst-Opt successfully adapts to the heteroskedasticity when imputing the IQR (25th-75th percentile),
outperforming QuEst across a range of observed dataset sizes. Notably, the improvement over QuEst is greatest in the
ultra-low observed data regime. We observe a similar pattern in two real-world datasets (Figure 9). QuEst-Opt performs
comparably to QuEst with a tuned A on Opinion QA, but performs better on the more complex Gene Expression dataset,
particularly in the cases with very few observed samples.

C. Additional Theory Results

In this section, we will demonstrate the omitted parts in our main context, including proofs and various of detailed formulas.
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Figure 8. QuEst-Opt outperforms QuEst on synthetic datasets that exhibit heteroskedasticity (varying variance). Datasets constructed by

sampling 50,000 values from 1 to v, jittering values randomly by at most &, and adding heteroskedasticity (Ac?).
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Figure 9. QuEst-Opt performs comparably to or better than QuEst on real-world datasets.

C.1. Asymptotic Normality of Q) (F,)

In this subsection, we will establish central limit theorem (CLT) for Q) (F,,) for ¢ is a (1) bounded smooth function; (2)

almost everywhere bounded and smooth function with finite discontinuous points; (3) Dirac delta function.

C.1.1. CLT FOR @y (F,,) WITH BOUNDED SMOOTH %

First, by Theorem 22.3 in (Van der Vaart, 2000), we have that

Vi(QuFn) = EQu(Fy)) —p N(0,03(4, F)),

where

o3, F) = / / (F(u A v) — F(u) F(0))(F () (F(0))dudo.

Thus, if we can further prove that EQy (F,) — Qu(F') = 0,(1/4/n), then we can have conclusion that
Vi(Qu(Fn) = QuF)) =p N (0,034, F)).

Proof of EQ;, (F,) — Qy(F) = 0,(1/y/n). In this part, we will prove that

\/H(EQw(Fn) - Qw(F)) — 0.

Notice that

1
Qu(F) = / $(p)F~ (p)dp = / $(F(q))adF(q).

As as result,

QulFa) = [ W(F(@)adFal0) = 5 > 6(FL(M) M,

1=
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Furthermore, we have

N 21 HM)p < Ml})|M1}

= [y, o]+ 2 E D g
Thus,
1 WM, <
BQu(F) ~ Qo) = [ aiagy,,, [0 + =T E D apy [ urigari)

n n

Now the only thing we need to do is to study Ea,}, ., {1#(l + M)] — 9(F(q)) and apply dominated

convergence theorem.

1{M, <
E(am, )0 [¢(% + Zp>1 M, < q})] —¥(F(q))

n

l + Zp>1 1{MP S q} _
n n

1 1 > My <q} 2
+ 5E (1,0 (6) (5 + === - Flg))

O (F(@)Eqar, 0

n

where s € [0, 1].

First,

1 + Zp>1 l{Mp S q} _

E (f
{Mp}p¢1 n n

1

F(9)) = (1= F(g))-

Second,

1 1{M, < 2
B0 (2 + 2L ED )

<cn(y+ =R ) o)

for C' = sup,¢(o,1) ¥(5)-

To sum up, we prove that

EQu(F.) ~ Qu(F) =0()-

n

Thus, based on the previous results, we have the following theorem:

Theorem C.1. Suppose that EM? < oo, v is a bounded function that is twice continuously differentiable, then

Vi(Qu(F) = Qu(F)) =0 N(0,03(v, F)), )

where

7w F) = [ [ (Fluno) = F)P@)o(F@)o(P)dude.
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C.1.2. CLT FOR @y (F,,) WITH ALMOST EVERYWHERE BOUNDED AND SMOOTH FUNCTION HAVING FINITE
DISCONTINUOUS POINTS

The proof for this case will be similar as before. We specify a class of smooth functions {1, }$°, such that

lim ¥y, — 1.
k—o0

From our previous results, the CLT holds for each /.. Then, we apply dominated convergence theorem and get our final
result such that

Vi(Qu(En) = Qu(E)) —p N (0,030, F)), ©)
where

At F) = [ [ (Fnv) =~ F@FE)0(F@)(F @) dud.

C.1.3. CLT FOR @y (F,,) WITH DIRAC DELTA FUNCTION

For the case that 1) = d, there have already been classic results built regarding the CLT of quantile functions.

Theorem C.2. Suppose that EM? < oo and there exists density function f for M that is positive and smooth enough,

Vi(F18) = FH8)) —p N(0,03(05, F)), @)
where 80— p)
o B
70 F) = ri(a))

F) = B(1—B)

The only thing we need to verify is that o7 (g, PEG) is also included in our general formula of variance, i.e.,

-7

[ [ (o) = P P@) 65 (s P o)t = oo

This indeed holds since:

//(F(u/\v)—F(u)F(v))(?ﬁ( (u))dg(F dudv—//ﬁ 1—p)dg(u)og(v)dF~ ( )dF_l(v)
_ B(1 — B)dg(u)da(v)
- | [ iy
(since dF ' (u) = Wdu)

_ B-p)
PEE)

Combining all the above results, we know that the CLT holds for ¢ is a (1) bounded smooth function; (2) almost everywhere
bounded and smooth function with finite discontinuous points; (3) Dirac delta function.

C.2. Asymptotic Normality of Qw (A)

Notice that Q. ()\) is a sum of three L-statistics, and two of them are dependent, namely, @y, (£7,) and Qy(F,). We need to
show that Q. (F),) — /\Qw( 1) Will converge to a normal distribution asymptotically. This will be straightforward following
Section C.1 and the proof in (Van der Vaart, 2000). Specifically, following the proof in (Van der Vaart, 2000), we have

that Qy (F,) — AQy(F,) and [ /n(F, — F)(y)ei(y)dy — A [ v/n(F, — F)(y)ea(y)dy have the same asymptotically
distribution for some determlmstlc functions e; and e5. The latter one could be written into sum of i.i.d. random variables,

18



QuEst: Enhancing Estimates of Quantile-Based Distributional Measures Using Model Predictions

which will lead to CLT straightforwardly. Thus, we can obtain CLT for Qw (M) for any fixed \. For any fixed A, under the
same conditions as in Section C.1, if n/N — r for some r > 0, we have

Vi(Qu(N) = Qu(F)) —p N (0,0 (0, F.F)),

where
pL (N F,F) = X (1+1)05(F) + 0p,(F) — 2X\ny(F, F)

and 7, (F, F) is the covariance Cov(Qy(F), Qw(ﬁ)). Here,

Cov(Qu(F),Qu(F)) = [ [ 6(FE)(Fw) (BIZ < 2 W < w} - FE)F(w))dzdu

and Z ~ F,W ~ F. To sum up, we have the following theorem.

Theorem C.3 (Restatement of Theorem 3.1). For any fixed )\, under regularity conditions in Section C.1, if n/N — r for
some r > 0, we have

Vi(QuN) = QulF)) —p N(0, 03 (A F, F)).

where py (-, -, -) is
PN\ F ) = N (1+1)03 (F) + 03, (F) — 2\, (F, F)

if ¥ is a (1) bounded smooth function; (2) almost everywhere bounded and smooth function with finite discontinuous points;
(3) Dirac delta function.

C.3. Power-tuning with \
The pi (\ F, F ) can be further optimized by choosing A appropriately. Given that

P (N FF) = X (1+ 7)o, (F) + 0p(F) — 2\ny(F, F)

is a quadratic function regarding )\, we can choose

to optimize the quadratic function.

However, when we construct confidence interval, we only have access to sample version of all types of quantities. So, we
will choose A to optimize pfb (A, F,, F,,, Fi%), which gives us

5\ _ ﬁw(Fn, Fn)~ )
(1 /M) (F)
Here,
noFu Fo) = [ [ 60 (5 Y12 < 2 Wi < 0} = Fu)Fa(w) ) dzdu

where Z;’s are samples making up F), and W;’s are samples making up F,

Notice that A —,, A*, so by Slustky’s rule we have that

05t O Fos By TRV (Qu(3) = Qu(F)) =0 N(0,1).

This will give us Corollary 3.1.
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C.4. Multi-Dimensional QuEst

The multi-dimensional QuEst is straightforward to derive following the univariate case in Theorem 3.1 and Theorem 22.3 in
(Van der Vaart, 2000).

We here just illustrate a bit more regarding the covariance terms in V. Specifically,

Cov(Qy, (Fu), Qu, (Fn)) = NidjCov(Qu, (FX), Qu, (F}) + MiCov(Qu, (FY), Qu, (Fn)) — AidjCov(Qu (FR), Qu, ()
+X,Cov(Qy, (F, ) Qu, (F})) + Cov(Qy, (Fn), ij( ) = AjCov(Quy, (Fn), Q%( n))
= AiXjCovV(Qu, (Fn), Qu, (X)) = AiCov(Qu, (Fn), Qu, (Fn)) + AidiCov(Qu, (Fn), Qu, (F)).

Notice that F]\‘, will be independent to £, and Fn, so we only need to calculate terms in the following forms.

Cov(Qy(Fh //¢ )(Fp(w ))(;21{2 <z, W; Sw} — F,(2)Fn(w ))dzdw,
Cov(Qy(Fn), Qu(Fn)) //¢ D(Fr (w ))(iiuz < 2 Wi < w) — Fo(2)Fp(w ))dzdw,
and
Cov(Qy(F, //w F,(w ))(Fn(z/\w)—Fn(z)Fn(w)>dzdw.

C.5. Omitted Details of Extension: A Better Rectified Estimator

Recall that we further modify our estimator Q () to Q(v,4)), which is defined as

Q(, P)2Qu(F3) + (Qu(Fn) — Qy(Fn)). ®)

In this paper, we choose 9(-) = ¢ (-) 26T ¢(-), where ¢(-) is a multi-dimensional vector consists of basis functions and & is
a tuning parameter vector.

Following our previous theories, if n/N — r for some r > 0, then, for any fixed &, we have that

\/E(Q(wﬂﬁf) - Qw(F)) —D N(O,P?p(vaa F))

where
P& FF) = (Wr) [ [ (Plunv) ~ Pu)F(w)ve(F(w)e(F(w)dody
; / [ (Fn o) = F@P@)o(P)e(Pe)dude
_2//¢ ))(El{Z<zW<w} F(2)F(w ))dzdw

andZNF,Wwﬁ'.

Meanwhile, we define the consistent sample version of variance pi (&, Fp, F,, F;\‘,)
p2(6 Fu B F3) = (14 ) [ [ (B 9) = Fi() B 0)) e P ) e () dady
/ / (2 A ) = Fo () P () (Fo () (P ()

2 [ [umeEa)(E 117 <2 W) < w) — Fule) )z

Jj=1
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Here Z;’s are samples making up F}, and W;’s are samples making up F,,. Then, we have

V20 (6, Fy, Fy YY) = / / (A y) — Y (@) Y () b(EL ()67 (Bl () dudy

It is not hard to show that [ [ (F(z Ay) — F3(2)Fit(y))¢(Fn(2))¢T (Fn(y))dady is the covariance matrix of the
vector

by Theorem 22.3 in (Van der Vaart, 2000), which means pfp(g E,, F,, F}(,) is semi-definite positive.

ThuS, if we furthel" add a penalty term and Optimize
pd) é yinydtny N 2

with a > 0, this optimization objective is strongly convex.

We denote R - . «
§ 1= argming pfb(faanFnaF;\Lf) + 5”5”2

We consider building CLT for Q (), ¥¢). To simplify the notation, we denote

6() = Qv ve)
for all £&. We further denote

* 3 A @
E = argmlngp?p(f,F,F)“‘EHﬂF

Assume ¥ to be bounded and smooth enough almost everywhere (for example, twice continuously differentiable). By Talyor
expansion, we have

1
N

As long as we can show /nV¢0(£*)T (€ — £€*) = 0,(1), we then can successfully build CLT because we will have
V(&) ~p v/n(€"),

VB(€) = Vb (&) + V(€)' (€ — €7) + 0y(

where ~p means same in distribution.

Notice that R R
Vel(£") = VeQuy. (F) — VeQy,. (Fr) = 0,

since F}, and Fj{, both converges to F. This means we only need to prove that
Vi =€) = 0p(1).
By the strong convexity of 6%(¢) = p2 (&, Fy, Fro, ) + 2|€]|%. we have that
(V62(&) = V&> (€) (€ - ¢) > all — &"|1*.
Thus, we can easily get .
IVa2(€") = Vo (&) = [Va* ()] = all€ — €|
since Vo2(€*) = 0 and V62 (€) = 0 by the first-order optimality condition.

Finally, it is straightforward to prove that

VG*(€7) = Va?(€) = Op(1/Vn)
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when we view the dimension of £ as a constant. Thus, we know that

£~ & =0,(1/Vn).
The proof is complete.

Thus, we have the folowing theorem.

Theorem C.4 (Restatement of Theorem 5.1). If v is bounded and twice continuously differentiable almost everywhere, we
have

P (€ Fos s BV (Qu(W, ) = Qu(F)) =0 N(0,1).

where £ = argming pfp (€, Fy, F, ﬁ‘ﬁ,) + 5 l€11? and « is any pre-specified positive constant.
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